
Econometrics Toolbox™

User's Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Econometrics Toolbox™ User's Guide
© COPYRIGHT 1999–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

October 2008 Online only Version 1.0 (Release 2008b)
March 2009 Online only Revised for Version 1.1 (Release 2009a)
September 2009 Online only Revised for Version 1.2 (Release 2009b)
March 2010 Online only Revised for Version 1.3 (Release 2010a)
September 2010 Online only Revised for Version 1.4 (Release 2010b)
April 2011 Online only Revised for Version 2.0 (Release 2011a)
September 2011 Online only Revised for Version 2.0.1 (Release 2011b)
March 2012 Online only Revised for Version 2.1 (Release 2012a)
September 2012 Online only Revised for Version 2.2 (Release 2012b)
March 2013 Online only Revised for Version 2.3 (Release 2013a)
September 2013 Online only Revised for Version 2.4 (Release 2013b)
March 2014 Online Only Revised for Version 3.0 (Release 2014a)
October 2014 Online Only Revised for Version 3.1 (Release 2014b)
March 2015 Online Only Revised for Version 3.2 (Release 2015a)
September 2015 Online Only Revised for Version 3.3 (Release 2015b)

v

Contents

Getting Started
1

Econometrics Toolbox Product Description 1-2
Key Features . 1-2

Econometric Modeling . 1-3
Model Selection . 1-3
Econometrics Toolbox Features . 1-3

Model Objects, Properties, and Methods 1-8
Model Objects . 1-8
Model Properties . 1-9
Specify Models . 1-11
Retrieve Model Properties . 1-16
Modify Model Properties . 1-17
Methods . 1-18

Stochastic Process Characteristics . 1-20
What Is a Stochastic Process? . 1-20
Stationary Processes . 1-21
Linear Time Series Model . 1-22
Lag Operator Notation . 1-22
Characteristic Equation . 1-23
Unit Root Process . 1-24

Bibliography . 1-27

vi Contents

Data Preprocessing
2

Data Transformations . 2-2
Why Transform? . 2-2
Common Data Transformations . 2-2

Trend-Stationary vs. Difference-Stationary Processes 2-7
Nonstationary Processes . 2-7
Trend Stationary . 2-9
Difference Stationary . 2-9

Specify Lag Operator Polynomials . 2-11
Lag Operator Polynomial of Coefficients 2-11
Difference Lag Operator Polynomials 2-14

Nonseasonal Differencing . 2-18

Nonseasonal and Seasonal Differencing 2-23

Time Series Decomposition . 2-28

Moving Average Filter . 2-31

Moving Average Trend Estimation . 2-33

Parametric Trend Estimation . 2-37

Hodrick-Prescott Filter . 2-45

Using the Hodrick-Prescott Filter to Reproduce Their
Original Result . 2-46

Seasonal Filters . 2-51
What Is a Seasonal Filter? . 2-51
Stable Seasonal Filter . 2-51
Sn × m seasonal filter . 2-52

Seasonal Adjustment . 2-54
What Is Seasonal Adjustment? . 2-54
Deseasonalized Series . 2-54
Seasonal Adjustment Process . 2-55

vii

Seasonal Adjustment Using a Stable Seasonal Filter 2-57

Seasonal Adjustment Using S(n,m) Seasonal Filters 2-64

Model Selection
3

Box-Jenkins Methodology . 3-2

Box-Jenkins Model Selection . 3-4

Autocorrelation and Partial Autocorrelation 3-13
What Are Autocorrelation and Partial Autocorrelation? 3-13
Theoretical ACF and PACF . 3-13
Sample ACF and PACF . 3-14

Ljung-Box Q-Test . 3-16

Detect Autocorrelation . 3-18
Compute Sample ACF and PACF . 3-18
Conduct the Ljung-Box Q-Test . 3-21

Engle’s ARCH Test . 3-25

Detect ARCH Effects . 3-28
Test Autocorrelation of Squared Residuals 3-28
Conduct Engle's ARCH Test . 3-31

Unit Root Nonstationarity . 3-34
What Is a Unit Root Test? . 3-34
Modeling Unit Root Processes . 3-34
Available Tests . 3-39
Testing for Unit Roots . 3-40

Unit Root Tests . 3-44
Test Simulated Data for a Unit Root 3-44
Test Time Series Data for a Unit Root 3-50
Test Stock Data for a Random Walk 3-53

Assess Stationarity of a Time Series 3-58

viii Contents

Test Multiple Time Series . 3-62

Information Criteria . 3-63

Model Comparison Tests . 3-65
Available Tests . 3-65
Likelihood Ratio Test . 3-67
Lagrange Multiplier Test . 3-67
Wald Test . 3-68
Covariance Matrix Estimation . 3-68

Conduct a Lagrange Multiplier Test 3-70

Conduct a Wald Test . 3-74

Compare GARCH Models Using Likelihood Ratio Test 3-77

Check Fit of Multiplicative ARIMA Model 3-81

Goodness of Fit . 3-88

Residual Diagnostics . 3-90
Check Residuals for Normality . 3-90
Check Residuals for Autocorrelation 3-90
Check Residuals for Conditional Heteroscedasticity 3-91

Check Predictive Performance . 3-92

Nonspherical Models . 3-94
What Are Nonspherical Models? . 3-94

Plot a Confidence Band Using HAC Estimates 3-95

Change the Bandwidth of a HAC Estimator 3-105

Check Model Assumptions for Chow Test 3-112

Power of the Chow Test . 3-123

ix

Time Series Regression Models
4

Time Series Regression Models . 4-3

Regression Models with Time Series Errors 4-6
What Are Regression Models with Time Series Errors? 4-6
Conventions . 4-7

Specify Regression Models with ARIMA Errors Using
regARIMA . 4-10

Default Regression Model with ARIMA Errors Specifications 4-10
Specify regARIMA Models Using Name-Value Pair

Arguments . 4-12

Specify the Default Regression Model with ARIMA Errors 4-20

Modify regARIMA Model Properties 4-22
Modify Properties Using Dot Notation 4-22
Nonmodifiable Properties . 4-25

Specify Regression Models with AR Errors 4-29
Default Regression Model with AR Errors 4-29
AR Error Model Without an Intercept 4-30
AR Error Model with Nonconsecutive Lags 4-31
Known Parameter Values for a Regression Model with AR

Errors . 4-32
Regression Model with AR Errors and t Innovations 4-33

Specify Regression Models with MA Errors 4-35
Default Regression Model with MA Errors 4-35
MA Error Model Without an Intercept 4-36
MA Error Model with Nonconsecutive Lags 4-37
Known Parameter Values for a Regression Model with MA

Errors . 4-38
Regression Model with MA Errors and t Innovations 4-39

Specify Regression Models with ARMA Errors 4-42
Default Regression Model with ARMA Errors 4-42
ARMA Error Model Without an Intercept 4-43
ARMA Error Model with Nonconsecutive Lags 4-44

x Contents

Known Parameter Values for a Regression Model with ARMA
Errors . 4-44

Regression Model with ARMA Errors and t Innovations . . . 4-45

Specify Regression Models with ARIMA Errors 4-48
Default Regression Model with ARIMA Errors 4-48
ARIMA Error Model Without an Intercept 4-49
ARIMA Error Model with Nonconsecutive Lags 4-50
Known Parameter Values for a Regression Model with ARIMA

Errors . 4-51
Regression Model with ARIMA Errors and t Innovations . . . 4-52

Specify Regression Models with SARIMA Errors 4-55
SARMA Error Model Without an Intercept 4-55
Known Parameter Values for a Regression Model with SARIMA

Errors . 4-56
Regression Model with SARIMA Errors and t Innovations . . 4-57

Specify a Regression Model with SARIMA Errors 4-60

Specify the ARIMA Error Model Innovation Distribution . 4-69
About the Innovation Process . 4-69
Innovation Distribution Options . 4-70
Specify the Innovation Distribution 4-71

Impulse Response for Regression Models with ARIMA
Errors . 4-75

Plot the Impulse Response of regARIMA Models 4-77
Regression Model with AR Errors . 4-77
Regression Model with MA Errors 4-79
Regression Model with ARMA Errors 4-80
Regression Model with ARIMA Errors 4-82

Maximum Likelihood Estimation of regARIMA Models . . . 4-86
Innovation Distribution . 4-86
Loglikelihood Functions . 4-87

regARIMA Model Estimation Using Equality Constraints . 4-89

Presample Values for regARIMA Model Estimation 4-95

Initial Values for regARIMA Model Estimation 4-98

xi

Optimization Settings for regARIMA Model Estimation . . 4-100
Optimization Options . 4-100
Constraints on Regression Models with ARIMA Errors . . . 4-104

Estimate a Regression Model with ARIMA Errors 4-105

Estimate a Regression Model with Multiplicative ARIMA
Errors . 4-114

Select a Regression Model with ARIMA Errors 4-123

Choose Lags for an ARMA Error Model 4-125

Intercept Identifiability in Regression Models with ARIMA
Errors . 4-130

Intercept Identifiability . 4-130
Intercept Identifiability Illustration 4-132

Compare Alternative ARIMA Model Representations 4-136
regARIMA to ARIMAX Model Conversion 4-136
Illustrate regARIMA to ARIMAX Model Conversion 4-137

Simulate Regression Models with ARMA Errors 4-145
Simulate an AR Error Model . 4-145
Simulate an MA Error Model . 4-153
Simulate an ARMA Error Model . 4-161

Simulate Regression Models with Nonstationary Errors . 4-171
Simulate a Regression Model with Nonstationary Errors . . 4-171
Simulate a Regression Model with Nonstationary Exponential

Errors . 4-175

Simulate Regression Models with Multiplicative Seasonal
Errors . 4-181

Simulate a Regression Model with Stationary Multiplicative
Seasonal Errors . 4-181

. 4-184

Monte Carlo Simulation of Regression Models with ARIMA
Errors . 4-187

What Is Monte Carlo Simulation? 4-187
Generate Monte Carlo Sample Paths 4-187
Monte Carlo Error . 4-189

xii Contents

Presample Data for regARIMA Model Simulation 4-191

Transient Effects in regARIMA Model Simulations 4-192
What Are Transient Effects? . 4-192
Illustration of Transient Effects on Regression 4-192

Forecast a Regression Model with ARIMA Errors 4-202

Forecast a Regression Model with Multiplicative Seasonal
ARIMA Errors . 4-206

Verify Predictive Ability Robustness of a regARIMA Model 4-212

MMSE Forecasting Regression Models with ARIMA Errors 4-215
What Are MMSE Forecasts? . 4-215
How forecast Generates MMSE Forecasts 4-216
Forecast Error . 4-218

Monte Carlo Forecasting of regARIMA Models 4-220
Monte Carlo Forecasts . 4-220
Advantage of Monte Carlo Forecasts 4-220

Conditional Mean Models
5

Conditional Mean Models . 5-3
Unconditional vs. Conditional Mean 5-3
Static vs. Dynamic Conditional Mean Models 5-3
Conditional Mean Models for Stationary Processes 5-4

Specify Conditional Mean Models Using arima 5-6
Default ARIMA Model . 5-6
Specify Nonseasonal Models Using Name-Value Pairs 5-8
Specify Multiplicative Models Using Name-Value Pairs 5-13

Autoregressive Model . 5-18
AR(p) Model . 5-18
Stationarity of the AR Model . 5-18

xiii

AR Model Specifications . 5-21
Default AR Model . 5-21
AR Model with No Constant Term 5-22
AR Model with Nonconsecutive Lags 5-23
ARMA Model with Known Parameter Values 5-24
AR Model with a t Innovation Distribution 5-25

Moving Average Model . 5-27
MA(q) Model . 5-27
Invertibility of the MA Model . 5-27

MA Model Specifications . 5-29
Default MA Model . 5-29
MA Model with No Constant Term 5-30
MA Model with Nonconsecutive Lags 5-31
MA Model with Known Parameter Values 5-32
MA Model with a t Innovation Distribution 5-32

Autoregressive Moving Average Model 5-34
ARMA(p,q) Model . 5-34
Stationarity and Invertibility of the ARMA Model 5-35

ARMA Model Specifications . 5-37
Default ARMA Model . 5-37
ARMA Model with No Constant Term 5-38
ARMA Model with Known Parameter Values 5-39

ARIMA Model . 5-41

ARIMA Model Specifications . 5-43
Default ARIMA Model . 5-43
ARIMA Model with Known Parameter Values 5-44

Multiplicative ARIMA Model . 5-46

Multiplicative ARIMA Model Specifications 5-48
Seasonal ARIMA Model with No Constant Term 5-48
Seasonal ARIMA Model with Known Parameter Values . . . 5-49

Specify Multiplicative ARIMA Model 5-52

ARIMA Model Including Exogenous Covariates 5-58
ARIMAX(p,D,q) Model . 5-58

xiv Contents

Conventions and Extensions of the ARIMAX Model 5-58

ARIMAX Model Specifications . 5-61
Specify ARIMAX Model Using Name-Value Pairs 5-61
Specify ARMAX Model Using Dot Notation 5-62

Modify Properties of Conditional Mean Model Objects . . . 5-65
Dot Notation . 5-65
Nonmodifiable Properties . 5-69

Specify Conditional Mean Model Innovation Distribution . 5-72
About the Innovation Process . 5-72
Choices for the Variance Model . 5-73
Choices for the Innovation Distribution 5-73
Specify the Innovation Distribution 5-74
Modify the Innovation Distribution 5-76

Specify Conditional Mean and Variance Models 5-79

Impulse Response Function . 5-86

Plot the Impulse Response Function 5-88
Moving Average Model . 5-88
Autoregressive Model . 5-89
ARMA Model . 5-91

Box-Jenkins Differencing vs. ARIMA Estimation 5-94

Maximum Likelihood Estimation for Conditional Mean
Models . 5-98

Innovation Distribution . 5-98
Loglikelihood Functions . 5-99

Conditional Mean Model Estimation with Equality
Constraints . 5-101

Presample Data for Conditional Mean Model Estimation . 5-103

Initial Values for Conditional Mean Model Estimation . . . 5-106

Optimization Settings for Conditional Mean Model
Estimation . 5-108

Optimization Options . 5-108

xv

Conditional Mean Model Constraints 5-112

Estimate Multiplicative ARIMA Model 5-113

Model Seasonal Lag Effects Using Indicator Variables . . . 5-117

Forecast IGD Rate Using ARIMAX Model 5-122

Estimate Conditional Mean and Variance Models 5-129

Choose ARMA Lags Using BIC . 5-135

Infer Residuals for Diagnostic Checking 5-140

Monte Carlo Simulation of Conditional Mean Models 5-146
What Is Monte Carlo Simulation? 5-146
Generate Monte Carlo Sample Paths 5-146
Monte Carlo Error . 5-147

Presample Data for Conditional Mean Model Simulation . 5-149

Transient Effects in Conditional Mean Model Simulations 5-150

Simulate Stationary Processes . 5-151
Simulate an AR Process . 5-151
Simulate an MA Process . 5-156

Simulate Trend-Stationary and Difference-Stationary
Processes . 5-163

Simulate Multiplicative ARIMA Models 5-169

Simulate Conditional Mean and Variance Models 5-175

Monte Carlo Forecasting of Conditional Mean Models . . . 5-181
Monte Carlo Forecasts . 5-181
Advantage of Monte Carlo Forecasting 5-181

MMSE Forecasting of Conditional Mean Models 5-182
What are MMSE Forecasts? . 5-182
How forecast Generates MMSE Forecasts 5-182
Forecast Error . 5-184

xvi Contents

Convergence of AR Forecasts . 5-186

Forecast Multiplicative ARIMA Model 5-192

Forecast Conditional Mean and Variance Model 5-197

Conditional Variance Models
6

Conditional Variance Models . 6-2
General Conditional Variance Model Definition 6-2
GARCH Model . 6-3
EGARCH Model . 6-4
GJR Model . 6-6

Specify GARCH Models Using garch . 6-8
Default GARCH Model . 6-8
Specify Default GARCH Model . 6-10
Using Name-Value Pair Arguments 6-11
Specify GARCH Model with Mean Offset 6-15
Specify GARCH Model with Known Parameter Values 6-15
Specify GARCH Model with t Innovation Distribution 6-16
Specify GARCH Model with Nonconsecutive Lags 6-17

Specify EGARCH Models Using egarch 6-19
Default EGARCH Model . 6-19
Specify Default EGARCH Model . 6-21
Using Name-Value Pair Arguments 6-22
Specify EGARCH Model with Mean Offset 6-26
Specify EGARCH Model with Nonconsecutive Lags 6-27
Specify EGARCH Model with Known Parameter Values . . . 6-28
Specify EGARCH Model with t Innovation Distribution 6-29

Specify GJR Models Using gjr . 6-31
Default GJR Model . 6-31
Specify Default GJR Model . 6-33
Using Name-Value Pair Arguments 6-34
Specify GJR Model with Mean Offset 6-38
Specify GJR Model with Nonconsecutive Lags 6-39
Specify GJR Model with Known Parameter Values 6-40

xvii

Specify GJR Model with t Innovation Distribution 6-40

Modify Properties of Conditional Variance Models 6-42
Dot Notation . 6-42
Nonmodifiable Properties . 6-45

Specify the Conditional Variance Model Innovation
Distribution . 6-48

Specify Conditional Variance Model For Exchange Rates . 6-53

Maximum Likelihood Estimation for Conditional Variance
Models . 6-62

Innovation Distribution . 6-62
Loglikelihood Functions . 6-62

Conditional Variance Model Estimation with Equality
Constraints . 6-65

Presample Data for Conditional Variance Model
Estimation . 6-67

Initial Values for Conditional Variance Model Estimation . 6-69

Optimization Settings for Conditional Variance Model
Estimation . 6-71

Optimization Options . 6-71
Conditional Variance Model Constraints 6-75

Infer Conditional Variances and Residuals 6-77

Likelihood Ratio Test for Conditional Variance Models . . . 6-83

Compare Conditional Variance Models Using Information
Criteria . 6-87

Monte Carlo Simulation of Conditional Variance Models . . 6-92
What Is Monte Carlo Simulation? . 6-92
Generate Monte Carlo Sample Paths 6-92
Monte Carlo Error . 6-93

Presample Data for Conditional Variance Model
Simulation . 6-95

xviii Contents

Simulate GARCH Models . 6-97

Assess EGARCH Forecast Bias Using Simulations 6-104

Simulate Conditional Variance Model 6-111

Monte Carlo Forecasting of Conditional Variance Models 6-115
Monte Carlo Forecasts . 6-115
Advantage of Monte Carlo Forecasting 6-115

MMSE Forecasting of Conditional Variance Models 6-117
What Are MMSE Forecasts? . 6-117
EGARCH MMSE Forecasts . 6-117
How forecast Generates MMSE Forecasts 6-118

Forecast GJR Models . 6-123

Forecast a Conditional Variance Model 6-126

Converting from GARCH Functions to Model Objects . . . 6-129

Multivariate Time Series Models
7

Vector Autoregressive (VAR) Models 7-3
Types of VAR Models . 7-3
Lag Operator Representation . 7-4
Stable and Invertible Models . 7-5
Building VAR Models . 7-5

Multivariate Time Series Data Structures 7-8
Multivariate Time Series Data . 7-8
Response Data Structure . 7-8
Example: Response Data Structure . 7-9
Data Preprocessing . 7-11
Partitioning Response Data . 7-11

Multivariate Time Series Model Creation 7-14
Models for Multiple Time Series . 7-14
Specifying Models . 7-14

xix

Specification Structures with Known Parameters 7-15
Specification Structures with No Parameter Values 7-16
Specification Structures with Selected Parameter Values . . 7-17
Displaying and Changing a Specification Structure 7-19
Determining an Appropriate Number of Lags 7-19

VAR Model Estimation . 7-22
Preparing Models for Fitting . 7-22
Changing Model Representations . 7-23
Fitting Models to Data . 7-24
Examining the Stability of a Fitted Model 7-25

Convert a VARMA Model to a VAR Model 7-27

Convert a VARMA Model to a VMA Model 7-29

Fit a VAR Model . 7-33

Fit a VARMA Model . 7-35

VAR Model Forecasting, Simulation, and Analysis 7-39
VAR Model Forecasting . 7-39
Data Scaling . 7-40
Calculating Impulse Responses . 7-40

Generate Impulse Responses for a VAR model 7-42

Compare Generalized and Orthogonalized Impulse Response
Functions . 7-45

Forecast a VAR Model . 7-50

Forecast a VAR Model Using Monte Carlo Simulation 7-53

Multivariate Time Series Models with Regression Terms . 7-57
Design Matrix Structure for Including Exogenous Data 7-58
Estimation of Models that Include Exogenous Data 7-62

Implement Seemingly Unrelated Regression Analyses 7-64

Estimate the Capital Asset Pricing Model Using SUR 7-74

Simulate Responses of Estimated VARX Model 7-80

xx Contents

VAR Model Case Study . 7-89

Cointegration and Error Correction Analysis 7-108
Integration and Cointegration . 7-108
Cointegration and Error Correction 7-108
The Role of Deterministic Terms . 7-110
Cointegration Modeling . 7-111

Determine Cointegration Rank of VEC Model 7-114

Identifying Single Cointegrating Relations 7-116
The Engle-Granger Test for Cointegration 7-116
Limitations of the Engle-Granger Test 7-116

Test for Cointegration Using the Engle-Granger Test 7-121

Estimate VEC Model Parameters Using egcitest 7-126

Simulate and Forecast a VEC Model 7-129

Generate VEC Model Impulse Responses 7-138

Identifying Multiple Cointegrating Relations 7-143

Test for Cointegration Using the Johansen Test 7-144

Estimate VEC Model Parameters Using jcitest 7-147

Compare Approaches to Cointegration Analysis 7-150

Testing Cointegrating Vectors and Adjustment Speeds . . 7-154

Test Cointegrating Vectors . 7-155

Test Adjustment Speeds . 7-158

xxi

State-Space Models
8

What Are State-Space Models? . 8-3
Definitions . 8-3
State-Space Model Creation . 8-6

What Is the Kalman Filter? . 8-8
Standard Kalman Filter . 8-8
State Forecasts . 8-9
Filtered States . 8-10
Smoothed States . 8-11
Smoothed State Disturbances . 8-12
Forecasted Observations . 8-12
Smoothed Observation Innovations 8-13
Kalman Gain . 8-14
Backward Recursion of the Kalman Filter 8-14
Diffuse Kalman Filter . 8-15

Explicitly Create State-Space Model Containing Known
Parameter Values . 8-17

Create State Space Model with Unknown Parameters 8-20
Explicitly Create State-Space Model Containing Unknown

Parameters . 8-20
Implicitly Create Time-Invariant State-Space Model 8-22

Create State-Space Model Containing ARMA State 8-24

Implicitly Create State-Space Model Containing Regression
Component . 8-28

Implicitly Create Diffuse State-Space Model Containing
Regression Component . 8-30

Implicitly Create Time-Varying State-Space Model 8-32

Implicitly Create Time-Varying Diffuse State-Space Model 8-35

Create State-Space Model with Random State Coefficient . 8-38

Estimate Time-Invariant State-Space Model 8-41

xxii Contents

Estimate Time-Varying State-Space Model 8-45

Estimate Time-Varying Diffuse State-Space Model 8-50

Estimate State-Space Model Containing Regression
Component . 8-55

Filter States of State-Space Model . 8-58

Filter Time-Varying State-Space Model 8-62

Filter Time-Varying Diffuse State-Space Model 8-68

Filter States of State-Space Model Containing Regression
Component . 8-76

Smooth States of State-Space Model 8-80

Smooth Time-Varying State-Space Model 8-84

Smooth Time-Varying Diffuse State-Space Model 8-91

Smooth States of State-Space Model Containing Regression
Component . 8-99

Simulate States and Observations of Time-Invariant State-
Space Model . 8-103

Simulate Time-Varying State-Space Model 8-107

Simulate States of Time-Varying State-Space Model Using
Simulation Smoother . 8-112

Estimate Random Parameter of State-Space Model 8-116

Forecast State-Space Model Using Monte-Carlo Methods . 8-125

Forecast State-Space Model Observations 8-133

Forecast Observations of State-Space Model Containing
Regression Component . 8-138

xxiii

Forecast Time-Varying State-Space Model 8-143

Forecast State-Space Model Containing Regime Change in
the Forecast Horizon . 8-149

Forecast Time-Varying Diffuse State-Space Model 8-156

Compare Simulation Smoother to Smoothed States 8-162

Rolling-Window Analysis of Time-Series Models 8-168
Rolling-Window Analysis for Parameter Stability 8-168
Rolling Window Analysis for Predictive Performance 8-169

Assess State-Space Model Stability Using Rolling Window
Analysis . 8-172

Assess Model Stability Using Rolling Window Analysis . . . 8-172
Assess Stability of Implicitly Created State-Space Model . . 8-176

Choose State-Space Model Specification Using Backtesting 8-181

Functions — Alphabetical List
9

Data Sets and Examples
A

Glossary

1

Getting Started

• “Econometrics Toolbox Product Description” on page 1-2
• “Econometric Modeling” on page 1-3
• “Model Objects, Properties, and Methods” on page 1-8
• “Stochastic Process Characteristics” on page 1-20
• “Bibliography” on page 1-27

1 Getting Started

1-2

Econometrics Toolbox Product Description
Model and analyze financial and economic systems using statistical methods

Econometrics Toolbox™ provides functions for modeling economic data. You can select
and calibrate economic models for simulation and forecasting. For time series modeling
and analysis, the toolbox includes univariate ARMAX/GARCH composite models with
several GARCH variants, multivariate VARMAX models, and cointegration analysis.
It also provides methods for modeling economic systems using state-space models and
for estimating using the Kalman filter. You can use a variety of diagnostic functions for
model selection, including hypothesis, unit root, and stationarity tests.

Key Features

• Univariate ARMAX/GARCH composite models, including EGARCH, GJR, and other
variants

• Multivariate simulation and forecasting of VAR, VEC, and cointegrated models
• State-space models and the Kalman filter for estimation
• Tests for unit root (Dickey-Fuller, Phillips-Perron) and stationarity (Leybourne-

McCabe, KPSS)
• Statistical tests, including likelihood ratio, LM, Wald, Engle’s ARCH, and Ljung-Box

Q
• Cointegration tests, including Engle-Granger and Johansen
• Diagnostics and utilities, including AIC/BIC model selection and partial-, auto-, and

cross-correlations
• Hodrick-Prescott filter for business-cycle analysis

 Econometric Modeling

1-3

Econometric Modeling

In this section...

“Model Selection” on page 1-3
“Econometrics Toolbox Features” on page 1-3

Model Selection

A probabilistic time series model is necessary for a wide variety of analysis goals,
including regression inference, forecasting, and Monte Carlo simulation. When selecting
a model, aim to find the most parsimonious model that adequately describes your data. A
simple model is easier to estimate, forecast, and interpret.

• Specification tests help you identify one or more model families that could plausibly
describe the data generating process.

• Model comparisons help you compare the fit of competing models, with penalties for
complexity.

• Goodness-of-fit checks help you assess the in-sample adequacy of your model, verify
that all model assumptions hold, and evaluate out-of-sample forecast performance.

Model selection is an iterative process. When goodness-of-fit checks suggest model
assumptions are not satisfied—or the predictive performance of the model is not
satisfactory—consider making model adjustments. Additional specification tests, model
comparisons, and goodness-of-fit checks help guide this process.

Econometrics Toolbox Features

Modeling
Questions

Features Related Functions

What is the
dimension of
my response
variable?

• The conditional mean and variance models in this
toolbox are for modeling univariate, discrete data.

• Separate models are available for multivariate,
discrete data, such as VAR and VEC models.

• State-space models support univariate or
multivariate response variables.

• arima
• egarch

• egcitest

• garch

• gjr

• jcontest

• ssm

1 Getting Started

1-4

Modeling
Questions

Features Related Functions

• vgxpred

• vgxsim

• vgxvarx

Is my time series
stationary?

• Stationarity tests are available. If your data is
not stationary, consider transforming your data.
Stationarity is the foundation of many time series
models.

• Or, consider using a nonstationary ARIMA model if
there is evidence of a unit root in your data.

• arima
• i10test

• kpsstest

• lmctest

Does my time
series have a unit
root?

• Unit root tests are available. Evidence in favor
of a unit root suggests your data is difference
stationary.

• You can difference a series with a unit root until
it is stationary, or model it using a nonstationary
ARIMA model.

• adftest

• arima
• i10test

• pptest

• vratiotest

How can I handle
seasonal effects?

• You can deseasonalize (seasonally adjust) your
data. Use seasonal filters or regression models to
estimate the seasonal component.

• Seasonal ARIMA models use seasonal differencing
to remove seasonal effects. You can also include
seasonal lags to model seasonal autocorrelation
(both additively and multiplicatively).

• arima
• regARIMA

Is my data
autocorrelated?

• Sample autocorrelation and partial autocorrelation
functions help identify autocorrelation.

• Conduct a Ljung-Box Q-test to test autocorrelations
at several lags jointly.

• If autocorrelation is present, consider using a
conditional mean model.

• For regression models with autocorrelated errors,
consider using FGLS or HAC estimators. If the
error model structure is an ARIMA model, consider
using a regression model with ARIMA errors.

• arima
• autocorr

• fgls

• hac

• lbqtest

• parcorr

• regARIMA

 Econometric Modeling

1-5

Modeling
Questions

Features Related Functions

What if my data
is heteroscedastic
(exhibits
volatility
clustering)?

• Looking for autocorrelation in the squared
residual series is one way to detect conditional
heteroscedasticity.

• Engle’s ARCH test evaluates evidence against
the null of independent innovations in favor of an
ARCH model alternative.

• To model conditional heteroscedasticity, consider
using a conditional variance model.

• For regression models that exhibit heteroscedastic
errors, consider using FGLS or HAC estimators.

• archtest

• egarch

• fgls

• garch

• gjr

• hac

Is there an
alternative to
a Gaussian
innovation
distribution for
leptokurtic data?

• You can use a Student’s t distribution to model
fatter tails than a Gaussian distribution (excess
kurtosis).

• You can specify a t innovation distribution for all
conditional mean and variance models, and ARIMA
error models in Econometrics Toolbox.

• You can estimate the degrees of freedom of the t
distribution along with other model parameters.

• arima
• egarch

• garch

• gjr

• regARIMA

How do I decide
between these
models?

• You can compare nested models using
misspecification tests, such as the likelihood ratio
test, Wald’s test, or Lagrange multiplier test.

• Information criteria, such as AIC or BIC, compare
model fit with a penalty for complexity.

• aicbic

• lmtest

• lratiotest

• waldtest

Do I have two
or more time
series that are
cointegrated?

• The Johansen and Engle-Granger cointegration
tests assess evidence of cointegration.

• Consider using the VEC model for modeling
multivariate, cointegrated series.

• Also consider cointegration when regressing
time series. If present, it can introduce spurious
regression effects.

• egcitest

• jcitest

• jcontest

1 Getting Started

1-6

Modeling
Questions

Features Related Functions

What if I want to
include predictor
variables?

• ARIMAX and VARX models are available in this
toolbox.

• State-space models support predictor data.

• arima
• ssm
• vgxvarx

What if I want
to implement
regression, but
the classical
linear model
assumptions do
not apply?

• Regression models with ARIMA errors are
available in this toolbox.

• Regress robustly using FGLS or HAC estimators.
• For a series of examples on time series regression

techniques that illustrate common principles
and tasks in time series regression modeling, see
Econometrics Toolbox Examples.

• For more regression options, see Statistics and
Machine Learning Toolbox™ documentation.

• fgls

• hac

• mvregress

• regARIMA
• regress (Statistics

and Machine
Learning Toolbox)

How do use the
Kalman filter to
analyze several
unobservable,
linear, stochastic
time series
and several,
observable,
linear, stochastic
functions of
them?

Standard, linear state-space modeling is available in
this toolbox.

ssm

Related Examples
• “Box-Jenkins Model Selection” on page 3-4
• “Detect Autocorrelation” on page 3-18
• “Detect ARCH Effects” on page 3-28
• “Unit Root Tests” on page 3-44
• “Time Series Regression I: Linear Models”
• “Time Series Regression II: Collinearity and Estimator Variance”
• “Time Series Regression III: Influential Observations”

 Econometric Modeling

1-7

• “Time Series Regression IV: Spurious Regression”
• “Time Series Regression V: Predictor Selection”
• “Time Series Regression VI: Residual Diagnostics”
• “Time Series Regression VII: Forecasting”
• “Time Series Regression VIII: Lagged Variables and Estimator Bias”
• “Time Series Regression IX: Lag Order Selection”
• “Time Series Regression X: Generalized Least Squares and HAC Estimators”

More About
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7
• “Box-Jenkins Methodology” on page 3-2
• “Goodness of Fit” on page 3-88
• “Regression Models with Time Series Errors” on page 4-6
• “Nonspherical Models” on page 3-94
• “Conditional Mean Models” on page 5-3
• “Conditional Variance Models” on page 6-2
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108

1 Getting Started

1-8

Model Objects, Properties, and Methods

In this section...

“Model Objects” on page 1-8
“Model Properties” on page 1-9
“Specify Models” on page 1-11
“Retrieve Model Properties” on page 1-16
“Modify Model Properties” on page 1-17
“Methods” on page 1-18

Model Objects

After you have a potential model for your data, you must specify the model to MATLAB®

to proceed with your analysis. Econometrics Toolbox has model objects for storing
specified econometric models. For univariate, discrete time series analysis, there are five
available model objects:

• arima — for integrated, autoregressive, moving average (ARIMA) models optionally
containing exogenous predictor variables.

• garch — for generalized autoregressive conditional heteroscedaticity models
(GARCH)

• egarch — for exponential GARCH models
• gjr — for Glosten-Jagannathan-Runkle models
• regARIMA — for regression models with ARIMA errors

For multivariate, discrete time series analysis you can create a state-space model using
an ssm model obvect.

To create a model object, specify the form of your model to one of the model functions
(e.g., arima or garch). The function creates the model object of the corresponding type in
the MATLAB workspace, as shown in the figure.

 Model Objects, Properties, and Methods

1-9

arimaProposed

Model

Specify

 arima

 variable(User)

 Create

 (Software)

 arima

 variable

 Create

 (Software)

 MATLAB Workspace

You can work with model objects as you would with any other variable in MATLAB. For
example, you can assign the object variable a name, view it in the MATLAB Workspace,
and display its value in the Command Window by typing its name.

This image shows a workspace containing an arima model named Mdl.

Model Properties

A model object holds all the information necessary to estimate, simulate, and forecast
econometric models. This information includes the:

• Parametric form of the model
• Number of model parameters (e.g., the degree of the model)
• Innovation distribution (Gaussian or Student’s t)
• Amount of presample data needed to initialize the model

Such pieces of information are properties of the model, which are stored as fields within
the model object. In this way, a model object resembles a MATLAB data structure
(struct array).

The five model types—arima, garch, egarch, gjr, and regARIMA—have properties
according to the econometric models they support. Each property has a predefined name,
which you cannot change.

1 Getting Started

1-10

For example, arima supports conditional mean models (multiplicative and additive
AR, MA, ARMA, ARIMA, and ARIMAX processes). Every arima model object has these
properties, shown with their corresponding names.

Property Name Property Description

Constant Model constant
AR Nonseasonal AR coefficients
MA Nonseasonal MA coefficients
SAR Seasonal AR coefficients (in a multiplicative model)
SMA Seasonal MA coefficients (in a multiplicative model)
D Degree of nonseasonal differencing
Seasonality Degree of seasonal differencing
Variance Variance of the innovation distribution
Distribution Parametric family of the innovation distribution
P Amount of presample data needed to initialize the AR

component of the model
Q Amount of presample data needed to initialize the MA

component of the model

When a model object exists in the workspace, double-click its name in the Workspace
window to open the Variable Editor. The Variable Editor shows all model properties and
their names.

 Model Objects, Properties, and Methods

1-11

Notice that in addition to a name, each property has a value.

Specify Models

Specify a model by assigning values to model properties. You do not need, nor are you
able, to specify a value for every property. The constructor function assigns default
values to any properties you do not, or cannot, specify.

Tip It is good practice to be aware of the default property values for any model you create.

In addition to having a predefined name, each model property has a predefined data type.
When assigning or modifying a property’s value, the assignment must be consistent with
the property data type.

For example, the arima properties have these data types.

1 Getting Started

1-12

Property Name Property Data Type

Constant Scalar
AR Cell array
MA Cell array
SAR Cell array
SMA Cell array
D Nonnegative integer
Seasonality Nonnegative integer
Variance Positive scalar
Distribution struct array
P Nonnegative integer (you cannot specify)
Q Nonnegative integer (you cannot specify)

Specify an AR(2) Model

To illustrate assigning property values, consider specifying the AR(2) model

where the innovations are independent and identically distributed normal random
variables with mean 0 and variance 0.2. This is a conditional mean model, so use arima.
Assign values to model properties using name-value pair arguments.

This model has two AR coefficients, 0.8 and -0.2. Assign these values to the property AR
as a cell array, {0.8,-0.2}. Assign the value 0.2 to Variance, and 0 to Constant.
You do not need to assign a value to Distribution because the default innovation
distribution is 'Gaussian'. There are no MA terms, seasonal terms, or degrees of
integration, so do not assign values to these properties. You cannot specify values for the
properties P and Q.

In summary, specify the model as follows:

Mdl = arima('AR',{0.8,-0.2},'Variance',0.2,'Constant',0)

Mdl =

 Model Objects, Properties, and Methods

1-13

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: 0

 AR: {0.8 -0.2} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: 0.2

The output displays the value of the created model, Mdl. Notice that the property
Seasonality is not in the output. Seasonality only displays for models with seasonal
integration. The property is still present, however, as seen in the Variable Editor.

1 Getting Started

1-14

Mdl has values for every arima property, even though the specification included only
three. arima assigns default values for the unspecified properties. The values of SAR,
MA, and SMA are empty cell arrays because the model has no seasonal or MA terms.
The values of D and Seasonality are 0 because there is no nonseasonal or seasonal
differencing. arima sets:

• P equal to 2, the number of presample observations needed to initialize an AR(2)
model.

 Model Objects, Properties, and Methods

1-15

• Q equal to 0 because there is no MA component to the model (i.e., no presample
innovations are needed).

Specify a GARCH(1,1) Model

As another illustration, consider specifying the GARCH(1,1) model

where

Assume follows a standard normal distribution.

This model has one GARCH coefficient (corresponding to the lagged variance term) and
one ARCH coefficient (corresponding to the lagged squared innovation term), both with
unknown values. To specify this model, enter:

Mdl = garch('GARCH',NaN,'ARCH',NaN)

Mdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

The default value for the constant term is also NaN. Parameters with NaN values need to
be estimated or otherwise specified before you can forecast or simulate the model. There
is also a shorthand syntax to create a default GARCH(1,1) model:

Mdl = garch(1,1)

Mdl =

 GARCH(1,1) Conditional Variance Model:

1 Getting Started

1-16

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

The shorthand syntax returns a GARCH model with one GARCH coefficient and one
ARCH coefficient, with default NaN values.

Retrieve Model Properties

The property values in an existing model are retrievable. Working with models resembles
working with struct arrays because you can access model properties using dot notation.
That is, type the model name, then the property name, separated by '.' (a period).

For example, consider the arima model with this AR(2) specification:

Mdl = arima('AR',{0.8,-0.2},'Variance',0.2,'Constant',0);

To display the value of the property AR for the created model, enter:

arCoefficients = Mdl.AR

arCoefficients =

 [0.8000] [-0.2000]

AR is a cell array, so you must use cell-array syntax. The coefficient cell arrays are lag-
indexed, so entering

secondARCoefficient = Mdl.AR{2}

secondARCoefficient =

 -0.2000

returns the coefficient at lag 2. You can also assign any property value to a new variable:

ar = Mdl.AR

 Model Objects, Properties, and Methods

1-17

ar =

 [0.8000] [-0.2000]

Modify Model Properties

You can also modify model properties using dot notation. For example, consider this
AR(2) specification:

Mdl = arima('AR',{0.8,-0.2},'Variance',0.2,'Constant',0)

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: 0

 AR: {0.8 -0.2} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: 0.2

The created model has the default Gaussian innovation distribution. Change the
innovation distribution to a Student's t distribution with eight degrees of freedom. The
data type for Distribution is a struct array.

Mdl.Distribution = struct('Name','t','DoF',8)

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 't', DoF = 8

 P: 2

 D: 0

 Q: 0

1 Getting Started

1-18

 Constant: 0

 AR: {0.8 -0.2} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: 0.2

The variable Mdl is updated accordingly.

Methods

Methods are functions that accept models as inputs. In Econometrics Toolbox, these
functions accept arima, garch, egarch, gjr, and regARIMA models:

• estimate

• infer

• forecast

• simulate

Methods can distinguish between model objects (e.g., an arima model vs. a garch
model). That is, some methods accept different optional inputs and return different
outputs depending on the type of model that is input.

Find method reference pages for a specific model by entering, for example, doc
arima.estimate.

See Also
regARIMA | ssm | arima | egarch | garch | gjr | struct

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Specify GARCH Models Using garch” on page 6-8
• “Specify EGARCH Models Using egarch” on page 6-19
• “Specify GJR Models Using gjr” on page 6-31

More About
• Using garch Objects

 Model Objects, Properties, and Methods

1-19

• Using egarch Objects
• Using gjr Objects
• “Econometric Modeling” on page 1-3
• “Conditional Mean Models” on page 5-3
• “Conditional Variance Models” on page 6-2

1 Getting Started

1-20

Stochastic Process Characteristics

In this section...

“What Is a Stochastic Process?” on page 1-20
“Stationary Processes” on page 1-21
“Linear Time Series Model” on page 1-22
“Lag Operator Notation” on page 1-22
“Characteristic Equation” on page 1-23
“Unit Root Process” on page 1-24

What Is a Stochastic Process?

A time series yt is a collection of observations on a variable indexed sequentially over
several time points t = 1, 2,...,T. Time series observations y1, y2,...,yT are inherently
dependent. From a statistical modeling perspective, this means it is inappropriate to
treat a time series as a random sample of independent observations.

The goal of statistical modeling is finding a compact representation of the data-
generating process for your data. The statistical building block of econometric time series
modeling is the stochastic process. Heuristically, a stochastic process is a joint probability
distribution for a collection of random variables. By modeling the observed time series yt

as a realization from a stochastic process y y t T
t

= ={ }; ,...,1 , it is possible to accommodate

the high-dimensional and dependent nature of the data. The set of observation times T
can be discrete or continuous. Figure 1-1 displays the monthly average CO2 concentration
(ppm) recorded by the Mauna Loa Observatory in Hawaii from 1980 to 2012 [2].

 Stochastic Process Characteristics

1-21

Figure 1-1. Monthly Average CO2

Stationary Processes

Stochastic processes are weakly stationary or covariance stationary (or simply, stationary)
if their first two moments are finite and constant over time. Specifically, if yt is a
stationary stochastic process, then for all t:

• E(yt) = μ < ∞.
• V(yt) = s 2 < ∞.
• Cov(yt, yt–h) = γh for all lags h π 0.

1 Getting Started

1-22

Does a plot of your stochastic process seem to increase or decrease without bound? The
answer to this question indicates whether the stochastic process is stationary. “Yes”
indicates that the stochastic process might be nonstationary. In Monthly Average CO2,
the concentration of CO2 is increasing without bound which indicates a nonstationary
stochastic process.

Linear Time Series Model

Wold’s theorem [1] states that you can write all weakly stationary stochastic processes in
the general linear form

yt i t i
i

t= + +-
=

•

Âm y e e
1

.

Here, e
t
 denotes a sequence of uncorrelated (but not necessarily independent) random

variables from a well-defined probability distribution with mean zero. It is often called
the innovation process because it captures all new information in the system at time t.

Lag Operator Notation

The lag operator L operates on a time series yt such that L y yi
t t i=

-
.

An mth-degree lag polynomial of coefficients b1, b2,...,bm is defined as

B L b L b L b Lm
m

() ().= + + + +1 1 2
2
…

In lag operator notation, you can write the general linear model using an infinite-degree

polynomial y y y() (),L L L= + + +1 1 2
2
…

y Lt t= +m y e() .

You cannot estimate a model that has an infinite-degree polynomial of coefficients with
a finite amount of data. However, if y ()L is a rational polynomial (or approximately

 Stochastic Process Characteristics

1-23

rational), you can write it (at least approximately) as the quotient of two finite-degree
polynomials.

Define the q-degree polynomial q q q q() ()L L L Lq
q

= + + + +1 1 2
2
… and the p-degree

polynomial f f f f() ()L L L Lp
p

= + + + +1 1 2
2
… . If y ()L is rational, then

y
q

f
()

()

()
.L

L

L
=

Thus, by Wold’s theorem, you can model (or closely approximate) every stationary
stochastic process as

y
L

L
t t= +m

q

f
e

()

()
,

which has p + q coefficients (a finite number).

Characteristic Equation

A degree p characteristic polynomial of the linear times series model
y y y yt t t p t p t= + + + +- - -f f f e1 1 2 2 ... is

f f f f()a a a a
p p p

p= - - - -
- -

1
1

2
2

It is another way to assess that a series is a stationary process. For example, the
characteristic equation of y y yt t t t= - +

- -
0 5 0 02

1 2
. . e is f() . . .a a a= - +

2
0 5 0 02

The roots of the homogeneous characteristic equation f()a = 0 (called the characteristic
roots) determine whether the linear time series is stationary. If every root in f()a lies
inside the unit circle, then the process is stationary. Roots lie within the unit circle if

1 Getting Started

1-24

they have an absolute value less than one. This is a unit root process if one or more roots
lie inside the unit circle (i.e., have absolute value of one). Continuing the example, the
characteristic roots of f()a = 0 are a = { . , . }.0 4562 0 0438 Since the absolute values of these
roots are less than one, the linear time series model is stationary.

Unit Root Process

A linear time series model is a unit root process if the solution set to its characteristic
equation contains a root that is on the unit circle (i.e., has an absolute value of one).
Subsequently, the expected value, variance, or covariance of the elements of the
stochastic process grows with time, and therefore is nonstationary. If your series has a
unit root, then differencing it might make it stationary.

For example, consider the linear time series model y yt t t= +
-1 e , where e

t
 is a white

noise sequence of innovations with variance σ2 (this is called the random walk). The
characteristic equation of this model is z - =1 0, which has a root of one. If the initial

observation y0 is fixed, then you can write the model as y yt i
i

t

= +

=

Â0

1

e . Its expected value

is y0, which is independent of time. However, the variance of the series is tσ2, which
grows with time making the series unstable. Take the first difference to transform the
series and the model becomes d y yt t t t= - =

-1
e . The characteristic equation for this

series is z = 0 , so it does not have a unit root. Note that

• E d
t

() ,= 0 which is independent of time,
•

V d
t

(,) = s
2

 which is independent of time, and
• Cov d dt t s(,) ,

-
= 0 which is independent of time for all integers 0 < s < t.

Monthly Average CO2 appears nonstationary. What happens if you plot the first
difference dt = yt – yt–1 of this series? Figure 1-2 displays the dt. Ignoring the fluctuations,
the stochastic process does not seem to increase or decrease in general. You can conclude
that dt is stationary, and that yt is unit root nonstationary. For details, see “Differencing”
on page 2-3.

 Stochastic Process Characteristics

1-25

Figure 1-2. Monthly Difference in CO2

References

[1] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

[2] Tans, P., and R. Keeling. (2012, August). “Trends in Atmospheric Carbon Dioxide.”
NOAA Research. Retrieved October 5, 2012 from http://www.esrl.noaa.gov/gmd/
ccgg/trends/mlo.html.

http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html

1 Getting Started

1-26

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Specify GARCH Models Using garch” on page 6-8
• “Specify EGARCH Models Using egarch” on page 6-19
• “Specify GJR Models Using gjr” on page 6-31
• “Simulate Stationary Processes” on page 5-151
• “Assess Stationarity of a Time Series” on page 3-58

More About
• “Econometric Modeling” on page 1-3
• “Conditional Mean Models” on page 5-3
• “Conditional Variance Models” on page 6-2

 Bibliography

1-27

Bibliography

[1] Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The
Review of Financial Studies. Spring 1996, Vol. 9, No. 2, pp. 385–426.

[2] Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear
Diffusions.” The Journal of Finance. Vol. 54, No. 4, August 1999.

[3] Amano, R. A., and S. van Norden. "Unit Root Tests and the Burden of Proof." Bank of
Canada. Working paper 92–7, 1992.

[4] Andrews, D. W. K. “Heteroskedasticity and Autocorrelation Consistent Covariance
Matrix Estimation.” Econometrica. v. 59, 1991, pp. 817-858.

[5] Andrews, D. W. K., and J. C. Monohan. “An Improved Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix Estimator.” Econometrica. v. 60,
1992, pp. 953-966.

[6] Baillie, R. T., and T. Bollerslev. “Prediction in Dynamic Models with Time-Dependent
Conditional Variances.” Journal of Econometrics. Vol. 52, 1992, pp. 91–113.

[7] Belsley, D. A., E. Kuh, and R. E. Welsh. Regression Diagnostics. New York, NY: John
Wiley & Sons, Inc., 1980.

[8] Bera, A. K., and H. L. Higgins. “A Survey of ARCH Models: Properties, Estimation
and Testing.” Journal of Economic Surveys. Vol. 7, No. 4, 1993.

[9] Bollerslev, T. “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return.” Review of Economics and Statistics. Vol. 69, 1987,
pp. 542–547.

[10] Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal
of Econometrics. Vol. 31, 1986, pp. 307–327.

[11] Bollerslev, T., R. Y. Chou, and K. F. Kroner. “ARCH Modeling in Finance: A Review
of the Theory and Empirical Evidence.” Journal of Econometrics. Vol. 52, 1992,
pp. 5–59.

[12] Bollerslev, T., R. F. Engle, and D. B. Nelson. “ARCH Models.” Handbook of
Econometrics. Vol. 4, Chapter 49, Amsterdam: Elsevier Science B.V., 1994, pp.
2959–3038.

1 Getting Started

1-28

[13] Bollerslev, T., and E. Ghysels. “Periodic Autoregressive Conditional
Heteroscedasticity.” Journal of Business and Economic Statistics. Vol. 14, 1996,
pp. 139–151.

[14] Box, G. E. P. and D. Pierce. "Distribution of Residual Autocorrelations in
Autoregressive-Integrated Moving Average Time Series Models." Journal of the
American Statistical Association. Vol. 65, 1970, pp. 1509–1526.

[15] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting
and Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[16] Breusch, T.S., and Pagan, A.R. "Simple test for heteroscedasticity and random
coefficient variation". Econometrica. v. 47, 1979, pp. 1287–1294.

[17] Brockwell, P. J. and R. A. Davis. Introduction to Time Series and Forecasting. 2nd
ed. New York, NY: Springer, 2002.

[18] Brooks, C., S. P. Burke, and G. Persand. “Benchmarks and the Accuracy of GARCH
Model Estimation.” International Journal of Forecasting. Vol. 17, 2001, pp. 45–
56.

[19] Brown, M. B. and Forsythe, A. B. "Robust Tests for Equality of Variances." Journal
of the American Statistical Association. 69, 1974, pp. 364–367.

[20] Burke, S. P. "Confirmatory Data Analysis: The Joint Application of Stationarity and
Unit Root Tests." University of Reading, UK. Discussion paper 20, 1994.

[21] Campbell, J. Y., A. W. Lo, and A. C. MacKinlay. Chapter 12. “The Econometrics of
Financial Markets.” Nonlinearities in Financial Data. Princeton, NJ: Princeton
University Press, 1997.

[22] Caner, M., and L. Kilian. “Size Distortions of Tests of the Null Hypothesis of
Stationarity: Evidence and Implications for the PPP Debate.” Journal of
International Money and Finance. Vol. 20, 2001, pp. 639–657.

[23] Cecchetti, S. G., and P. S. Lam. “Variance-Ratio Tests: Small-Sample Properties with
an Application to International Output Data.” Journal of Business and Economic
Statistics. Vol. 12, 1994, pp. 177–186.

[24] Chow, G. C. “Tests of Equality Between Sets of Coefficients in Two Linear
Regressions.” Econometrica. Vol. 28, 1960, pp. 591–605.

 Bibliography

1-29

[25] Cochrane, J. “How Big is the Random Walk in GNP?” Journal of Political Economy.
Vol. 96, 1988, pp. 893–920.

[26] Cribari-Neto, F. "Asymptotic Inference Under Heteroskedasticity of Unknown
Form." Computational Statistics & Data Analysis. v. 45, 2004, pp. 215-233.

[27] Dagum, E. B. The X-11-ARIMA Seasonal Adjustment Method. Number 12–564E.
Statistics Canada, Ottawa, 1980.

[28] Davidson, R., and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[29] den Haan, W. J., and A. Levin. "A Practitioner's Guide to Robust Covariance Matrix
Estimation." In Handbook of Statistics. Edited by G. S. Maddala and C. R. Rao.
Amsterdam: Elsevier, 1997.

[30] Dickey, D. A., and W. A. Fuller. “Distribution of the Estimators for Autoregressive
Time Series with a Unit Root.” Journal of the American Statistical Association.
Vol. 74, 1979, pp. 427–431.

[31] Dickey, D. A., and W. A. Fuller. “Likelihood Ratio Statistics for Autoregressive Time
Series with a Unit Root.” Econometrica. Vol. 49, 1981, pp. 1057–1072.

[32] Durbin J., and S. J. Koopman. “A Simple and Efficient Simulation Smoother for
State Space Time Series Analysis.” Biometrika. Vol 89., No. 3, 2002, pp. 603–615.

[33] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

[34] Elder, J., and P. E. Kennedy. “Testing for Unit Roots: What Should Students Be
Taught?” Journal of Economic Education. Vol. 32, 2001, pp. 137–146.

[35] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc.,
1995.

[36] Engle, Robert F. “Autoregressive Conditional Heteroskedasticity with Estimates of
the Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

[37] Engle, R. F. and C. W. J. Granger. “Co-Integration and Error-Correction:
Representation, Estimation, and Testing.” Econometrica. v. 55, 1987, pp. 251–
276.

1 Getting Started

1-30

[38] Engle, Robert F., D. M. Lilien, and R. P. Robins. “Estimating Time Varying Risk
Premia in the Term Structure: The ARCH-M Model.” Econometrica. Vol. 59,
1987, pp. 391–407.

[39] Faust, J. “When Are Variance Ratio Tests for Serial Dependence Optimal?”
Econometrica. Vol. 60, 1992, pp. 1215–1226.

[40] Findley, D. F., B. C. Monsell, W. R. Bell, M. C. Otto, and B.-C. Chen. "New
Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program."
Journal of Business & Economic Statistics. Vol. 16, Number 2, 1998, pp. 127–
152 .

[41] Fisher, F. M. “Tests of Equality Between Sets of Coefficients in Two Linear
Regressions: An Expository Note.” Econometrica. Vol. 38, 1970, pp. 361–66.

[42] Gallant, A. R. Nonlinear Statistical Models. Hoboken, NJ: John Wiley & Sons, Inc.,
1987.

[43] Glasserman, P. Monte Carlo Methods in Financial Engineering. New York: Springer-
Verlag, 2004.

[44] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The
Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.

[45] Godfrey, L. G. Misspecification Tests in Econometrics. Cambridge, UK: Cambridge
University Press, 1997.

[46] Gourieroux, C. ARCH Models and Financial Applications. New York: Springer-
Verlag, 1997.

[47] Granger, C. W. J., and P. Newbold. “Spurious Regressions in Econometrics.” Journal
of Econometrics. Vol2, 1974, pp. 111–120.

[48] Greene, W. H. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Prentice Hall,
2008.

[49] Goldfeld, S. M., and Quandt, R. E. "Some Tests for Homoscedasticity". Journal of the
American Statistical Association. v. 60, 1965, pp. 539–547.

[50] Hagerud, G. E. “Modeling Nordic Stock Returns with Asymmetric GARCH.” Working
Paper Series in Economics and Finance. No.164, Stockholm: Department of
Finance, Stockholm School of Economics, 1997.

 Bibliography

1-31

[51] Hagerud, G. E. “Specification Tests for Asymmetric GARCH.” Working Paper
Series in Economics and Finance. No. 163, Stockholm: Department of Finance,
Stockholm School of Economics, 1997.

[52] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[53] Haug, A. “Testing Linear Restrictions on Cointegrating Vectors: Sizes and Powers of
Wald Tests in Finite Samples.” Econometric Theory. v. 18, 2002, pp. 505–524.

[54] Helwege, J., and P. Kleiman. “Understanding Aggregate Default Rates of High Yield
Bonds.” Federal Reserve Bank of New York Current Issues in Economics and
Finance. Vol.2, No. 6, 1996, pp. 1-6.

[55] Hentschel, L. “All in the Family: Nesting Symmetric and Asymmetric GARCH
Models.” Journal of Financial Economics. Vol. 39, 1995, pp. 71–104.

[56] Hull, J. C. Options, Futures, and Other Derivatives. 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

[57] Hodrick, Robert J, and Edward C. Prescott. “Postwar U.S. Business Cycles: An
Empirical Investigation.” Journal of Money, Credit, and Banking. Vol. 29, No. 1,
February 1997, pp. 1–16.

[58] Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. Applied Linear Statistical
Models. 5th Ed. New York: McGraw-Hill/Irwin, 2005.

[59] Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin. “Testing the Null
Hypothesis of Stationarity against the Alternative of a Unit Root.” Journal of
Econometrics. Vol. 54, 1992, pp. 159–178.

[60] Jarrow, A. Finance Theory. Englewood Cliffs, NJ: Prentice-Hall, 1988.

[61] Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive
Models. Oxford: Oxford University Press, 1995.

[62] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 2, 2nd ed. New York: John Wiley & Sons, 1995.

[63] Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lϋtkepohl, and T. C. Lee. The Theory and
Practice of Econometrics. New York, NY: John Wiley & Sons, Inc., 1985.

1 Getting Started

1-32

[64] Juselius, K. The Cointegrated VAR Model. Oxford: Oxford University Press, 2006.

[65] Leybourne, S. J. and B. P. M. McCabe. “A Consistent Test for a Unit Root.” Journal
of Business and Economic Statistics. Vol. 12, 1994, pp. 157–166.

[66] Leybourne, S. J. and B. P. M. McCabe. “Modified Stationarity Tests with Data-
Dependent Model-Selection Rules.” Journal of Business and Economic Statistics.
Vol. 17, 1999, pp. 264–270.

[67] Ljung, G. and G. E. P. Box. "On a Measure of Lack of Fit in Time Series Models."
Biometrika. Vol. 66, 1978, pp. 67–72.

[68] Lo, A. W., and A. C. MacKinlay. “Stock Market Prices Do Not Follow Random Walks:
Evidence from a Simple Specification Test.” Review of Financial Studies. Vol. 1,
1988, pp. 41–66.

[69] Lo, A. W., and A. C. MacKinlay. “The Size and Power of the Variance Ratio Test.”
Journal of Econometrics. Vol. 40, 1989, pp. 203–238.

[70] Lo, A. W., and A. C. MacKinlay. A Non-Random Walk Down Wall St. Princeton, NJ:
Princeton University Press, 2001.

[71] Loeffler, G., and P. N. Posch. Credit Risk Modeling Using Excel and VBA. West
Sussex, England: Wiley Finance, 2007.

[72] Long, J. S., and L. H. Ervin. "Using Heteroscedasticity-Consistent Standard Errors
in the Linear Regression Model." The American Statistician. v. 54, 2000, pp.
217-224.

[73] Longstaff, F. A., and E. S. Schwartz. “Valuing American Options by Simulation: A
Simple Least-Squares Approach.” The Review of Financial Studies. Spring 2001,
Vol. 14, No. 1, pp. 113–147.

[74] Lütkepohl, H. New Introduction to Multiple Time Series Analysis. Berlin: Springer,
2005.

[75] MacKinnon, J. G. “Numerical Distribution Functions for Unit Root and
Cointegration Tests.” Journal of Applied Econometrics. v. 11, 1996, pp. 601–618.

[76] MacKinnon, J. G., and H. White. "Some Heteroskedasticity-Consistent Covariance
Matrix Estimators with Improved Finite Sample Properties." Journal of
Econometrics. v. 29, 1985, pp. 305-325.

 Bibliography

1-33

[77] McCullough, B. D., and C. G. Renfro. “Benchmarks and Software Standards: A Case
Study of GARCH Procedures.” Journal of Economic and Social Measurement.
Vol. 25, 1998, pp. 59–71.

[78] McLeod, A.I. and W.K. Li. “Diagnostic Checking ARMA Time Series Models Using
Squared-Residual Autocorrelations.”Journal of Time Series Analysis. Vol. 4,
1983, pp. 269–273.

[79] Morin, N. "Likelihood Ratio Tests on Cointegrating Vectors, Disequilibrium
Adjustment Vectors, and their Orthogonal Complements." European Journal of
Pure and Applied Mathematics. v. 3, 2010, pp. 541–571.

[80] Nelson, D. B. “Conditional Heteroskedasticity in Asset Returns: A New Approach.”
Econometrica. Vol. 59, 1991, pp. 347–370.

[81] Nelson, C., and C. Plosser. “Trends and Random Walks in Macroeconomic Time
Series: Some Evidence and Implications.” Journal of Monetary Economics. Vol.
10, 1982, pp. 130–162.

[82] Newey, W. K., and K. D. West. “A Simple Positive Semidefinite, Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix.” Econometrica. Vol. 55, 1987,
pp. 703–708.

[83] Newey, W. K, and K. D. West. “Automatic Lag Selection in Covariance Matrix
Estimation.” The Review of Economic Studies. v. 61 No. 4, 1994, pp. 631–653.

[84] Pankratz, A. Forecasting with Dynamic Regression Models. John Wiley & Sons,
1991˙.

[85] Ng, S., and P. Perron. “Unit Root Tests in ARMA Models with Data-Dependent
Methods for the Selection of the Truncation Lag.” Journal of the American
Statistical Association. Vol. 90, 1995, pp. 268–281.

[86] Park, R. E. "Estimation with Heteroscedastic Error Terms". Econometrica. 34, 1966
p. 888.

[87] Perron, P. “Trends and Random Walks in Macroeconomic Time Series: Further
Evidence from a New Approach.” Journal of Economic Dynamics and Control.
Vol. 12, 1988, pp. 297–332.

[88] Pesaran, H. H. and Y. Shin. “Generalized Impulse Response Analysis in Linear
Multivariate Models.” Economic Letters. Vol. 58, 1998, 17–29.

1 Getting Started

1-34

[89] Peters, J. P. “Estimating and Forecasting Volatility of Stock Indices Using
Asymmetric GARCH Models and Skewed Student-t Densities.” Working Paper.
Belgium: École d'Administration des Affaires, University of Liège, March 20,
2001.

[90] Phillips, P. “Time Series Regression with a Unit Root.” Econometrica. Vol. 55, 1987,
pp. 277–301.

[91] Phillips, P., and P. Perron. “Testing for a Unit Root in Time Series Regression."
Biometrika. Vol. 75, 1988, pp. 335–346.

[92] Rea, J. D. “Indeterminacy of the Chow Test When the Number of Observations is
Insufficient.” Econometrica. Vol. 46, 1978, p. 229.

[93] Schwert, W. “Effects of Model Specification on Tests for Unit Roots in
Macroeconomic Data.” Journal of Monetary Economics. Vol. 20, 1987, pp. 73–103.

[94] Schwert, W. “Tests for Unit Roots: A Monte Carlo Investigation.” Journal of Business
and Economic Statistics. Vol. 7, 1989, pp. 147–159.

[95] Sharpe, W. F. “Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk.” Journal of Finance. Vol. 19, 1964, pp. 425–442.

[96] Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New
York: Springer-Verlag, 2004.

[97] Sims, C., Stock, J., and Watson, M. “Inference in Linear Time Series Models with
Some Unit Roots.” Econometrica. Vol. 58, 1990, pp. 113–144.

[98] Tsay,R.S. Analysis of Financial Time Series. Hoboken, NJ: John Wiley & Sons, Inc.,
2005.

[99] Turner, P. M. "Testing for Cointegration Using the Johansen Approach: Are We
Using the Correct Critical Values?" Journal of Applied Econometrics. v. 24, 2009,
pp. 825–831.

[100] U.S. Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis,
http://research.stlouisfed.org/fred.

[101] White, H. "A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test
for Heteroskedasticity." Econometrica. v. 48, 1980, pp. 817-838.

[102] White, H. Asymptotic Theory for Econometricians. New York: Academic Press, 1984.

http://research.stlouisfed.org/fred

 Bibliography

1-35

[103] White, H., and I. Domowitz. “Nonlinear Regression with Dependent Observations.”
Econometrica. Vol. 52, 1984, pp. 143–162.

[104] Wilson, A. L. “When is the Chow Test UMP?” The American Statistician. Vol. 32,
1978, pp. 66–68.

[105] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

2

Data Preprocessing

• “Data Transformations” on page 2-2
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7
• “Specify Lag Operator Polynomials” on page 2-11
• “Nonseasonal Differencing” on page 2-18
• “Nonseasonal and Seasonal Differencing” on page 2-23
• “Time Series Decomposition” on page 2-28
• “Moving Average Filter” on page 2-31
• “Moving Average Trend Estimation” on page 2-33
• “Parametric Trend Estimation” on page 2-37
• “Hodrick-Prescott Filter” on page 2-45
• “Using the Hodrick-Prescott Filter to Reproduce Their Original Result” on page

2-46
• “Seasonal Filters” on page 2-51
• “Seasonal Adjustment” on page 2-54
• “Seasonal Adjustment Using a Stable Seasonal Filter” on page 2-57
• “Seasonal Adjustment Using S(n,m) Seasonal Filters” on page 2-64

2 Data Preprocessing

2-2

Data Transformations

In this section...

“Why Transform?” on page 2-2
“Common Data Transformations” on page 2-2

Why Transform?

You can transform time series to:

• Isolate temporal components of interest.
• Remove the effect of nuisance components (like seasonality).
• Make a series stationary.
• Reduce spurious regression effects.
• Stabilize variability that grows with the level of the series.
• Make two or more time series more directly comparable.

You can choose among many data transformation to address these (and other) aims.

For example, you can use decomposition methods to describe and estimate time series
components. Seasonal adjustment is a decomposition method you can use to remove a
nuisance seasonal component.

Detrending and differencing are transformations you can use to address nonstationarity
due to a trending mean. Differencing can also help remove spurious regression effects
due to cointegration.

In general, if you apply a data transformation before modeling your data, you then need
to back-transform model forecasts to return to the original scale. This is not necessary in
Econometrics Toolbox if you are modeling difference-stationary data. Use arima to model
integrated series that are not a priori differenced. A key advantage of this is that arima
also returns forecasts on the original scale automatically.

Common Data Transformations

• “Detrending” on page 2-3
• “Differencing” on page 2-3

 Data Transformations

2-3

• “Log Transformations” on page 2-4
• “Prices, Returns, and Compounding” on page 2-5

Detrending

Some nonstationary series can be modeled as the sum of a deterministic trend and a
stationary stochastic process. That is, you can write the series yt as

yt t t= +m e ,

where e
t is a stationary stochastic process with mean zero.

The deterministic trend, μt, can have multiple components, such as nonseasonal and
seasonal components. You can detrend (or decompose) the data to identify and estimate
its various components. The detrending process proceeds as follows:

1 Estimate the deterministic trend component.
2 Remove the trend from the original data.
3 (Optional) Model the remaining residual series with an appropriate stationary

stochastic process.

Several techniques are available for estimating the trend component. You can estimate it
parametrically using least squares, nonparametrically using filters (moving averages), or
a combination of both.

Detrending yields estimates of all trend and stochastic components, which might
be desirable. However, estimating trend components can require making additional
assumptions, performing extra steps, and estimating additional parameters.

Differencing

Differencing is an alternative transformation for removing a mean trend from a
nonstationary series. This approach is advocated in the Box-Jenkins approach to
model specification [1]. According to this methodology, the first step to build models is
differencing your data until it looks stationary. Differencing is appropriate for removing
stochastic trends (e.g., random walks).

Define the first difference as

Dy y yt t t= -
-1,

2 Data Preprocessing

2-4

where Δ is called the differencing operator. In lag operator notation, where L y yi
t t i=

-
,

Dy L yt t= -() .1

You can create lag operator polynomial objects using LagOp.

Similarly, define the second difference as

D
2 2

1 1 2 1 21 2y L y y y y y y y yt t t t t t t t t= - = - - - = - +
- - - - -

() () () .

Like taking derivatives, taking a first difference makes a linear trend constant, taking
a second difference makes a quadratic trend constant, and so on for higher-degree
polynomials. Many complex stochastic trends can also be eliminated by taking relatively
low-order differences. Taking D differences makes a process with D unit roots stationary.

For series with seasonal periodicity, seasonal differencing can address seasonal unit
roots. For data with periodicity s (e.g., quarterly data have s = 4 and monthly data have s
= 12), the seasonal differencing operator is defined as

Ds t
s

t t t sy L y y y= - = -
-

() .1

Using a differencing transformation eliminates the intermediate estimation steps
required for detrending. However, this means you can’t obtain separate estimates of the
trend and stochastic components.

Log Transformations

For a series with exponential growth and variance that grows with the level of the
series, a log transformation can help linearize and stabilize the series. If you have
negative values in your time series, you should add a constant large enough to make all
observations greater than zero before taking the log transformation.

In some application areas, working with differenced, logged series is the norm. For
example, the first differences of a logged time series,

D log log log ,y y yt t t= -
-1

are approximately the rates of change of the series.

 Data Transformations

2-5

Prices, Returns, and Compounding

The rates of change of a price series are called returns. Whereas price series do not
typically fluctuate around a constant level, the returns series often looks stationary.
Thus, returns series are typically used instead of price series in many applications.

Denote successive price observations made at times t and t + 1 as yt and yt+1, respectively.
The continuously compounded returns series is the transformed series

r
y

y
y yt

t

t

t t= = -
+

+
log log log .1

1

This is the first difference of the log price series, and is sometimes called the log return.

An alternative transformation for price series is simple returns,

r
y y

y

y

y
t

t t

t

t

t

=

-

= -
+ +1 1

1.

For series with relatively high frequency (e.g., daily or weekly observations), the
difference between the two transformations is small. Econometrics Toolbox has
price2ret for converting price series to returns series (with either continuous or simple
compounding), and ret2price for the inverse operation.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
LagOp | price2ret | ret2price

Related Examples
• “Moving Average Trend Estimation” on page 2-33
• “Nonseasonal Differencing” on page 2-18
• “Nonseasonal and Seasonal Differencing” on page 2-23
• “Parametric Trend Estimation” on page 2-37

2 Data Preprocessing

2-6

• “Specify Lag Operator Polynomials” on page 2-11

More About
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7
• “Moving Average Filter” on page 2-31
• “Seasonal Adjustment” on page 2-54
• “Time Series Decomposition” on page 2-28

 Trend-Stationary vs. Difference-Stationary Processes

2-7

Trend-Stationary vs. Difference-Stationary Processes

In this section...

“Nonstationary Processes” on page 2-7
“Trend Stationary” on page 2-9
“Difference Stationary” on page 2-9

Nonstationary Processes

The stationary stochastic process is a building block of many econometric time
series models. Many observed time series, however, have empirical features that are
inconsistent with the assumptions of stationarity. For example, the following plot shows
quarterly U.S. GDP measured from 1947 to 2005. There is a very obvious upward trend
in this series that one should incorporate into any model for the process.

load Data_GDP

plot(Data)

xlim([0,234])

title('Quarterly U.S. GDP, 1947-2005')

2 Data Preprocessing

2-8

A trending mean is a common violation of stationarity. There are two popular models for
nonstationary series with a trending mean.

• Trend stationary: The mean trend is deterministic. Once the trend is estimated and
removed from the data, the residual series is a stationary stochastic process.

• Difference stationary: The mean trend is stochastic. Differencing the series D times
yields a stationary stochastic process.

The distinction between a deterministic and stochastic trend has important implications
for the long-term behavior of a process:

• Time series with a deterministic trend always revert to the trend in the long run (the
effects of shocks are eventually eliminated). Forecast intervals have constant width.

 Trend-Stationary vs. Difference-Stationary Processes

2-9

• Time series with a stochastic trend never recover from shocks to the system (the
effects of shocks are permanent). Forecast intervals grow over time.

Unfortunately, for any finite amount of data there is a deterministic and stochastic trend
that fits the data equally well (Hamilton, 1994). Unit root tests are a tool for assessing
the presence of a stochastic trend in an observed series.

Trend Stationary

You can write a trend-stationary process, yt, as

yt t t= +m e ,

where:

• m
t is a deterministic mean trend.

• e
t is a stationary stochastic process with mean zero.

In some applications, the trend is of primary interest. Time series decomposition methods
focus on decomposing m

t into different trend sources (e.g., secular trend component and
seasonal component). You can decompose series nonparametrically using filters (moving
averages), or parametrically using regression methods.

Given an estimate m̂
t , you can explore the residual series yt t- m̂ for autocorrelation, and

optionally model it using a stationary stochastic process model.

Difference Stationary

In the Box-Jenkins modeling approach [2], nonstationary time series are differenced
until stationarity is achieved. You can write a difference-stationary process, yt, as

D
D

t ty L= +m y e() ,

where:

•
D

D D
L= -()1 is a Dth-degree differencing operator.

2 Data Preprocessing

2-10

•
y y y() ()L L L= + + +1 1 2

2
… is an infinite-degree lag operator polynomial with

absolutely summable coefficients and all roots lying outside the unit circle.
• e

t is an uncorrelated innovation process with mean zero.

Time series that can be made stationary by differencing are called integrated processes.
Specifically, when D differences are required to make a series stationary, that series is
said to be integrated of order D, denoted I(D). Processes with D ≥ 1 are often said to have
a unit root.

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

Related Examples
• “Nonseasonal Differencing” on page 2-18
• “Moving Average Trend Estimation” on page 2-33
• “Specify Lag Operator Polynomials” on page 2-11

More About
• “Moving Average Filter” on page 2-31
• “Time Series Decomposition” on page 2-28
• “ARIMA Model” on page 5-41

 Specify Lag Operator Polynomials

2-11

Specify Lag Operator Polynomials

In this section...

“Lag Operator Polynomial of Coefficients” on page 2-11
“Difference Lag Operator Polynomials” on page 2-14

Lag Operator Polynomial of Coefficients

Define the lag operator L such that Liyt = yt–i. An m-degree polynomial of coefficients A in
the lag operator L is given by

A L A A L A Lm
m

() ().= + + +0 1
1
…

Here, the coefficient A0 corresponds to lag 0, A1 corresponds to lag 1, and so on, to Am,
which corresponds to lag m.

To specify a coefficient lag operator polynomial in Econometrics Toolbox, use LagOp.
Specify the (nonzero) coefficients A0,...,Am as a cell array, and the lags of the nonzero
coefficients as a vector.

The coefficients of lag operator polynomial objects are designed to look and feel like
traditional MATLAB cell arrays. There is, however, an important difference: elements
of cell arrays are accessible by positive integer sequential indexing, i.e., 1, 2, 3,.... The
coefficients of lag operator polynomial objects are accessible by lag-based indexing. That
is, you can specify any nonnegative integer lags, including lag 0.

For example, consider specifying the polynomial A L L L() (. .).= - +1 0 3 0 6
4 This

polynomial has coefficient 1 at lag 0, coefficient –0.3 at lag 1, and coefficient 0.6 at lag 4.
Enter:

A = LagOp({1,-0.3,0.6},'Lags',[0,1,4])

A =

 1-D Lag Operator Polynomial:

2 Data Preprocessing

2-12

 Coefficients: [1 -0.3 0.6]

 Lags: [0 1 4]

 Degree: 4

 Dimension: 1

The created lag operator object A corresponds to a lag operator polynomial of degree 4. A
LagOp object has a number of properties describing it:

• Coefficients, a cell array of coefficients.
• Lags, a vector indicating the lags of nonzero coefficients.
• Degree, the degree of the polynomial.
• Dimension, the dimension of the polynomial (relevant for multivariate time series).

To access properties of the model, use dot notation. That is, enter the variable name and
then the property name, separated by a period. To access specific coefficients, use dot
notation along with cell array syntax (consistent with the Coefficients data type).

To illustrate, returns the coefficient at lag 4:

A.Coefficients{4}

ans =

 0.6000

Return the coefficient at lag 0:

A.Coefficients{0}

ans =

 1

This last command illustrates lag indexing. The index 0 is valid, and corresponds to the
lag 0 coefficient.

Notice what happens if you index a lag larger than the degree of the polynomial:

A.Coefficients{6}

 Specify Lag Operator Polynomials

2-13

ans =

 0

This does not return an error. Rather, it returns O, the coefficient at lag 6 (and all other
lags with coefficient zero).

Use similar syntax to add new nonzero coefficients. For example, to add the coefficient
0.4 at lag 6,

A.Coefficients{6} = 0.4

A =

 1-D Lag Operator Polynomial:

 Coefficients: [1 -0.3 0.6 0.4]

 Lags: [0 1 4 6]

 Degree: 6

 Dimension: 1

The lag operator polynomial object A now has nonzero coefficients at lags 0, 1, 4, and 6,
and is degree 6.

When lag indices are placed inside of parentheses the result is another lag-based cell
array that represent a subset of the original polynomial.

A0 = A.Coefficients(0)

A0 =

 1-D Lag-Indexed Cell Array Created at Lags [0] with

 Non-Zero Coefficients at Lags [0].

A0 is a new object that preserves lag-based indexing and is suitable for assignment to
and from lag operator polynomial.

class(A0)

ans =

2 Data Preprocessing

2-14

internal.econ.LagIndexedArray

In contrast, when lag indices are placed inside curly braces, the result is the same data
type as the indices themselves:

class(A.Coefficients{0})

ans =

double

Difference Lag Operator Polynomials

You can express the differencing operator, Δ, in lag operator polynomial notation as

D = -().1 L

More generally,

D
D D

L= -() .1

To specify a first differencing operator polynomial using LagOp, specify coefficients 1 and
–1 at lags 0 and 1:

D1 = LagOp({1,-1},'Lags',[0,1])

D1 =

 1-D Lag Operator Polynomial:

 Coefficients: [1 -1]

 Lags: [0 1]

 Degree: 1

 Dimension: 1

Similarly, the seasonal differencing operator in lag polynomial notation is

 Specify Lag Operator Polynomials

2-15

D
s

s
L= -().1

This has coefficients 1 and –1 at lags 0 and s, where s is the periodicity of the seasonality.
For example, for monthly data with periodicity s = 12,

D12 = LagOp({1,-1},'Lags',[0,12])

D12 =

 1-D Lag Operator Polynomial:

 Coefficients: [1 -1]

 Lags: [0 12]

 Degree: 12

 Dimension: 1

This results in a polynomial object with degree 12.

When a difference lag operator polynomial is applied to a time series yt, ()1- L yD
t ,

this is equivalent to filtering the time series. Note that filtering a time series using a
polynomial of degree D results in the loss of the first D observations.

Consider taking second differences of a time series yt, () .1
2

- L yt You can write this

differencing polynomial as () ()().1 1 1
2

- = - -L L L

Create the second differencing polynomial by multiplying the polynomial D1 to itself to
get the second-degree differencing polynomial:

D2 = D1*D1

D2 =

 1-D Lag Operator Polynomial:

 Coefficients: [1 -2 1]

 Lags: [0 1 2]

 Degree: 2

 Dimension: 1

2 Data Preprocessing

2-16

The coefficients in the second-degree differencing polynomial correspond to the
coefficients in the difference equation

() .1 2
2

1 2- = - +
- -

L y y y yt t t t

To see the effect of filtering (differencing) on the length of a time series, simulate a data
set with 10 observations to filter:

rng('default')

Y = randn(10,1);

Filter the time series Y using D2:

Yf = filter(D2,Y);

length(Yf)

ans =

 8

The filtered series has two observations less than the original series. The time indices for
the new series can be optionally returned:

[Yf,Tidx] = filter(D2,Y);

Tidx

Tidx =

 2

 3

 4

 5

 6

 7

 8

 9

Note that the time indices are given relative to time 0. That is, the original series
corresponds to times 0,...,9. The filtered series loses the observations at the first two
times (times 0 and 1), resulting in a series corresponding to times 2,...,9.

 Specify Lag Operator Polynomials

2-17

You can also filter a time series, say Y, with a lag operator polynomial, say D2, using this
shorthand syntax:

Yf = D2(Y);

See Also
filter | LagOp

Related Examples
• “Nonseasonal Differencing” on page 2-18
• “Nonseasonal and Seasonal Differencing” on page 2-23
• “Plot the Impulse Response Function” on page 5-88

More About
• “Moving Average Filter” on page 2-31

2 Data Preprocessing

2-18

Nonseasonal Differencing

This example shows how to take a nonseasonal difference of a time series. The time
series is quarterly U.S. GDP measured from 1947 to 2005.

Load the GDP data set included with the toolbox.

load Data_GDP

Y = Data;

N = length(Y);

figure

plot(Y)

xlim([0,N])

title('U.S. GDP')

 Nonseasonal Differencing

2-19

The time series has a clear upward trend.

Take a first difference of the series to remove the trend,

First create a differencing lag operator polynomial object, and then use it to filter the
observed series.

D1 = LagOp({1,-1},'Lags',[0,1]);

dY = filter(D1,Y);

figure

plot(2:N,dY)

2 Data Preprocessing

2-20

xlim([0,N])

title('First Differenced GDP Series')

The series still has some remaining upward trend after taking first differences.

Take a second difference of the series,

D2 = D1*D1;

ddY = filter(D2,Y);

figure

plot(3:N,ddY)

 Nonseasonal Differencing

2-21

xlim([0,N])

title('Second Differenced GDP Series')

The second-differenced series appears more stationary.

See Also
filter | LagOp

Related Examples
• “Nonseasonal and Seasonal Differencing” on page 2-23
• “Specify Lag Operator Polynomials” on page 2-11

2 Data Preprocessing

2-22

More About
• “Data Transformations” on page 2-2
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7

 Nonseasonal and Seasonal Differencing

2-23

Nonseasonal and Seasonal Differencing

This example shows how to apply both nonseasonal and seasonal differencing using lag
operator polynomial objects. The time series is monthly international airline passenger
counts from 1949 to 1960.

Load the airline data set (Data_Airline.mat).

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

y = log(Data);

T = length(y);

figure

plot(y)

h1 = gca;

h1.XLim = [0,T];

h1.XTick = [1:12:T];

h1.XTickLabel = datestr(dates(1:12:T),10);

title 'Log Airline Passenger Counts';

2 Data Preprocessing

2-24

The data shows a linear trend and a seasonal component with periodicity 12.

Take the first difference to address the linear trend, and the 12th difference to address
the periodicity. If is the series to be transformed, the transformation is

where denotes the difference operator, and denotes the lag operator.

Create the lag operator polynomials and . Then, multiply them to get the
desired lag operator polynomial.

D1 = LagOp({1 -1},'Lags',[0,1]);

 Nonseasonal and Seasonal Differencing

2-25

D12 = LagOp({1 -1},'Lags',[0,12]);

D = D1*D12

D =

 1-D Lag Operator Polynomial:

 Coefficients: [1 -1 -1 1]

 Lags: [0 1 12 13]

 Degree: 13

 Dimension: 1

The first polynomial, , has coefficient 1 at lag 0 and coefficient -1 at lag 1. The
seasonal differencing polynomial, , has coefficient 1 at lag 0, and -1 at lag 12. The
product of these polynomials is

which has coefficient 1 at lags 0 and 13, and coefficient -1 at lags 1 and 12.

Filter the data with differencing polynomial D to get the nonseasonally and seasonally
differenced series.

dY = filter(D,y);

length(y) - length(dY)

ans =

 13

The filtered series is 13 observations shorter than the original series. This is due to
applying a degree 13 polynomial filter.

figure

plot(14:T,dY)

h2 = gca;

h2.XLim = [0,T];

h2.XTick = [1:12:T];

h2.XTickLabel = datestr(dates(1:12:T),10);

axis tight;

2 Data Preprocessing

2-26

title 'Differenced Log Airline Passenger Counts';

The differenced series has neither the trend nor seasonal component exhibited by the
original series.

See Also
filter | LagOp

Related Examples
• “Nonseasonal Differencing” on page 2-18
• “Specify Lag Operator Polynomials” on page 2-11

 Nonseasonal and Seasonal Differencing

2-27

More About
• “Data Transformations” on page 2-2
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7

2 Data Preprocessing

2-28

Time Series Decomposition

Time series decomposition involves separating a time series into several distinct
components. There are three components that are typically of interest:

• Tt, a deterministic, nonseasonal secular trend component. This component is
sometimes restricted to being a linear trend, though higher-degree polynomials are
also used.

• St, a deterministic seasonal component with known periodicity. This component
captures level shifts that repeat systematically within the same period (e.g., month or
quarter) between successive years. It is often considered to be a nuisance component,
and seasonal adjustment is a process for eliminating it.

• It, a stochastic irregular component. This component is not necessarily a white noise
process. It can exhibit autocorrelation and cycles of unpredictable duration. For this
reason, it is often thought to contain information about the business cycle, and is
usually the most interesting component.

There are three functional forms that are most often used for representing a time series
yt as a function of its trend, seasonal, and irregular components:

• Additive decomposition, where

y T S It t t t= + + .

This is the classical decomposition. It is appropriate when there is no exponential
growth in the series, and the amplitude of the seasonal component remains constant
over time. For identifiability from the trend component, the seasonal and irregular
components are assumed to fluctuate around zero.

• Multiplicative decomposition, where

y T S It t t t= .

This decomposition is appropriate when there is exponential growth in the series,
and the amplitude of the seasonal component grows with the level of the series. For
identifiability from the trend component, the seasonal and irregular components are
assumed to fluctuate around one.

• Log-additive decomposition, where

 Time Series Decomposition

2-29

log .y T S It t t t= + +

This is an alternative to the multiplicative decomposition. If the original series has a
multiplicative decomposition, then the logged series has an additive decomposition.
Using the logs can be preferable when the time series contains many small
observations. For identifiability from the trend component, the seasonal and irregular
components are assumed to fluctuate around zero.

You can estimate the trend and seasonal components by using filters (moving averages)

or parametric regression models. Given estimates T̂
t and Ŝt , the irregular component is

estimated as

ˆ ˆ ˆI y T St t t t= - -

using the additive decomposition, and

ˆ

ˆ ˆ
I

y

T S
t

t

t t

=

()

using the multiplicative decomposition.

The series

y Tt t-
ˆ

(or y Tt t
ˆ using the multiplicative decomposition) is called a detrended series.

Similarly, the series y St t-
ˆ (or y St t

ˆ) is called a deseasonalized series.

Related Examples
• “Moving Average Trend Estimation” on page 2-33
• “Seasonal Adjustment Using a Stable Seasonal Filter” on page 2-57
• “Seasonal Adjustment Using S(n,m) Seasonal Filters” on page 2-64

2 Data Preprocessing

2-30

• “Parametric Trend Estimation” on page 2-37

More About
• “Data Transformations” on page 2-2
• “Moving Average Filter” on page 2-31
• “Seasonal Adjustment” on page 2-54

 Moving Average Filter

2-31

Moving Average Filter

Some time series are decomposable into various trend components. To estimate a trend
component without making parametric assumptions, you can consider using a filter.

Filters are functions that turn one time series into another. By appropriate filter
selection, certain patterns in the original time series can be clarified or eliminated in the
new series. For example, a low-pass filter removes high frequency components, yielding
an estimate of the slow-moving trend.

A specific example of a linear filter is the moving average. Consider a time series yt, t =
1,...,N. A symmetric (centered) moving average filter of window length 2q + 1 is given by

ˆ , .m b y q t N qt j t j

j q

q

= < < -+

=-

Â

You can choose any weights bj that sum to one. To estimate a slow-moving trend,
typically q = 2 is a good choice for quarterly data (a 5-term moving average), or q = 6 for
monthly data (a 13-term moving average). Because symmetric moving averages have
an odd number of terms, a reasonable choice for the weights is b qj = 1 4 for j = ±q, and

b qj = 1 2 otherwise. Implement a moving average by convolving a time series with a
vector of weights using conv.

You cannot apply a symmetric moving average to the q observations at the beginning
and end of the series. This results in observation loss. One option is to use an asymmetric
moving average at the ends of the series to preserve all observations.

See Also
conv

Related Examples
• “Moving Average Trend Estimation” on page 2-33
• “Parametric Trend Estimation” on page 2-37

More About
• “Data Transformations” on page 2-2

2 Data Preprocessing

2-32

• “Time Series Decomposition” on page 2-28
• “Seasonal Filters” on page 2-51

 Moving Average Trend Estimation

2-33

Moving Average Trend Estimation

This example shows how to estimate long-term trend using a symmetric moving average
function. This is a convolution that you can implement using conv. The time series is
monthly international airline passenger counts from 1949 to 1960.

Load the airline data set (Data_Airline).

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

y = log(Data);

T = length(y);

figure

plot(y)

h = gca;

h.XLim = [0,T];

h.XTick = [1:12:T];

h.XTickLabel = datestr(dates(1:12:T),10);

title 'Log Airline Passenger Counts';

hold on

2 Data Preprocessing

2-34

The data shows a linear trend and a seasonal component with periodicity 12.

The periodicity of the data is monthly, so a 13-term moving average is a reasonable
choice for estimating the long-term trend. Use weight 1/24 for the first and last terms,
and weight 1/12 for the interior terms. Add the moving average trend estimate to the
observed time series plot.

wts = [1/24;repmat(1/12,11,1);1/24];

yS = conv(y,wts,'valid');

plot(7:T-6,yS,'r','LineWidth',2);

legend('13-Term Moving Average')

hold off

 Moving Average Trend Estimation

2-35

When you use the shape parameter 'valid' in the call to conv, observations at the
beginning and end of the series are lost. Here, the moving average has window length 13,
so the first and last 6 observations do not have smoothed values.

See Also
conv

Related Examples
• “Seasonal Adjustment Using a Stable Seasonal Filter” on page 2-57
• “Seasonal Adjustment Using S(n,m) Seasonal Filters” on page 2-64
• “Parametric Trend Estimation” on page 2-37

2 Data Preprocessing

2-36

More About
• “Time Series Decomposition” on page 2-28
• “Moving Average Filter” on page 2-31

 Parametric Trend Estimation

2-37

Parametric Trend Estimation

This example shows how to estimate nonseasonal and seasonal trend components using
parametric models. The time series is monthly accidental deaths in the U.S. from 1973 to
1978 (Brockwell and Davis, 2002).

Step 1: Load the Data

Load the accidental deaths data set.

load(fullfile(matlabroot,'examples','econ','Data_Accidental.mat'))

y = Data;

T = length(y);

figure

plot(y/1000)

h1 = gca;

h1.XLim = [0,T];

h1.XTick = 1:12:T;

h1.XTickLabel = datestr(dates(1:12:T),10);

title 'Monthly Accidental Deaths';

ylabel 'Number of Deaths (in thousands)';

hold on

2 Data Preprocessing

2-38

The data shows a potential quadratic trend and a strong seasonal component with
periodicity 12.

Step 2: Fit Quadratic Trend

Fit the polynomial

to the observed series.

t = (1:T)';

X = [ones(T,1) t t.^2];

 Parametric Trend Estimation

2-39

b = X\y;

tH = X*b;

h2 = plot(tH/1000,'r','LineWidth',2);

legend(h2,'Quadratic Trend Estimate')

hold off

Step 3. Detrend Original Series.

Subtract the fitted quadratic line from the original data.

xt = y - tH;

2 Data Preprocessing

2-40

Step 4. Estimate Seasonal Indicator Variables

Create indicator (dummy) variables for each month. The first indicator is equal to one
for January observations, and zero otherwise. The second indicator is equal to one for
February observations, and zero otherwise. A total of 12 indicator variables are created
for the 12 months. Regress the detrended series against the seasonal indicators.

mo = repmat((1:12)',6,1);

sX = dummyvar(mo);

bS = sX\xt;

st = sX*bS;

figure

plot(st/1000)

title 'Parametric Estimate of Seasonal Component (Indicators)';

h3 = gca;

h3.XLim = [0,T];

ylabel 'Number of Deaths (in thousands)';

h3.XTick = 1:12:T;

h3.XTickLabel = datestr(dates(1:12:T),10);

 Parametric Trend Estimation

2-41

In this regression, all 12 seasonal indicators are included in the design matrix. To
prevent collinearity, an intercept term is not included (alternatively, you can include 11
indicators and an intercept term).

Step 5. Deseasonalize Original Series

Subtract the estimated seasonal component from the original series.

dt = y - st;

figure

plot(dt/1000)

title 'Monthly Accidental Deaths (Deseasonalized)';

h4 = gca;

2 Data Preprocessing

2-42

h4.XLim = [0,T];

ylabel 'Number of Deaths (in thousands)';

h4.XTick = 1:12:T;

h4.XTickLabel = datestr(dates(1:12:T),10);

The quadratic trend is much clearer with the seasonal component removed.

Step 6. Estimate Irregular Component

Subtract the trend and seasonal estimates from the original series. The remainder is an
estimate of the irregular component.

bt = y - tH - st;

 Parametric Trend Estimation

2-43

figure

plot(bt/1000)

title('Irregular Component')

h5 = gca;

h5.XLim = [0,T];

ylabel 'Number of Deaths (in thousands)';

h5.XTick = 1:12:T;

h5.XTickLabel = datestr(dates(1:12:T),10);

You can optionally model the irregular component using a stochastic process model.

References:

2 Data Preprocessing

2-44

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
dummyvar

Related Examples
• “Moving Average Trend Estimation” on page 2-33
• “Seasonal Adjustment Using a Stable Seasonal Filter” on page 2-57
• “Seasonal Adjustment Using S(n,m) Seasonal Filters” on page 2-64

More About
• “Time Series Decomposition” on page 2-28
• “Seasonal Adjustment” on page 2-54

 Hodrick-Prescott Filter

2-45

Hodrick-Prescott Filter

The Hodrick-Prescott (HP) filter is a specialized filter for trend and business cycle
estimation (no seasonal component). Suppose a time series yt can be additively
decomposed into a trend and business cycle component. Denote the trend component gt

and the cycle component ct. Then y g ct t t= + .

The HP filter finds a trend estimate, ĝt , by solving a penalized optimization problem.
The smoothness of the trend estimate depends on the choice of penalty parameter. The
cycle component, which is often of interest to business cycle analysts, is estimated as
ˆ ˆc y gt t t= - .

hpfilter returns the estimated trend and cycle components of a time series.

See Also
hpfilter

Related Examples
• “Using the Hodrick-Prescott Filter to Reproduce Their Original Result” on page

2-46

More About
• “Moving Average Filter” on page 2-31
• “Seasonal Filters” on page 2-51
• “Time Series Decomposition” on page 2-28

2 Data Preprocessing

2-46

Using the Hodrick-Prescott Filter to Reproduce Their Original Result

This example shows how to use the Hodrick-Prescott filter to decompose a time series.

The Hodrick-Prescott filter separates a time series into growth and cyclical components
with

where yt is a time series, gt is the growth component of yt, and ct is the cyclical
component of yt for t = 1, ... , T.

The objective function for the Hodrick-Prescott filter has the form

with a smoothing parameter lambda. The programming problem is to minimize the
objective over all g1, ... , gT.

The conceptual basis for this programming problem is that the first sum minimizes the
difference between the data and its growth component (which is the cyclical component)
and the second sum minimizes the second-order difference of the growth component,
which is analogous to minimization of the second derivative of the growth component.

Note that this filter is equivalent to a cubic spline smoother.

Use of the Hodrick-Prescott Filter to Analyze GNP Cyclicality

Using data similar to the data found in Hodrick and Prescott [1], plot the cyclical
component of GNP. This result should coincide with the results in the paper. However,
since the GNP data here and in the paper are both adjusted for seasonal variations with
conversion from nominal to real values, differences can be expected due to differences
in the sources for the pair of adjustments. Note that our data comes from the St. Louis
Federal Reserve FRED database [2] which was downloaded with the Datafeed Toolbox™.

load Data_GNP

startdate = 1950; % date range is from 1947.0 to 2005.5 (quarterly)

 Using the Hodrick-Prescott Filter to Reproduce Their Original Result

2-47

enddate = 1979.25; % change these two lines to try alternative periods

startindex = find(dates == startdate);

endindex = find(dates == enddate);

gnpdates = dates(startindex:endindex);

gnpraw = log(DataTable.GNPR(startindex:endindex));

We run the filter for different smoothing parameters lambda = 400, 1600, 6400, and Inf.
The infinite smoothing parameter just detrends the data.

[gnptrend4, gnpcycle4] = hpfilter(gnpraw,400);

[gnptrend16, gnpcycle16] = hpfilter(gnpraw,1600);

[gnptrend64, gnpcycle64] = hpfilter(gnpraw,6400);

[gnptrendinf, gnpcycleinf] = hpfilter(gnpraw,Inf);

Plot Cyclical GNP and Its Relationship with Long-Term Trend

The following code generates Figure 1 from Hodrick and Prescott [1].

plot(gnpdates,gnpcycle16,'b');

hold all

plot(gnpdates,gnpcycleinf - gnpcycle16,'r');

title('\bfFigure 1 from Hodrick and Prescott');

ylabel('\bfGNP Growth');

legend('Cyclical GNP','Difference');

hold off

2 Data Preprocessing

2-48

The blue line is the cyclical component with smoothing parameter 1600 and the red
line is the difference with respect to the detrended cyclical component. The difference is
smooth enough to suggest that the choice of smoothing parameter is appropriate.

Statistical Tests on Cyclical GNP

We will now reconstruct Table 1 from Hodrick and Prescott [1]. With the cyclical
components, we compute standard deviations, autocorrelations for lags 1 to 10, and
perform a Dickey-Fuller unit root test to assess non-stationarity. As in the article, we
see that as lambda increases, standard deviations increase, autocorrelations increase
over longer lags, and the unit root hypothesis is rejected for all but the detrended case.
Together, these results imply that any of the cyclical series with finite smoothing is
effectively stationary.

 Using the Hodrick-Prescott Filter to Reproduce Their Original Result

2-49

gnpacf4 = autocorr(gnpcycle4,10);

gnpacf16 = autocorr(gnpcycle16,10);

gnpacf64 = autocorr(gnpcycle64,10);

gnpacfinf = autocorr(gnpcycleinf,10);

WarnState = warning('off','econ:adftest:LeftTailStatTooSmall');

[H4, ~, gnptest4] = adftest(gnpcycle4,'model','ARD');

[H16, ~, gnptest16] = adftest(gnpcycle16,'model','ARD');

[H64, ~, gnptest64] = adftest(gnpcycle64,'model','ARD');

[Hinf, ~, gnptestinf] = adftest(gnpcycleinf,'model','ARD');

warning(WarnState);

fprintf(1,'Table 1 from Hodrick and Prescott Reference\n');

fprintf(1,' %10s %s\n',' ','Smoothing Parameter');

fprintf(1,' %10s %10s %10s %10s %10s\n',' ','400','1600','6400','Infinity');

fprintf(1,' %-10s %10.2f %10.2f %10.2f %10.2f\n','Std. Dev.', ...

 100*std(gnpcycle4),100*std(gnpcycle16),100*std(gnpcycle64),100*std(gnpcycleinf));

fprintf(1,' Autocorrelations\n');

for i=2:11

 fprintf(1,' %10g %10.2f %10.2f %10.2f %10.2f\n',(i-1), ...

 gnpacf4(i),gnpacf16(i),gnpacf64(i),gnpacfinf(i))

end

fprintf(1,' %-10s %10.2f %10.2f %10.2f %10.2f\n','Unit Root', ...

 gnptest4,gnptest16,gnptest64,gnptestinf);

fprintf(1,' %-10s %10d %10d %10d %10d\n','Reject H0',H4,H16,H64,Hinf);

Table 1 from Hodrick and Prescott Reference

 Smoothing Parameter

 400 1600 6400 Infinity

 Std. Dev. 1.52 1.75 2.06 3.11

 Autocorrelations

 1 0.74 0.78 0.82 0.92

 2 0.38 0.47 0.57 0.81

 3 0.05 0.17 0.33 0.70

 4 -0.21 -0.07 0.12 0.59

 5 -0.36 -0.24 -0.03 0.50

 6 -0.39 -0.30 -0.10 0.44

 7 -0.35 -0.31 -0.13 0.39

 8 -0.28 -0.29 -0.15 0.35

 9 -0.22 -0.26 -0.15 0.31

 10 -0.19 -0.25 -0.17 0.26

 Unit Root -4.35 -4.13 -3.79 -2.28

 Reject H0 1 1 1 0

2 Data Preprocessing

2-50

References

[1] Robert J. Hodrick and Edward C. Prescott, "Postwar U.S. Business Cycles: An
Empirical Investigation," Journal of Money, Credit, and Banking, Vol. 29, No. 1,
February 1997, pp. 1-16.

[2] U.S. Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis,
http://research.stlouisfed.org/fred.

See Also
hpfilter

More About
• “Hodrick-Prescott Filter” on page 2-45
• “Time Series Decomposition” on page 2-28

http://research.stlouisfed.org/fred

 Seasonal Filters

2-51

Seasonal Filters

In this section...

“What Is a Seasonal Filter?” on page 2-51
“Stable Seasonal Filter” on page 2-51
“Sn × m seasonal filter” on page 2-52

What Is a Seasonal Filter?

You can use a seasonal filter (moving average) to estimate the seasonal component of a
time series. For example, seasonal moving averages play a large role in the X-11-ARIMA
seasonal adjustment program of Statistics Canada [1] and the X-12-ARIMA seasonal
adjustment program of the U.S. Census Bureau [2].

For observations made during period k, k = 1,...,s (where s is the known periodicity of the
seasonality), a seasonal filter is a convolution of weights and observations made during
past and future periods k. For example, given monthly data (s = 12), a smoothed January
observation is a symmetric, weighted average of January data.

In general, for a time series xt, t = 1,...,N, the seasonally smoothed observation at time k +
js, j = 1, ...,N/s – 1, is

%s a xk js l k j l s
l r

r

+ + +

=-

= Â () ,

with weights a
l such that a

ll r

r
=

=-Â 1.

The two most commonly used seasonal filters are the stable seasonal filter and the Sn × m
seasonal filter.

Stable Seasonal Filter

Use a stable seasonal filter if the seasonal level does not change over time, or if you have
a short time series (under 5 years).

2 Data Preprocessing

2-52

Let nk be the total number of observations made in period k. A stable seasonal filter is
given by

%s
n

xk
k

k js

j

N s

= +

=

-

Â
1

1

1

,

()

for k = 1,...,s, and % %s sk k s=
-

 for k > s.

Define s s skk

s
=

=Â() .1
1
% For identifiability from the trend component,

• Use ŝ s sk k= -% to estimate the seasonal component for an additive decomposition
model (that is, constrain the component to fluctuate around zero).

• Use ŝ s sk k= % to estimate the seasonal component for a multiplicative decomposition
model (that is, constrain the component to fluctuate around one).

Sn × m seasonal filter

To apply an Sn × m seasonal filter, take a symmetric n-term moving average of m-term
averages. This is equivalent to taking a symmetric, unequally weighted moving average
with n + m – 1 terms (that is, use r n m= + -()1 2 in Equation 2-1).

An S3×3 filter has five terms with weights

1 9 2 9 1 3 2 9 1 9, , , , .()

To illustrate, suppose you have monthly data over 10 years. Let Janyy denote the value
observed in January, 20yy. The S3×3-filtered value for January 2005 is

Ĵan Jan Jan Jan Jan Jan Jan Jan
05 03 04 05 04 05 06

1

3

1

3

1

3

1

3
= + +() + + +() +

005 06 07
+ +()È

ÎÍ
˘

˚̇
Jan Jan .

Similarly, an S3×5 filter has seven terms with weights

1 15 2 15 1 5 1 5 1 5 2 15 1 15, , , , , , .()

 Seasonal Filters

2-53

When using a symmetric filter, observations are lost at the beginning and end of the
series. You can apply asymmetric weights at the ends of the series to prevent observation
loss.

To center the seasonal estimate, define a moving average of the seasonally filtered

series, s b st j t jj q

q
= +=-Â %

. A reasonable choice for the weights are b qj = 1 4 for j = ±q

and b qj = 1 2 otherwise. Here, q = 2 for quarterly data (a 5-term average), or q = 6 for
monthly data (a 13-term average).

For identifiability from the trend component,

• Use ŝ s s
t t t

= -% to estimate the seasonal component of an additive model (that is,
constrain the component to fluctuate approximately around zero).

• Use ŝ s s
t t t

= % to estimate the seasonal component of a multiplicative model (that is,
constrain the component to fluctuate approximately around one).

References

[1] Dagum, E. B. The X-11-ARIMA Seasonal Adjustment Method. Number 12–564E.
Statistics Canada, Ottawa, 1980.

[2] Findley, D. F., B. C. Monsell, W. R. Bell, M. C. Otto, and B.-C. Chen. “New
Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program.”
Journal of Business & Economic Statistics. Vol. 16, Number 2, 1998, pp. 127–152.

Related Examples
• “Seasonal Adjustment Using a Stable Seasonal Filter” on page 2-57
• “Seasonal Adjustment Using S(n,m) Seasonal Filters” on page 2-64

More About
• “Moving Average Filter” on page 2-31
• “Seasonal Adjustment” on page 2-54
• “Time Series Decomposition” on page 2-28

2 Data Preprocessing

2-54

Seasonal Adjustment

In this section...

“What Is Seasonal Adjustment?” on page 2-54
“Deseasonalized Series” on page 2-54
“Seasonal Adjustment Process” on page 2-55

What Is Seasonal Adjustment?

Economists and other practitioners are sometimes interested in extracting the global
trends and business cycles of a time series, free from the effect of known seasonality.
Small movements in the trend can be masked by a seasonal component, a trend with
fixed and known periodicity (e.g., monthly or quarterly). The presence of seasonality can
make it difficult to compare relative changes in two or more series.

Seasonal adjustment is the process of removing a nuisance periodic component. The
result of a seasonal adjustment is a deseasonalized time series. Deseasonalized data
is useful for exploring the trend and any remaining irregular component. Because
information is lost during the seasonal adjustment process, you should retain the original
data for future modeling purposes.

Deseasonalized Series

Consider decomposing a time series, yt, into three components:

• Trend component, Tt

• Seasonal component, St with known periodicity s
• Irregular (stationary) stochastic component, It

The most common decompositions are additive, multiplicative, and log-additive.

To seasonally adjust a time series, first obtain an estimate of the seasonal component,
Ŝt . The estimate Ŝt should be constrained to fluctuate around zero (at least
approximately) for additive models, and around one, approximately, for multiplicative
models. These constraints allow the seasonal component to be identifiable from the trend
component.

 Seasonal Adjustment

2-55

Given Ŝt , the deseasonalized series is calculated by subtracting (or dividing by) the
estimated seasonal component, depending on the assumed decomposition.

• For an additive decomposition, the deseasonalized series is given by d y St t t= -
ˆ .

• For a multiplicative decomposition, the deseasonalized series is given by d y St t t=
ˆ .

Seasonal Adjustment Process

To best estimate the seasonal component of a series, you should first estimate and
remove the trend component. Conversely, to best estimate the trend component, you
should first estimate and remove the seasonal component. Thus, seasonal adjustment is
typically performed as an iterative process. The following steps for seasonal adjustment
resemble those used within the X-12-ARIMA seasonal adjustment program of the U.S.
Census Bureau [1].

1 Obtain a first estimate of the trend component, ˆ ,T
t using a moving average or

parametric trend estimate.
2 Detrend the original series. For an additive decomposition, calculate x y Tt t t= -

ˆ . For

a multiplicative decomposition, calculate x y Tt t t=
ˆ .

3 Apply a seasonal filter to the detrended series, x
t
, to obtain an estimate of the

seasonal component, Ŝt . Center the estimate to fluctuate around zero or one,
depending on the chosen decomposition. Use an S3×3 seasonal filter if you have
adequate data, or a stable seasonal filter otherwise.

4 Deseasonalize the original series. For an additive decomposition, calculate
d y St t t= -

ˆ . For a multiplicative decomposition, calculate d y St t t=
ˆ . .

5 Obtain a second estimate of the trend component, ˆ ,T
t , using the deseasonalized

series d
t
. Consider using a Henderson filter [1], with asymmetric weights at the

ends of the series.
6 Detrend the original series again. For an additive decomposition, calculate

x y Tt t t= -
ˆ . For a multiplicative decomposition, calculate x y Tt t t=

ˆ .

2 Data Preprocessing

2-56

7 Apply a seasonal filter to the detrended series, x
t
, to obtain an estimate of the

seasonal component, Ŝt . Consider using an S3×5 seasonal filter if you have adequate
data, or a stable seasonal filter otherwise.

8 Deseasonalize the original series. For an additive decomposition, calculate
d y St t t= -

ˆ . For a multiplicative decomposition, calculate d y St t t=
ˆ . This is the

final deseasonalized series.

References

[1] Findley, D. F., B. C. Monsell, W. R. Bell, M. C. Otto, and B.-C. Chen. “New
Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program.”
Journal of Business & Economic Statistics. Vol. 16, Number 2, 1998, pp. 127–152.

Related Examples
• “Moving Average Trend Estimation” on page 2-33
• “Seasonal Adjustment Using a Stable Seasonal Filter” on page 2-57
• “Seasonal Adjustment Using S(n,m) Seasonal Filters” on page 2-64
• “Parametric Trend Estimation” on page 2-37

More About
• “Time Series Decomposition” on page 2-28
• “Seasonal Filters” on page 2-51
• “Moving Average Filter” on page 2-31

 Seasonal Adjustment Using a Stable Seasonal Filter

2-57

Seasonal Adjustment Using a Stable Seasonal Filter

This example shows how to use a stable seasonal filter to deseasonalize a time series
(using an additive decomposition). The time series is monthly accidental deaths in the
U.S. from 1973 to 1978 (Brockwell and Davis, 2002).

Load the data.

Load the accidental deaths data set.

load(fullfile(matlabroot,'examples','econ','Data_Accidental.mat'))

y = Data;

T = length(y);

figure

plot(y/1000)

h1 = gca;

h1.XLim = [0,T];

h1.XTick = 1:12:T;

h1.XTickLabel = datestr(dates(1:12:T),10);

title 'Monthly Accidental Deaths';

ylabel 'Number of deaths (thousands)';

hold on

2 Data Preprocessing

2-58

The data exhibits a strong seasonal component with periodicity 12.

Apply a 13-term moving average.

Smooth the data using a 13-term moving average. To prevent observation loss, repeat the
first and last smoothed values six times. Subtract the smoothed series from the original
series to detrend the data. Add the moving average trend estimate to the observed time
series plot.

sW13 = [1/24;repmat(1/12,11,1);1/24];

yS = conv(y,sW13,'same');

yS(1:6) = yS(7); yS(T-5:T) = yS(T-6);

xt = y-yS;

 Seasonal Adjustment Using a Stable Seasonal Filter

2-59

h = plot(yS/1000,'r','LineWidth',2);

legend(h,'13-Term Moving Average')

hold off

The detrended time series is xt.

Using the shape parameter 'same' when calling conv returns a smoothed series the
same length as the original series.

Step 3. Create seasonal indices.

Create a cell array, sidx, to store the indices corresponding to each period. The data is
monthly, with periodicity 12, so the first element of sidx is a vector with elements 1, 13,

2 Data Preprocessing

2-60

25,...,61 (corresponding to January observations). The second element of sidx is a vector
with elements 2, 14, 16,...,62 (corresponding to February observations). This is repeated
for all 12 months.

s = 12;

sidx = cell(s,1);

for i = 1:s

 sidx{i,1} = i:s:T;

end

sidx{1:2}

ans =

 1 13 25 37 49 61

ans =

 2 14 26 38 50 62

Using a cell array to store the indices allows for the possibility that each period does not
occur the same number of times within the span of the observed series.

Step 4. Apply a stable seasonal filter.

Apply a stable seasonal filter to the detrended series, xt. Using the indices constructed
in Step 3, average the detrended data corresponding to each period. That is, average all
of the January values (at indices 1, 13, 25,...,61), and then average all of the February
values (at indices 2, 14, 26,...,62), and so on for the remaining months. Put the smoothed
values back into a single vector.

Center the seasonal estimate to fluctuate around zero.

sst = cellfun(@(x) mean(xt(x)),sidx);

% Put smoothed values back into a vector of length N

nc = floor(T/s); % no. complete years

rm = mod(T,s); % no. extra months

sst = [repmat(sst,nc,1);sst(1:rm)];

% Center the seasonal estimate (additive)

 Seasonal Adjustment Using a Stable Seasonal Filter

2-61

sBar = mean(sst); % for centering

sst = sst-sBar;

figure

plot(sst/1000)

title 'Stable Seasonal Component';

h2 = gca;

h2.XLim = [0 T];

ylabel 'Number of deaths (thousands)';

h2.XTick = 1:12:T;

h2.XTickLabel = datestr(dates(1:12:T),10);

The stable seasonal component has constant amplitude across the series. The seasonal
estimate is centered, and fluctuates around zero.

2 Data Preprocessing

2-62

Step 5. Deseasonalize the series.

Subtract the estimated seasonal component from the original data.

dt = y - sst;

figure

plot(dt/1000)

title 'Deseasonalized Series';

ylabel 'Number of deaths (thousands)';

h3 = gca;

h3.XLim = [0 T];

h3.XTick = 1:12:T;

h3.XTickLabel = datestr(dates(1:12:T),10);

 Seasonal Adjustment Using a Stable Seasonal Filter

2-63

The deseasonalized series consists of the long-term trend and irregular components. A
large-scale quadratic trend in the number of accidental deaths is clear with the seasonal
component removed.

References:

Brockwell, P. J. and R. A. Davis. Introduction to Time Series and Forecasting. 2nd ed.
New York, NY: Springer, 2002.

See Also
cellfun | conv

Related Examples
• “Moving Average Trend Estimation” on page 2-33
• “Seasonal Adjustment Using S(n,m) Seasonal Filters” on page 2-64
• “Parametric Trend Estimation” on page 2-37

More About
• “Time Series Decomposition” on page 2-28
• “Moving Average Filter” on page 2-31
• “Seasonal Filters” on page 2-51
• “Seasonal Adjustment” on page 2-54

2 Data Preprocessing

2-64

Seasonal Adjustment Using S(n,m) Seasonal Filters

This example shows how to apply seasonal filters to deseasonalize a time series
(using a multiplicative decomposition). The time series is monthly international airline
passenger counts from 1949 to 1960.

Load the Data

Load the airline data set.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

y = Data;

T = length(y);

figure

plot(y)

h1 = gca;

h1.XLim = [0,T];

h1.XTick = 1:12:T;

h1.XTickLabel = datestr(dates(1:12:T),10);

title 'Airline Passenger Counts';

hold on

 Seasonal Adjustment Using S(n,m) Seasonal Filters

2-65

The data shows an upward linear trend and a seasonal component with periodicity 12.

Detrend the data using a 13-term moving average.

Before estimating the seasonal component, estimate and remove the linear trend. Apply
a 13-term symmetric moving average, repeating the first and last observations six times
to prevent data loss. Use weight 1/24 for the first and last terms in the moving average,
and weight 1/12 for all interior terms.

Divide the original series by the smoothed series to detrend the data. Add the moving
average trend estimate to the observed time series plot.

sW13 = [1/24;repmat(1/12,11,1);1/24];

yS = conv(y,sW13,'same');

2 Data Preprocessing

2-66

yS(1:6) = yS(7); yS(T-5:T) = yS(T-6);

xt = y./yS;

h = plot(yS,'r','LineWidth',2);

legend(h,'13-Term Moving Average')

hold off

Create seasonal indices.

Create a cell array, sidx, to store the indices corresponding to each period. The data is
monthly, with periodicity 12, so the first element of sidx is a vector with elements 1,
13, 25,...,133 (corresponding to January observations). The second element of sidx is a

 Seasonal Adjustment Using S(n,m) Seasonal Filters

2-67

vector with elements 2, 14, 16,...,134 (corresponding to February observations). This is
repeated for all 12 months.

s = 12;

sidx = cell(s,1); % Preallocation

for i = 1:s

 sidx{i,1} = i:s:T;

end

sidx{1:2}

ans =

 1 13 25 37 49 61 73 85 97 109 121 133

ans =

 2 14 26 38 50 62 74 86 98 110 122 134

Using a cell array to store the indices allows for the possibility that each period does not
occur the same number of times within the span of the observed series.

Apply an S(3,3) filter.

Apply a 5-term seasonal moving average to the detrended series xt. That is, apply
a moving average to the January values (at indices 1, 13, 25,...,133), and then apply a
moving average to the February series (at indices 2, 14, 26,...,134), and so on for the
remaining months.

Use asymmetric weights at the ends of the moving average (using conv2). Put the
smoothed values back into a single vector.

To center the seasonal component around one, estimate, and then divide by, a 13-term
moving average of the estimated seasonal component.

% S3x3 seasonal filter

% Symmetric weights

sW3 = [1/9;2/9;1/3;2/9;1/9];

% Asymmetric weights for end of series

aW3 = [.259 .407;.37 .407;.259 .185;.111 0];

2 Data Preprocessing

2-68

% Apply filter to each month

shat = NaN*y;

for i = 1:s

 ns = length(sidx{i});

 first = 1:4;

 last = ns - 3:ns;

 dat = xt(sidx{i});

 sd = conv(dat,sW3,'same');

 sd(1:2) = conv2(dat(first),1,rot90(aW3,2),'valid');

 sd(ns -1:ns) = conv2(dat(last),1,aW3,'valid');

 shat(sidx{i}) = sd;

end

% 13-term moving average of filtered series

sW13 = [1/24;repmat(1/12,11,1);1/24];

sb = conv(shat,sW13,'same');

sb(1:6) = sb(s+1:s+6);

sb(T-5:T) = sb(T-s-5:T-s);

% Center to get final estimate

s33 = shat./sb;

figure

plot(s33)

h2 = gca;

h2.XLim = [0,T];

h2.XTick = 1:12:T;

h2.XTickLabel = datestr(dates(1:12:T),10);

title 'Estimated Seasonal Component';

 Seasonal Adjustment Using S(n,m) Seasonal Filters

2-69

Notice that the seasonal level changes over the range of the data. This illustrates the
difference between an seasonal filter and a stable seasonal filter. A stable seasonal
filter assumes that the seasonal level is constant over the range of the data.

Apply a 13-term Henderson filter.

To get an improved estimate of the trend component, apply a 13-term Henderson filter
to the seasonally adjusted series. The necessary symmetric and asymmetric weights are
provided in the following code.

% Deseasonalize series

dt = y./s33;

% Henderson filter weights

2 Data Preprocessing

2-70

sWH = [-0.019;-0.028;0;.066;.147;.214;

 .24;.214;.147;.066;0;-0.028;-0.019];

% Asymmetric weights for end of series

aWH = [-.034 -.017 .045 .148 .279 .421;

 -.005 .051 .130 .215 .292 .353;

 .061 .135 .201 .241 .254 .244;

 .144 .205 .230 .216 .174 .120;

 .211 .233 .208 .149 .080 .012;

 .238 .210 .144 .068 .002 -.058;

 .213 .146 .066 .003 -.039 -.092;

 .147 .066 .004 -.025 -.042 0 ;

 .066 .003 -.020 -.016 0 0 ;

 .001 -.022 -.008 0 0 0 ;

 -.026 -.011 0 0 0 0 ;

 -.016 0 0 0 0 0];

% Apply 13-term Henderson filter

first = 1:12;

last = T-11:T;

h13 = conv(dt,sWH,'same');

h13(T-5:end) = conv2(dt(last),1,aWH,'valid');

h13(1:6) = conv2(dt(first),1,rot90(aWH,2),'valid');

% New detrended series

xt = y./h13;

figure

plot(y)

h3 = gca;

h3.XLim = [0,T];

h3.XTick = 1:12:T;

h3.XTickLabel = datestr(dates(1:12:T),10);

title 'Airline Passenger Counts';

hold on

plot(h13,'r','LineWidth',2);

legend('13-Term Henderson Filter')

hold off

 Seasonal Adjustment Using S(n,m) Seasonal Filters

2-71

Apply an S(3,5) seasonal filter.

To get 6. an improved estimate of the seasonal component, apply a 7-term seasonal
moving average to the newly detrended series. The symmetric and asymmetric weights
are provided in the following code. Center the seasonal estimate to fluctuate around 1.

Deseasonalize the original series by dividing it by the centered seasonal estimate.

% S3x5 seasonal filter

% Symmetric weights

sW5 = [1/15;2/15;repmat(1/5,3,1);2/15;1/15];

% Asymmetric weights for end of series

aW5 = [.150 .250 .293;

 .217 .250 .283;

2 Data Preprocessing

2-72

 .217 .250 .283;

 .217 .183 .150;

 .133 .067 0;

 .067 0 0];

% Apply filter to each month

shat = NaN*y;

for i = 1:s

 ns = length(sidx{i});

 first = 1:6;

 last = ns-5:ns;

 dat = xt(sidx{i});

 sd = conv(dat,sW5,'same');

 sd(1:3) = conv2(dat(first),1,rot90(aW5,2),'valid');

 sd(ns-2:ns) = conv2(dat(last),1,aW5,'valid');

 shat(sidx{i}) = sd;

end

% 13-term moving average of filtered series

sW13 = [1/24;repmat(1/12,11,1);1/24];

sb = conv(shat,sW13,'same');

sb(1:6) = sb(s+1:s+6);

sb(T-5:T) = sb(T-s-5:T-s);

% Center to get final estimate

s35 = shat./sb;

% Deseasonalized series

dt = y./s35;

figure

plot(dt)

h4 = gca;

h4.XLim = [0,T];

h4.XTick = 1:12:T;

h4.XTickLabel = datestr(dates(1:12:T),10);

title 'Deseasonalized Airline Passenger Counts';

 Seasonal Adjustment Using S(n,m) Seasonal Filters

2-73

The deseasonalized series consists of the long-term trend and irregular components. With
the seasonal component removed, it is easier to see turning points in the trend.

Plot the components and the original series.

Compare the original series to a series reconstructed using the component estimates.

figure

plot(y,'Color',[.85,.85,.85],'LineWidth',4)

h5 = gca;

h5.XLim = [0,T];

h5.XTick = 1:12:T;

h5.XTickLabel = datestr(dates(1:12:T),10);

title 'Airline Passenger Counts';

2 Data Preprocessing

2-74

hold on

plot(h13,'r','LineWidth',2)

plot(h13.*s35,'k--','LineWidth',1.5)

legend('Original Series','13-Term Henderson Filter',...

 'Trend and Seasonal Components')

hold off

Estimate the irregular component.

Detrend and deseasonalize the original series. Plot the remaining estimate of the
irregular component.

Irr = dt./h13;

 Seasonal Adjustment Using S(n,m) Seasonal Filters

2-75

figure

plot(Irr)

h6 = gca;

h6.XLim = [0,T];

h6.XTick = 1:12:T;

h6.XTickLabel = datestr(dates(1:12:T),10);

title 'Airline Passenger Counts Irregular Component';

You can optionally model the detrended and deseasonalized series using a stationary
stochastic process model.

See Also
cellfun | conv | conv2

2 Data Preprocessing

2-76

Related Examples
• “Moving Average Trend Estimation” on page 2-33
• “Seasonal Adjustment Using a Stable Seasonal Filter” on page 2-57
• “Parametric Trend Estimation” on page 2-37

More About
• “Time Series Decomposition” on page 2-28
• “Moving Average Filter” on page 2-31
• “Seasonal Filters” on page 2-51
• “Seasonal Adjustment” on page 2-54

3

Model Selection

• “Box-Jenkins Methodology” on page 3-2
• “Box-Jenkins Model Selection” on page 3-4
• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Ljung-Box Q-Test” on page 3-16
• “Detect Autocorrelation” on page 3-18
• “Engle’s ARCH Test” on page 3-25
• “Detect ARCH Effects” on page 3-28
• “Unit Root Nonstationarity” on page 3-34
• “Unit Root Tests” on page 3-44
• “Assess Stationarity of a Time Series” on page 3-58
• “Test Multiple Time Series” on page 3-62
• “Information Criteria” on page 3-63
• “Model Comparison Tests” on page 3-65
• “Conduct a Lagrange Multiplier Test” on page 3-70
• “Conduct a Wald Test” on page 3-74
• “Compare GARCH Models Using Likelihood Ratio Test” on page 3-77
• “Check Fit of Multiplicative ARIMA Model” on page 3-81
• “Goodness of Fit” on page 3-88
• “Residual Diagnostics” on page 3-90
• “Check Predictive Performance” on page 3-92
• “Nonspherical Models” on page 3-94
• “Plot a Confidence Band Using HAC Estimates” on page 3-95
• “Change the Bandwidth of a HAC Estimator” on page 3-105
• “Check Model Assumptions for Chow Test” on page 3-112
• “Power of the Chow Test” on page 3-123

3 Model Selection

3-2

Box-Jenkins Methodology
The Box-Jenkins methodology [1] is a five-step process for identifying, selecting, and
assessing conditional mean models (for discrete, univariate time series data).

1 Establish the stationarity of your time series. If your series is not stationary,
successively difference your series to attain stationarity. The sample autocorrelation
function (ACF) and partial autocorrelation function (PACF) of a stationary series
decay exponentially (or cut off completely after a few lags).

2 Identify a (stationary) conditional mean model for your data. The sample ACF and
PACF functions can help with this selection. For an autoregressive (AR) process,
the sample ACF decays gradually, but the sample PACF cuts off after a few lags.
Conversely, for a moving average (MA) process, the sample ACF cuts off after a
few lags, but the sample PACF decays gradually. If both the ACF and PACF decay
gradually, consider an ARMA model.

3 Specify the model, and estimate the model parameters. When fitting nonstationary
models in Econometrics Toolbox, it is not necessary to manually difference your data
and fit a stationary model. Instead, use your data on the original scale, and create an
arima model object with the desired degree of nonseasonal and seasonal differencing.
Fitting an ARIMA model directly is advantageous for forecasting: forecasts are
returned on the original scale (not differenced).

4 Conduct goodness-of-fit checks to ensure the model describes your data adequately.
Residuals should be uncorrelated, homoscedastic, and normally distributed with
constant mean and variance. If the residuals are not normally distributed, you can
change your innovation distribution to a Student’s t.

5 After choosing a model—and checking its fit and forecasting ability—you can use the
model to forecast or generate Monte Carlo simulations over a future time horizon.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima | autocorr | parcorr

Related Examples
• “Box-Jenkins Model Selection” on page 3-4

 Box-Jenkins Methodology

3-3

• “Check Predictive Performance” on page 3-92
• “Check Fit of Multiplicative ARIMA Model” on page 3-81
• “Box-Jenkins Differencing vs. ARIMA Estimation” on page 5-94

More About
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7
• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Goodness of Fit” on page 3-88
• “Conditional Mean Models” on page 5-3

3 Model Selection

3-4

Box-Jenkins Model Selection

This example shows how to use the Box-Jenkins methodology to select an ARIMA model.
The time series is the log quarterly Australian Consumer Price Index (CPI) measured
from 1972 and 1991.

Load the Data

Load and plot the Australian CPI data.

load Data_JAustralian

y = DataTable.PAU;

T = length(y);

figure

plot(y)

h1 = gca;

h1.XLim = [0,T];

h1.XTick = 1:10:T;

h1.XTickLabel = datestr(dates(1:10:T),17);

title('Log Quarterly Australian CPI')

 Box-Jenkins Model Selection

3-5

The series is nonstationary, with a clear upward trend.

Plot the Sample ACF and PACF

Plot the sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) for the CPI series.

figure

subplot(2,1,1)

autocorr(y)

subplot(2,1,2)

parcorr(y)

3 Model Selection

3-6

The significant, linearly decaying sample ACF indicates a nonstationary process.

Difference the Data

Take a first difference of the data, and plot the differenced series.

dY = diff(y);

figure

plot(dY)

h2 = gca;

h2.XLim = [0,T];

h2.XTick = 1:10:T;

h2.XTickLabel = datestr(dates(2:10:T),17);

 Box-Jenkins Model Selection

3-7

title('Differenced Log Quarterly Australian CPI')

Differencing removes the linear trend. The differenced series appears more stationary.

Plot the Sample ACF and PACF of the Differenced Series

Plot the sample ACF and PACF of the differenced series to look for behavior more
consistent with a stationary process.

figure

subplot(2,1,1)

autocorr(dY)

subplot(2,1,2)

3 Model Selection

3-8

parcorr(dY)

The sample ACF of the differenced series decays more quickly. The sample PACF cuts
off after lag 2. This behavior is consistent with a second-degree autoregressive (AR(2))
model.

Specify and Estimate an ARIMA(2,1,0) Model

Specify, and then estimate, an ARIMA(2,1,0) model for the log quarterly Australian CPI.
This model has one degree of nonseasonal differencing and two AR lags. By default, the
innovation distribution is Gaussian with a constant variance.

Mdl = arima(2,1,0);

 Box-Jenkins Model Selection

3-9

EstMdl = estimate(Mdl,y);

 ARIMA(2,1,0) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0100723 0.00328015 3.07069

 AR{1} 0.212059 0.0954278 2.22219

 AR{2} 0.337282 0.103781 3.24994

 Variance 9.23017e-05 1.11119e-05 8.30659

Both AR coefficients are significant at the 0.05 significance level.

Check Goodness of Fit

Infer the residuals from the fitted model. Check that the residuals are normally
distributed and uncorrelated.

res = infer(EstMdl,y);

figure

subplot(2,2,1)

plot(res./sqrt(EstMdl.Variance))

title('Standardized Residuals')

subplot(2,2,2)

qqplot(res)

subplot(2,2,3)

autocorr(res)

subplot(2,2,4)

parcorr(res)

hvec = findall(gcf,'Type','axes');

set(hvec,'TitleFontSizeMultiplier',0.8,...

 'LabelFontSizeMultiplier',0.8);

3 Model Selection

3-10

The residuals are reasonably normally distributed and uncorrelated.

Generate Forecasts

Generate forecasts and approximate 95% forecast intervals for the next 4 years (16
quarters).

[yF,yMSE] = forecast(EstMdl,16,'Y0',y);

UB = yF + 1.96*sqrt(yMSE);

LB = yF - 1.96*sqrt(yMSE);

figure

h4 = plot(y,'Color',[.75,.75,.75]);

hold on

 Box-Jenkins Model Selection

3-11

h5 = plot(78:93,yF,'r','LineWidth',2);

h6 = plot(78:93,UB,'k--','LineWidth',1.5);

plot(78:93,LB,'k--','LineWidth',1.5);

fDates = [dates; dates(T) + cumsum(diff(dates(T-16:T)))];

h7 = gca;

h7.XTick = 1:10:(T+16);

h7.XTickLabel = datestr(fDates(1:10:end),17);

legend([h4,h5,h6],'Log CPI','Forecast',...

 'Forecast Interval','Location','Northwest')

title('Log Australian CPI Forecast')

hold off

References:

3 Model Selection

3-12

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima | autocorr | estimate | forecast | infer | parcorr

Related Examples
• “Box-Jenkins Differencing vs. ARIMA Estimation” on page 5-94
• “Nonseasonal Differencing” on page 2-18
• “Infer Residuals for Diagnostic Checking” on page 5-140
• “Specify Conditional Mean Models Using arima” on page 5-6

More About
• “Box-Jenkins Methodology” on page 3-2
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7
• “Goodness of Fit” on page 3-88
• “MMSE Forecasting of Conditional Mean Models” on page 5-182

 Autocorrelation and Partial Autocorrelation

3-13

Autocorrelation and Partial Autocorrelation

In this section...

“What Are Autocorrelation and Partial Autocorrelation?” on page 3-13
“Theoretical ACF and PACF” on page 3-13
“Sample ACF and PACF” on page 3-14

What Are Autocorrelation and Partial Autocorrelation?

Autocorrelation is the linear dependence of a variable with itself at two points in time.
For stationary processes, autocorrelation between any two observations only depends on
the time lag h between them. Define Cov(yt, yt–h) = γh. Lag-h autocorrelation is given by

r
g

g
h t t h

hCorr y y= =-(,) .
0

The denominator γ0 is the lag 0 covariance, i.e., the unconditional variance of the process.

Correlation between two variables can result from a mutual linear dependence on other
variables (confounding). Partial autocorrelation is the autocorrelation between yt and yt–h
after removing any linear dependence on y1, y2, ..., yt–h+1. The partial lag-h autocorrelation

is denoted fh h, .

Theoretical ACF and PACF

The autocorrelation function (ACF) for a time series yt, t = 1,...,N, is the sequence rh, h

= 1, 2,...,N – 1. The partial autocorrelation function (PACF) is the sequence fh h, , h = 1,
2,...,N – 1.

The theoretical ACF and PACF for the AR, MA, and ARMA conditional mean models
are known, and quite different for each model. The differences in ACF and PACF among
models are useful when selecting models. The following summarizes the ACF and PACF
behavior for these models.

3 Model Selection

3-14

Conditional Mean
Model

ACF PACF

AR(p) Tails off gradually Cuts off after p lags
MA(q) Cuts off after q lags Tails off gradually
ARMA(p,q) Tails off gradually Tails off gradually

Sample ACF and PACF

Sample autocorrelation and sample partial autocorrelation are statistics that estimate
the theoretical autocorrelation and partial autocorrelation. As a qualitative model
selection tool, you can compare the sample ACF and PACF of your data against known
theoretical autocorrelation functions [1].

For an observed series y1, y2,...,yT, denote the sample mean y. The sample lag-h
autocorrelation is given by

ˆ
()()

()

.rh
t t ht h

T

tt

T

y y y y

y y
=

- -

-

-= +

=

Â

Â
1

2

1

The standard error for testing the significance of a single lag-h autocorrelation, r̂h , is
approximately

SE Nii

h

r r= +
=

-
Â(�) / .1 2

2

1

1

When you use autocorr to plot the sample autocorrelation function (also known as the
correlogram), approximate 95% confidence intervals are drawn at ±2SEr by default.
Optional input arguments let you modify the calculation of the confidence bounds.

The sample lag-h partial autocorrelation is the estimated lag-h coefficient in an AR

model containing h lags,
ˆ .,fh h The standard error for testing the significance of a single

lag-h partial autocorrelation is approximately 1 1N - . When you use parcorr to plot
the sample partial autocorrelation function, approximate 95% confidence intervals are

 Autocorrelation and Partial Autocorrelation

3-15

drawn at ± -2 1N by default. Optional input arguments let you modify the calculation
of the confidence bounds.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
autocorr | parcorr

Related Examples
• “Detect Autocorrelation” on page 3-18
• “Detect ARCH Effects” on page 3-28
• “Box-Jenkins Model Selection” on page 3-4

More About
• “Ljung-Box Q-Test” on page 3-16
• “Autoregressive Model” on page 5-18
• “Moving Average Model” on page 5-27
• “Autoregressive Moving Average Model” on page 5-34

3 Model Selection

3-16

Ljung-Box Q-Test

The sample autocorrelation function (ACF) and partial autocorrelation function (PACF)
are useful qualitative tools to assess the presence of autocorrelation at individual lags.
The Ljung-Box Q-test is a more quantitative way to test for autocorrelation at multiple
lags jointly [1]. The null hypothesis for this test is that the first m autocorrelations are
jointly zero,

H
m0 1 2

0: .r r r= = = =…

The choice of m affects test performance. If N is the length of your observed time series,
choosing m Nª ln() is recommended for power [2]. You can test at multiple values of m.
If seasonal autocorrelation is possible, you might consider testing at larger values of m,
such as 10 or 15.

The Ljung-Box test statistic is given by

Q m N N
N h

h
h

m
() ()

�
.= +

-=Â2

2

1

r

This is a modification of the Box-Pierce Portmanteau “Q” statistic [3]. Under the null

hypothesis, Q(m) follows a c
m

2

 distribution.

You can use the Ljung-Box Q-test to assess autocorrelation in any series with a constant
mean. This includes residual series, which can be tested for autocorrelation during model
diagnostic checks. If the residuals result from fitting a model with g parameters, you

should compare the test statistic to a c
2

 distribution with m – g degrees of freedom.
Optional input arguments to lbqtest let you modify the degrees of freedom of the null
distribution.

You can also test for conditional heteroscedasticity by conducting a Ljung-Box Q-test on
a squared residual series. An alternative test for conditional heteroscedasticity is Engle’s
ARCH test (archtest).

References

[1] Ljung, G. and G. E. P. Box. “On a Measure of Lack of Fit in Time Series Models.”
Biometrika. Vol. 66, 1978, pp. 67–72.

 Ljung-Box Q-Test

3-17

[2] Tsay, R. S. Analysis of Financial Time Series. 3rd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2010.

[3] Box, G. E. P. and D. Pierce. “Distribution of Residual Autocorrelations in
Autoregressive-Integrated Moving Average Time Series Models.” Journal of the
American Statistical Association. Vol. 65, 1970, pp. 1509–1526.

See Also
archtest | lbqtest

Related Examples
• “Detect Autocorrelation” on page 3-18
• “Detect ARCH Effects” on page 3-28

More About
• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Engle’s ARCH Test” on page 3-25
• “Residual Diagnostics” on page 3-90
• “Conditional Mean Models” on page 5-3

3 Model Selection

3-18

Detect Autocorrelation

In this section...

“Compute Sample ACF and PACF” on page 3-18
“Conduct the Ljung-Box Q-Test” on page 3-21

Compute Sample ACF and PACF

This example shows how to compute the sample autocorrelation function (ACF) and
partial autocorrelation function (PACF) to qualitatively assess autocorrelation.

The time series is 57 consecutive days of overshorts from a gasoline tank in Colorado.

Step 1. Load the data.

Load the time series of overshorts.

load(fullfile(matlabroot,'examples','econ','Data_Overshort.mat'))

Y = Data;

N = length(Y);

figure

plot(Y)

xlim([0,N])

title('Overshorts for 57 Consecutive Days')

 Detect Autocorrelation

3-19

The series appears to be stationary.

Step 2. Plot the sample ACF and PACF.

Plot the sample autocorrelation function (ACF) and partial autocorrelation function
(PACF).

figure

subplot(2,1,1)

autocorr(Y)

subplot(2,1,2)

parcorr(Y)

3 Model Selection

3-20

The sample ACF and PACF exhibit significant autocorrelation. The sample ACF has
significant autocorrelation at lag 1. The sample PACF has significant autocorrelation at
lags 1, 3, and 4.

The distinct cutoff of the ACF combined with the more gradual decay of the PACF
suggests an MA(1) model might be appropriate for this data.

Step 3. Store the sample ACF and PACF values.

Store the sample ACF and PACF values up to lag 15.

acf = autocorr(Y,15);

pacf = parcorr(Y,15);

[length(acf) length(pacf)]

 Detect Autocorrelation

3-21

ans =

 16 16

The outputs acf and pacf are vectors storing the sample autocorrelation and partial
autocorrelation at lags 0, 1,...,15 (a total of 16 lags).

Conduct the Ljung-Box Q-Test

This example shows how to conduct the Ljung-Box Q-test for autocorrelation.

The time series is 57 consecutive days of overshorts from a gasoline tank in Colorado.

Step 1. Load the data.

Load the time series of overshorts.

load(fullfile(matlabroot,'examples','econ','Data_Overshort.mat'))

Y = Data;

N = length(Y);

figure

plot(Y)

xlim([0,N])

title('Overshorts for 57 Consecutive Days')

3 Model Selection

3-22

The data appears to fluctuate around a constant mean, so no data transformations are
needed before conducting the Ljung-Box Q-test.

Step 2. Conduct the Ljung-Box Q-test.

Conduct the Ljung-Box Q-test for autocorrelation at lags 5, 10, and 15.

[h,p,Qstat,crit] = lbqtest(Y,'Lags',[5,10,15])

h =

 1 1 1

 Detect Autocorrelation

3-23

p =

 0.0016 0.0007 0.0013

Qstat =

 19.3604 30.5986 36.9639

crit =

 11.0705 18.3070 24.9958

All outputs are vectors with three elements, corresponding to tests at each of the three
lags. The first element of each output corresponds to the test at lag 5, the second element
corresponds to the test at lag 10, and the third element corresponds to the test at lag 15.

The test decisions are stored in the vector h. The value h = 1 means reject the
null hypothesis. Vector p contains the p-values for the three tests. At the
significance level, the null hypothesis of no autocorrelation is rejected at all three lags.
The conclusion is that there is significant autocorrelation in the series.

The test statistics and critical values are given in outputs Qstat and crit,
respectively.

References

[1] Brockwell, P. J. and R. A. Davis. Introduction to Time Series and Forecasting. 2nd ed.
New York, NY: Springer, 2002.

See Also
autocorr | lbqtest | parcorr

Related Examples
• “Detect ARCH Effects” on page 3-28
• “Choose ARMA Lags Using BIC” on page 5-135

3 Model Selection

3-24

• “Specify Multiplicative ARIMA Model” on page 5-52
• “Specify Conditional Mean and Variance Models” on page 5-79

More About
• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Ljung-Box Q-Test” on page 3-16
• “Moving Average Model” on page 5-27
• “Goodness of Fit” on page 3-88

 Engle’s ARCH Test

3-25

Engle’s ARCH Test

An uncorrelated time series can still be serially dependent due to a dynamic
conditional variance process. A time series exhibiting conditional heteroscedasticity
—or autocorrelation in the squared series—is said to have autoregressive conditional
heteroscedastic (ARCH) effects. Engle’s ARCH test is a Lagrange multiplier test to assess
the significance of ARCH effects [1].

Consider a time series

yt t t= +m e ,

where m
t is the conditional mean of the process, and e

t is an innovation process with
mean zero.

Suppose the innovations are generated as

e s
t t t

z= ,

where zt is an independent and identically distributed process with mean 0 and variance
1. Thus,

E t t h()e e
+

= 0

for all lags h π 0 and the innovations are uncorrelated.

Let Ht denote the history of the process available at time t. The conditional variance of yt
is

Var y H Var H E Ht t t t t t t(|) (|) (|) .
- - -

= = =1 1
2

1
2

e e s

Thus, conditional heteroscedasticity in the variance process is equivalent to
autocorrelation in the squared innovation process.

Define the residual series

e yt t t= - ˆ .m

3 Model Selection

3-26

If all autocorrelation in the original series, yt, is accounted for in the conditional mean
model, then the residuals are uncorrelated with mean zero. However, the residuals can
still be serially dependent.

The alternative hypothesis for Engle’s ARCH test is autocorrelation in the squared
residuals, given by the regression

H e e e u
a t t m t m t

: ,
2

0 1 1
2 2

= + + + +
- -

a a a…

where ut is a white noise error process. The null hypothesis is

H
m0 0 1

0: .a a a= = = =…

To conduct Engle’s ARCH test using archtest, you need to specify the lag m in the
alternative hypothesis. One way to choose m is to compare loglikelihood values for
different choices of m. You can use the likelihood ratio test (lratiotest) or information
criteria (aicbic) to compare loglikelihood values.

To generalize to a GARCH alternative, note that a GARCH(P,Q) model is locally
equivalent to an ARCH(P + Q) model. This suggests also considering values m = P + Q for
reasonable choices of P and Q.

The test statistic for Engle’s ARCH test is the usual F statistic for the regression on the

squared residuals. Under the null hypothesis, the F statistic follows a c
2

 distribution
with m degrees of freedom. A large critical value indicates rejection of the null hypothesis
in favor of the alternative.

As an alternative to Engle’s ARCH test, you can check for serial dependence (ARCH
effects) in a residual series by conducting a Ljung-Box Q-test on the first m lags of
the squared residual series with lbqtest. Similarly, you can explore the sample
autocorrelation and partial autocorrelation functions of the squared residual series for
evidence of significant autocorrelation.

References

[1] Engle, Robert F. “Autoregressive Conditional Heteroskedasticity with Estimates of
the Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

 Engle’s ARCH Test

3-27

See Also
aicbic | archtest | lbqtest | lratiotest

Related Examples
• “Detect ARCH Effects” on page 3-28
• “Specify Conditional Mean and Variance Models” on page 5-79

More About
• “Ljung-Box Q-Test” on page 3-16
• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Model Comparison Tests” on page 3-65
• “Information Criteria” on page 3-63
• “Conditional Variance Models” on page 6-2

3 Model Selection

3-28

Detect ARCH Effects

In this section...

“Test Autocorrelation of Squared Residuals” on page 3-28
“Conduct Engle's ARCH Test” on page 3-31

Test Autocorrelation of Squared Residuals

This example shows how to inspect a squared residual series for autocorrelation by
plotting the sample autocorrelation function (ACF) and partial autocorrelation function
(PACF). Then, conduct a Ljung-Box Q-test to more formally assess autocorrelation.

Load the Data.

Load the NASDAQ data included with the toolbox. Convert the daily close composite
index series to a percentage return series.

load Data_EquityIdx;

y = DataTable.NASDAQ;

r = 100*price2ret(y);

T = length(r);

figure

plot(r)

xlim([0,T])

title('NASDAQ Daily Returns')

 Detect ARCH Effects

3-29

The returns appear to fluctuate around a constant level, but exhibit volatility clustering.
Large changes in the returns tend to cluster together, and small changes tend to cluster
together. That is, the series exhibits conditional heteroscedasticity.

The returns are of relatively high frequency. Therefore, the daily changes can be small.
For numerical stability, it is good practice to scale such data.

Plot the Sample ACF and PACF.

Plot the sample ACF and PACF for the squared residual series.

e = r - mean(r);

figure

3 Model Selection

3-30

subplot(2,1,1)

autocorr(e.^2)

subplot(2,1,2)

parcorr(e.^2)

The sample ACF and PACF show significant autocorrelation in the squared residual
series. This indicates that volatility clustering is present in the residual series.

Conduct a Ljung-Box Q-test.

Conduct a Ljung-Box Q-test on the squared residual series at lags 5 and 10.

[h,p] = lbqtest(e.^2,'Lags',[5,10])

 Detect ARCH Effects

3-31

h =

 1 1

p =

 0 0

The null hypothesis is rejected for the two tests (h = 1). The p values for both tests is
0. Thus, not all of the autocorrelations up to lag 5 (or 10) are zero, indicating volatility
clustering in the residual series.

Conduct Engle's ARCH Test

This example shows how to conduct Engle's ARCH test for conditional heteroscedasticity.

Load the Data.

Load the NASDAQ data included with the toolbox. Convert the daily close composite
index series to a percentage return series.

load Data_EquityIdx;

y = DataTable.NASDAQ;

r = 100*price2ret(y);

T = length(r);

figure

plot(r)

xlim([0,T])

title('NASDAQ Daily Returns')

3 Model Selection

3-32

The returns appear to fluctuate around a constant level, but exhibit volatility clustering.
Large changes in the returns tend to cluster together, and small changes tend to cluster
together. That is, the series exhibits conditional heteroscedasticity.

The returns are of relatively high frequency. Therefore, the daily changes can be small.
For numerical stability, it is good practice to scale such data.

Conduct Engle's ARCH Test.

Conduct Engle's ARCH test for conditional heteroscedasticity on the residual series,
using two lags in the alternative hypothesis.

e = r - mean(r);

[h,p,fStat,crit] = archtest(e,'Lags',2)

 Detect ARCH Effects

3-33

h =

 1

p =

 0

fStat =

 399.9693

crit =

 5.9915

The null hypothesis is soundly rejected (h = 1, p = 0) in favor of the ARCH(2)
alternative. The F statistic for the test is 399.97, much larger than the critical value
from the distribution with two degrees of freedom, 5.99.

The test concludes there is significant volatility clustering in the residual series.

See Also
archtest | autocorr | lbqtest | parcorr

Related Examples
• “Detect Autocorrelation” on page 3-18
• “Specify Conditional Mean and Variance Models” on page 5-79

More About
• “Engle’s ARCH Test” on page 3-25
• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Conditional Variance Models” on page 6-2

3 Model Selection

3-34

Unit Root Nonstationarity

In this section...

“What Is a Unit Root Test?” on page 3-34
“Modeling Unit Root Processes” on page 3-34
“Available Tests” on page 3-39
“Testing for Unit Roots” on page 3-40

What Is a Unit Root Test?

A unit root process is a data-generating process whose first difference is stationary. In
other words, a unit root process yt has the form
yt = yt–1 + stationary process.

A unit root test attempts to determine whether a given time series is consistent with a
unit root process.

The next section gives more details of unit root processes, and suggests why it is
important to detect them.

Modeling Unit Root Processes

There are two basic models for economic data with linear growth characteristics:

• Trend-stationary process (TSP): yt = c + δt + stationary process
• Unit root process, also called a difference-stationary process (DSP): Δyt = δ +

stationary process

Here Δ is the differencing operator, Δyt = yt – yt–1 = (1 – L)yt, where L is the lag operator
defined by Liyt = yt – i.

The processes are indistinguishable for finite data. In other words, there are both a
TSP and a DSP that fit a finite data set arbitrarily well. However, the processes are
distinguishable when restricted to a particular subclass of data-generating processes,
such as AR(p) processes. After fitting a model to data, a unit root test checks if the AR(1)
coefficient is 1.

 Unit Root Nonstationarity

3-35

There are two main reasons to distinguish between these types of processes:

• “Forecasting” on page 3-35
• “Spurious Regression” on page 3-38

Forecasting

A TSP and a DSP produce different forecasts. Basically, shocks to a TSP return to the
trend line c + δt as time increases. In contrast, shocks to a DSP might be persistent over
time.

For example, consider the simple trend-stationary model
y1,t = 0.9y1,t – 1 + 0.02t + ε1,t

and the difference-stationary model
y2,t = 0.2 + y2,t – 1 + ε2,t.

In these models, ε1,t and ε2,t are independent innovation processes. For this example, the
innovations are independent and distributed N(0,1).

Both processes grow at rate 0.2. To calculate the growth rate for the TSP, which has a
linear term 0.02t, set ε1(t) = 0. Then solve the model y1(t) = c + δt for c and δ:
c + δt = 0.9(c + δ(t–1)) + 0.02t.

The solution is c = –1.8, δ = 0.2.

A plot for t = 1:1000 shows the TSP stays very close to the trend line, while the DSP has
persistent deviations away from the trend line.

T = 1000; % Sample size

t = (1:T)'; % Period vector

rng(5); % For reproducibility

randm = randn(T,2); % Innovations

y = zeros(T,2); % Columns of y are data series

% Build trend stationary series

y(:,1) = .02*t + randm(:,1);

for ii = 2:T

 y(ii,1) = y(ii,1) + y(ii-1,1)*.9;

end

% Build difference stationary series

3 Model Selection

3-36

y(:,2) = .2 + randm(:,2);

y(:,2) = cumsum(y(:,2));

figure

plot(y(:,1),'b')

hold on

plot(y(:,2),'g')

plot((1:T)*0.2,'k--')

legend('Trend Stationary','Difference Stationary',...

 'Trend Line','Location','NorthWest')

hold off

Forecasts based on the two series are different. To see this difference, plot the predicted
behavior of the two series using vgxpred. The following plot shows the last 100 data

 Unit Root Nonstationarity

3-37

points in the two series and predictions of the next 100 points, including confidence
bounds.

Mdl = vgxset('AR',zeros(2),'ARSolve',...

 [true false;false true],'nx',1,'Constant',...

 true,'n',2); % Model for independent processes

tcell = cell(1000,1); % Time as exogenous input

for i=1:1000

 tcell{i} = [i;0];

end

MdlFitted = vgxvarx(Mdl,y,tcell);

MdlFitted = vgxset(MdlFitted,'Series',...

 {'Trend stationary','Difference stationary'});

fx = cell(100,1);

for i = 1:100

 fx{i} = [i+1000;0]; % Future times for prediction

end

[ynew,ycov] = vgxpred(MdlFitted,100,fx,y);

% This generates predictions for 100 time steps

figure;

subplot(2,1,1);

hold on;

plot((T-100:T+100)*0.2,'k--');

axis tight;

subplot(2,1,2);

hold on;

plot((T-100:T+100)*0.2,'k--');

vgxplot(MdlFitted,y(end-100:end,:),ynew,ycov);

axis tight;

3 Model Selection

3-38

Examine the fitted parameters by executing vgxdisp(specfitted) and you find
vgxvarx did an excellent job.

The TSP has confidence intervals that do not grow with time, whereas the DSP has
confidence intervals that grow. Furthermore, the TSP goes to the trend line quickly,
while the DSP does not tend towards the trend line y = 0.2t asymptotically.

Spurious Regression

The presence of unit roots can lead to false inferences in regressions between time series.

Suppose xt and yt are unit root processes with independent increments, such as random
walks with drift

 Unit Root Nonstationarity

3-39

xt = c1 + xt–1 + ε1(t)
yt = c2 + yt–1 + ε2(t),

where εi(t) are independent innovations processes. Regressing y on x results, in general,
in a nonzero regression coefficient, and significant coefficient of determination R2. This
result holds despite xt and yt being independent random walks.

If both processes have trends (ci ≠ 0), there is a correlation between x and y because of
their linear trends. However, even if the ci = 0, the presence of unit roots in the xt and yt
processes yields correlation. For more information on spurious regression, see Granger
and Newbold [1].

Available Tests

There are four Econometrics Toolbox tests for unit roots. These functions test for the
existence of a single unit root. When there are two or more unit roots, the results of these
tests might not be valid.

• “Dickey-Fuller and Phillips-Perron Tests” on page 3-39
• “KPSS Test” on page 3-40
• “Variance Ratio Test” on page 3-40

Dickey-Fuller and Phillips-Perron Tests

adftest performs the augmented Dickey-Fuller test. pptest performs the Phillips-
Perron test. These two classes of tests have a null hypothesis of a unit root process of the
form
yt = yt–1 + c + δt + εt,

which the functions test against an alternative model
yt = γyt–1 + c + δt + εt,

where γ < 1. The null and alternative models for a Dickey-Fuller test are like those for a
Phillips-Perron test. The difference is adftest extends the model with extra parameters
accounting for serial correlation among the innovations:
yt = c + δt + γyt – 1 + ϕ1Δyt – 1 + ϕ2Δyt – 2 +...+ ϕpΔyt – p + εt,

where

• L is the lag operator: Lyt = yt–1.

3 Model Selection

3-40

• Δ = 1 – L, so Δyt = yt – yt–1.
• εt is the innovations process.

Phillips-Perron adjusts the test statistics to account for serial correlation.

There are three variants of both adftest and pptest, corresponding to the following
values of the 'model' parameter:

• 'AR' assumes c and δ, which appear in the preceding equations, are both 0; the 'AR'
alternative has mean 0.

• 'ARD' assumes δ is 0. The 'ARD' alternative has mean c/(1–γ).
• 'TS' makes no assumption about c and δ.

For information on how to choose the appropriate value of 'model', see “Choose Models
to Test” on page 3-41.

KPSS Test

The KPSS test, kpsstest, is an inverse of the Phillips-Perron test: it reverses the null
and alternative hypotheses. The KPSS test uses the model:
yt = ct + δt + ut, with
ct = ct–1 + vt.

Here ut is a stationary process, and vt is an i.i.d. process with mean 0 and variance σ2.
The null hypothesis is that σ2 = 0, so that the random walk term ct becomes a constant
intercept. The alternative is σ2 > 0, which introduces the unit root in the random walk.

Variance Ratio Test

The variance ratio test, vratiotest, is based on the fact that the variance of a
random walk increases linearly with time. vratiotest can also take into account
heteroscedasticity, where the variance increases at a variable rate with time. The test
has a null hypotheses of a random walk:
Δyt = εt.

Testing for Unit Roots

• “Transform Data” on page 3-41
• “Choose Models to Test” on page 3-41
• “Determine Appropriate Lags” on page 3-41

 Unit Root Nonstationarity

3-41

• “Conduct Unit Root Tests at Multiple Lags” on page 3-42

Transform Data

Transform your time series to be approximately linear before testing for a unit root. If
a series has exponential growth, take its logarithm. For example, GDP and consumer
prices typically have exponential growth, so test their logarithms for unit roots.

If you want to transform your data to be stationary instead of approximately linear, unit
root tests can help you determine whether to difference your data, or to subtract a linear
trend. For a discussion of this topic, see “What Is a Unit Root Test?” on page 3-34

Choose Models to Test

• For adftest or pptest, choose model in as follows:

• If your data shows a linear trend, set model to 'TS'.
• If your data shows no trend, but seem to have a nonzero mean, set model to

'ARD'.
• If your data shows no trend and seem to have a zero mean, set model to 'AR' (the

default).
• For kpsstest, set trend to true (default) if the data shows a linear trend.

Otherwise, set trend to false.
• For vratiotest, set IID to true if you want to test for independent, identically

distributed innovations (no heteroscedasticity). Otherwise, leave IID at the default
value, false. Linear trends do not affect vratiotest.

Determine Appropriate Lags

Setting appropriate lags depends on the test you use:

• adftest — One method is to begin with a maximum lag, such as the one
recommended by Schwert [2]. Then, test down by assessing the significance of the
coefficient of the term at lag pmax. Schwert recommends a maximum lag of

p Tmax
/

/ ,= = ()Í
Î

˙
˚ maximum lag 12 100

1 4

where xÎ ˚ is the integer part of x. The usual t statistic is appropriate for testing the
significance of coefficients, as reported in the reg output structure.

3 Model Selection

3-42

Another method is to combine a measure of fit, such as SSR, with information criteria
such as AIC, BIC, and HQC. These statistics also appear in the reg output structure.
Ng and Perron [3] provide further guidelines.

• kpsstest — One method is to begin with few lags, and then evaluate the sensitivity
of the results by adding more lags. For consistency of the Newey-West estimator, the
number of lags must go to infinity as the sample size increases. Kwiatkowski et al. [4]
suggest using a number of lags on the order of T1/2, where T is the sample size.

For an example of choosing lags for kpsstest, see “Test Time Series Data for a Unit
Root” on page 3-50.

• pptest — One method is to begin with few lags, and then evaluate the sensitivity of
the results by adding more lags. Another method is to look at sample autocorrelations
of yt – yt–1; slow rates of decay require more lags. The Newey-West estimator is
consistent if the number of lags is O(T1/4), where T is the effective sample size,
adjusted for lag and missing values. White and Domowitz [5] and Perron [6] provide
further guidelines.

For an example of choosing lags for pptest, see “Test Time Series Data for a Unit
Root” on page 3-50.

• vratiotest does not use lags.

Conduct Unit Root Tests at Multiple Lags

Run multiple tests simultaneously by entering a vector of parameters for lags, alpha,
model, or test. All vector parameters must have the same length. The test expands
any scalar parameter to the length of a vector parameter. For an example using this
technique, see “Test Time Series Data for a Unit Root” on page 3-50.

References

[1] Granger, C. W. J., and P. Newbold. “Spurious Regressions in Econometrics.” Journal
of Econometrics. Vol2, 1974, pp. 111–120.

[2] Schwert, W. “Tests for Unit Roots: A Monte Carlo Investigation.” Journal of Business
and Economic Statistics. Vol. 7, 1989, pp. 147–159.

[3] Ng, S., and P. Perron. “Unit Root Tests in ARMA Models with Data-Dependent
Methods for the Selection of the Truncation Lag.” Journal of the American
Statistical Association. Vol. 90, 1995, pp. 268–281.

 Unit Root Nonstationarity

3-43

[4] Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin. “Testing the Null
Hypothesis of Stationarity against the Alternative of a Unit Root.” Journal of
Econometrics. Vol. 54, 1992, pp. 159–178.

[5] White, H., and I. Domowitz. “Nonlinear Regression with Dependent Observations.”
Econometrica. Vol. 52, 1984, pp. 143–162.

[6] Perron, P. “Trends and Random Walks in Macroeconomic Time Series: Further
Evidence from a New Approach.” Journal of Economic Dynamics and Control.
Vol. 12, 1988, pp. 297–332.

See Also
adftest | kpsstest | pptest | vgxpred | vratiotest

Related Examples
• “Unit Root Tests” on page 3-44
• “Assess Stationarity of a Time Series” on page 3-58

3 Model Selection

3-44

Unit Root Tests

In this section...

“Test Simulated Data for a Unit Root” on page 3-44
“Test Time Series Data for a Unit Root” on page 3-50
“Test Stock Data for a Random Walk” on page 3-53

Test Simulated Data for a Unit Root

This example shows how to test univariate time series models for stationarity. It shows
how to simulate data from four types of models: trend stationary, difference stationary,
stationary (AR(1)), and a heteroscedastic, random walk model. It also shows that the
tests yield expected results.

Simulate four time series.

T = 1e3; % Sample size

t = (1:T)'; % Time multiple

rng(142857); % For reproducibility

y1 = randn(T,1) + .2*t; % Trend stationary

Mdl2 = arima('D',1,'Constant',0.2,'Variance',1);

y2 = simulate(Mdl2,T,'Y0',0); % Difference stationary

Mdl3 = arima('AR',0.99,'Constant',0.2,'Variance',1);

y3 = simulate(Mdl3,T,'Y0',0); % AR(1)

Mdl4 = arima('D',1,'Constant',0.2,'Variance',1);

sigma = (sin(t/200) + 1.5)/2; % Std deviation

e = randn(T,1).*sigma; % Innovations

y4 = filter(Mdl4,e,'Y0',0); % Heteroscedastic

Plot the first 100 points in each series.

y = [y1 y2 y3 y4];

figure;

plot1 = plot(y(1:100,:));

plot1(1).LineWidth = 2;

 Unit Root Tests

3-45

plot1(3).LineStyle = ':';

plot1(3).LineWidth = 2;

plot1(4).LineStyle = ':';

plot1(4).LineWidth = 2;

title '{\bf First 100 Periods of Each Series}';

legend('Trend Stationary','Difference Stationary','AR(1)',...

 'Heteroscedastic','location','northwest');

All of the models appear nonstationary and behave similarly. Therefore, you might find
it difficult to distinguish which series comes from which model simply by looking at their
initial segments.

Plot the entire data set.

3 Model Selection

3-46

plot2 = plot(y);

plot2(1).LineWidth = 2;

plot2(3).LineStyle = ':';

plot2(3).LineWidth = 2;

plot2(4).LineStyle = ':';

plot2(4).LineWidth = 2;

title '{\bf Each Entire Series}';

legend('Trend Stationary','Difference Stationary','AR(1)',...

 'Heteroscedastic','location','northwest');

The differences between the series are clearer here:

• The trend stationary series has little deviation from its mean trend.

 Unit Root Tests

3-47

• The difference stationary and heteroscedastic series have persistent deviations away
from the trend line.

• The AR(1) series exhibits long-run stationary behavior; the others grow linearly.
• The difference stationary and heteroscedastic series appear similar. However, that

the heteroscedastic series has much more local variability near period 300, and
much less near period 900. The model variance is maximal when ,
at time . The model variance is minimal when , at time

. Therefore, the visual variability matches the model.

Use the Augmented Dicky-Fuller test on the three growing series (y1, y2,
and y4) to assess whether the series have a unit root. Since the series are
growing, specify that there is a trend. In this case, the null hypothesis is

 and the alternative hypothesis is
. Set the number of lags to 2 for

demonstration purposes.

hY1 = adftest(y1, 'model','ts', 'lags',2)

hY2 = adftest(y2, 'model','ts', 'lags',2)

hY4 = adftest(y4, 'model','ts', 'lags',2)

hY1 =

 1

hY2 =

 0

hY4 =

 0

• hY1 = 1 indicates that there is sufficient evidence to auggest that y1 is trend
stationary. This is the correct decision because y1 is trend stationary by construction.

• hY2 = 0 indicates that there is not enough evidence to suggest that y2 is
trend stationary. This is the correct decision since y2 is difference stationary by
construction.

3 Model Selection

3-48

• hY4 = 0 indicates that there is not enough evidence to suggest that y4 is trend
stationary. This is the correct decision, however, the Dickey-Fuller test is not
appropriate for a heteroscedastic series.

Use the Augmented Dickey-Fuller test on the AR(1) series (y3) to assess
whether the series has a unit root. Since the series is not growing, specify that
the series is autoregressive with a drift term. In this case, the null hypothesis
is and the alternative hypothesis is

. Set the number of lags to 2 for demonstration
purposes.

hY3 = adftest(y3, 'model','ard', 'lags',2)

hY3 =

 1

hY3 = 1 indicates that there is enough evidence to suggest that y3 is a stationary,
autoregressive process with a drift term. This is the correct decision because y3 is an
autoregressive process with a drift term by construction.

Use the KPSS test to assess whether the series are unit root nonstationary. Specify
that there is a trend in the growing series (y1, y2, and y4). The KPSS test assumes the
following model:

where is a stationary process and is an independent and identically distributed
process with mean 0 and variance . Whether there is a trend in the model, the null
hypothesis is (the series is trend stationary) and the alternative hypothesis
is (not trend stationary). Set the number of lags to 2 for demonstration
purposes.

hY1 = kpsstest(y1, 'lags',2, 'trend',true)

hY2 = kpsstest(y2, 'lags',2, 'trend',true)

hY3 = kpsstest(y3, 'lags',2)

hY4 = kpsstest(y4, 'lags',2, 'trend',true)

 Unit Root Tests

3-49

hY1 =

 0

hY2 =

 1

hY3 =

 1

hY4 =

 1

All is tests result in the correct decision.

Use the variance ratio test on al four series to assess whether the series are random
walks. The null hypothesis is : is constant, and the alternative hypothesis
is : is not constant. Specify that the innovations are independent and
identically distributed for all but y1. Test y4 both ways.

hY1 = vratiotest(y1)

hY2 = vratiotest(y2,'IID',true)

hY3 = vratiotest(y3,'IID',true)

hY4NotIID = vratiotest(y4)

hY4IID = vratiotest(y4, 'IID',true)

hY1 =

 1

hY2 =

 0

3 Model Selection

3-50

hY3 =

 0

hY4NotIID =

 0

hY4IID =

 0

All tests result in the correct decisions, except for hY4_2 = 0. This test does not
reject the hypothesis that the heteroscedastic process is an IID random walk. This
inconsistency might be associated with the random seed.

Alternatively, you can assess stationarity using pptest

Test Time Series Data for a Unit Root

This example shows how to test a univariate time series for a unit root. It uses wages
data (1900-1970) in the manufacturing sector. The series is in the Nelson-Plosser data
set.

Load the Nelson-Plosser data. Extract the nominal wages data.

load Data_NelsonPlosser

wages = DataTable.WN;

Trim the NaN values from the series and the corresponding dates (this step is optional,
since the test ignores NaN values).

wDates = dates(isfinite(wages));

wages = wages(isfinite(wages));

Plot the data to look for trends.

plot(wDates,wages)

title('Wages')

 Unit Root Tests

3-51

The plot suggests exponential growth.

Transform the data using the log function to linearize the series.

logWages = log(wages);

plot(wDates,logWages)

title('Log Wages')

3 Model Selection

3-52

The data appear to have a linear trend.

Test the hypothesis that the series is a unit root process with a trend (difference
stationary), against the alternative that there is no unit root (trend stationary). Set
'lags',[7:2:11], as suggested in Kwiatkowski et al., 1992.

[h,pValue] = kpsstest(logWages,'lags',[7:2:11])

Warning: Test statistic #1 below tabulated critical values:

maximum p-value = 0.100 reported.

Warning: Test statistic #2 below tabulated critical values:

maximum p-value = 0.100 reported.

Warning: Test statistic #3 below tabulated critical values:

maximum p-value = 0.100 reported.

 Unit Root Tests

3-53

h =

 0 0 0

pValue =

 0.1000 0.1000 0.1000

kpsstest fails to reject the hypothesis that the wages series is trend stationary. If the
result would have been [1 1 1], the two inferences would provide consistent evidence of a
unit root. It remains unclear whether the data has a unit root. This is a typical result of
tests on many macroeconomic series.

The warnings that the test statistic "...is below tabulated critical values" does not
indicate a problem. kpsstest has a limited set of calculated critical values. When it
calculates a test statistic that is outside this range, the test reports the p-value at the
appropriate endpoint. So, in this case, pValue reflects the closest tabulated value. When
a test statistic lies inside the span of tabulated values, kpsstest linearly interpolates
the p-value.

Test Stock Data for a Random Walk

This example shows how to assess whether a time series is a random walk. It uses
market data for daily returns of stocks and cash (money market) from the period January
1, 2000 to November 7, 2005.

Load the data.

load CAPMuniverse

Extract two series to test. The first column of data is the daily return of a technology
stock. The last (14th) column is the daily return for cash (the daily money market rate).

tech1 = Data(:,1);

money = Data(:,14);

The returns are the logs of the ratios of values at the end of a day over the values at the
beginning of the day.

Convert the data to prices (values) instead of returns. vratiotest takes prices as
inputs, as opposed to returns.

3 Model Selection

3-54

tech1 = cumsum(tech1);

money = cumsum(money);

Plot the data to see whether they appear to be stationary.

subplot(2,1,1)

plot(Dates,tech1);

title('Log(relative stock value)')

datetick('x')

hold on

subplot(2,1,2);

plot(Dates,money)

title('Log(accumulated cash)')

datetick('x')

hold off

 Unit Root Tests

3-55

Cash has a small variability, and appears to have long-term trends. The stock series has
a good deal of variability, and no definite trend, though it appears to increase towards
the end.

Test whether the stock series matches a random walk.

[h,pValue,stat,cValue,ratio] = vratiotest(tech1)

h =

 0

pValue =

 0.1646

stat =

 -1.3899

cValue =

 1.9600

ratio =

 0.9436

vratiotest does not reject the hypothesis that a random walk is a reasonable model for
the stock series.

Test whether an i.i.d. random walk is a reasonable model for the stock series.

[h,pValue,stat,cValue,ratio] = vratiotest(tech1,'IID',true)

h =

 1

3 Model Selection

3-56

pValue =

 0.0304

stat =

 -2.1642

cValue =

 1.9600

ratio =

 0.9436

vratiotest rejects the hypothesis that an i.i.d. random walk is a reasonable model
for the tech1 stock series at the 5% level. Thus, vratiotest indicates that the most
appropriate model of the tech1 series is a heteroscedastic random walk.

Test whether the cash series matches a random walk.

[h,pValue,stat,cValue,ratio] = vratiotest(money)

h =

 1

pValue =

 4.6093e-145

stat =

 25.6466

 Unit Root Tests

3-57

cValue =

 1.9600

ratio =

 2.0006

vratiotest emphatically rejects the hypothesis that a random walk is a reasonable
model for the cash series (pValue = 4.6093e-145). The removal of a trend from the
series does not affect the resulting statistics.

References

[1] Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin. “Testing the Null
Hypothesis of Stationarity against the Alternative of a Unit Root.” Journal of
Econometrics. Vol. 54, 1992, pp. 159–178.

See Also
adftest | kpsstest | pptest | vratiotest

More About
• “Unit Root Nonstationarity” on page 3-34

3 Model Selection

3-58

Assess Stationarity of a Time Series

This example shows how to check whether a linear time series is a unit root process
in several ways. You can assess unit root nonstationarity statistically, visually, and
algebraically.

Simulate Data

Suppose that the true model for a linear time series is

where the innovation series is iid with mean 0 and variance 1.5. Simulate data from
this model. This model is a unit root process because the lag polynomial of the right side
has characteristic root 1.

SimMod = arima('AR',0.2,'MA',-0.5,'D',1,'Constant',0,...

'Variance',1.5);

T = 30;

rng(5);

Y = simulate(SimMod,T);

Assess Stationarity Statistically

Econometrics Toolbox™ has four formal tests to choose from to check if a time series is
nonstationary: adftest, kpsstest, pptest, and vratiotest. Use adftest to perform
the Dickey-Fuller test on the data that you simulated in the previous steps.

adftest(Y)

ans =

 0

The test result indicates that you should not reject the null hypothesis that the series is a
unit root process.

Assess Stationarity Visually

Suppose you don't have the time series model, but you have the data. Inspect a plot of
the data. Also, inspect the plots of the sample autocorrelation function (ACF) and sample
partial autocorrelation function (PACF).

 Assess Stationarity of a Time Series

3-59

plot(Y);

title('Simulated Time Series')

xlabel('t')

ylabel('Y')

subplot(2,1,1)

autocorr(Y)

subplot(2,1,2)

parcorr(Y)

The downward sloping of the plot indicates a unit root process. The lengths of the line
segments on the ACF plot gradually decay, and continue this pattern for increasing lags.
This behavior indicates a nonstationary series.

3 Model Selection

3-60

Assess Stationarity Algebraically

Suppose you have the model in standard form:

Write the equation in lag operator notation and solve for to get

Use LagOp to convert the rational polynomial to a polynomial. Also, use isStable to
inspect the characteristic roots of the denominator.

num = LagOp([1 -0.5]);

denom = LagOp([1 -1.2 0.2]);

quot = mrdivide(num,denom);

[r1,r2] = isStable(denom)

Warning: Termination window not currently open and coefficients

 are not below tolerance.

r1 =

 0

r2 =

 1.0000

 0.2000

This warning indicates that the resulting quotient has a degree larger than 1001, e.g.,
there might not be a terminating degree. This indicates instability. r1 = 0 indicates
that the denominator is unstable. r2 is a vector of characteristics roots, one of the roots is
1. Therefore, this is a unit root process.

isStable is a numerical routine that calculates the characteristic values of a
polynomial. If you use quot as an argument to isStable, then the output might
indicate that the polynomial is stable (i.e., all characteristic values are slightly less than

 Assess Stationarity of a Time Series

3-61

1). You might need to adjust the tolerance options of isStable to get more accurate
results.

3 Model Selection

3-62

Test Multiple Time Series

“VAR Model Case Study” on page 7-89 contains an example that uses vgxvarx
to estimate the loglikelihoods of several models, and uses lratiotest to reject some
restricted models in favor of an unrestricted model. The calculation appears in the
example “Classical Model Misspecification Tests”.

 Information Criteria

3-63

Information Criteria

Model comparison tests—such as the likelihood ratio, Lagrange multiplier, or Wald test
—are only appropriate for comparing nested models. In contrast, information criteria are
model selection tools that you can use to compare any models fit to the same data. That
is, the models being compared do not need to be nested.

Basically, information criteria are likelihood-based measures of model fit that include
a penalty for complexity (specifically, the number of parameters). Different information
criteria are distinguished by the form of the penalty, and can prefer different models.

Let log (�)L q denote the value of the maximized loglikelihood objective function for a
model with k parameters fit to N data points. Two commonly used information criteria
are:

• Akaike information criterion (AIC). The AIC compares models from the
perspective of information entropy, as measured by Kullback-Leibler divergence. The
AIC for a given model is

- +2 2log (�) .L kq

When comparing AIC values for multiple models, smaller values of the criterion are
better.

• Bayesian information criterion (BIC). The BIC, also known as Schwarz
information criterion, compares models from the perspective of decision theory, as
measured by expected loss. The BIC for a given model is

- +2log (�) log().L k Nq

When comparing BIC values for multiple models, smaller values of the criterion are
better.

Note: Some references scale information criteria values by the number of observations
(N). Econometrics Toolbox does not do this scaling. As a result, the absolute value of
measures the toolbox returns might differ from other sources by a factor of N.

3 Model Selection

3-64

See Also
aicbic

Related Examples
• “Choose ARMA Lags Using BIC” on page 5-135
• “Compare Conditional Variance Models Using Information Criteria” on page

6-87

More About
• “Model Comparison Tests” on page 3-65
• “Goodness of Fit” on page 3-88

 Model Comparison Tests

3-65

Model Comparison Tests

In this section...

“Available Tests” on page 3-65
“Likelihood Ratio Test” on page 3-67
“Lagrange Multiplier Test” on page 3-67
“Wald Test” on page 3-68
“Covariance Matrix Estimation” on page 3-68

Available Tests

The primary goal of model selection is choosing the most parsimonious model that
adequately fits your data. Three asymptotically equivalent tests compare a restricted
model (the null model) against an unrestricted model (the alternative model), fit to the
same data:

• Likelihood ratio (LR) test
• Lagrange multiplier (LM) test
• Wald (W) test

For a model with parameters θ, consider the restriction r() ,q = 0 which is satisfied by
the null model. For example, consider testing the null hypothesis q q=

0
. The restriction

function for this test is

r() .q q q= - 0

The LR, LM, and Wald tests approach the problem of comparing the fit of a restricted

model against an unrestricted model differently. For a given data set, let l
MLE

()q0 denote
the loglikelihood function evaluated at the maximum likelihood estimate (MLE) of the

restricted (null) model. Let l A
MLE

()q denote the loglikelihood function evaluated at the
MLE of the unrestricted (alternative) model. The following figure illustrates the rationale
behind each test.

3 Model Selection

3-66

0

T

}

}

θ

W

LM

LR

r(θ)

θ0

T0

θMLEMLE

A

ℓ(θ)

ℓ(θMLE

A)

ℓ(θ0MLE)

r(θMLE

A
)

• Likelihood ratio test. If the restricted model is adequate, then the difference

between the maximized objective functions, l lA
MLE MLE() (),q q- 0 should not

significantly differ from zero.
• Lagrange multiplier test. If the restricted model is adequate, then the slope of the

tangent of the loglikelihood function at the restricted MLE (indicated by T0 in the
figure) should not significantly differ from zero (which is the slope of the tangent of
the loglikelihood function at the unrestricted MLE, indicated by T).

• Wald test. If the restricted model is adequate, then the restriction function evaluated
at the unrestricted MLE should not significantly differ from zero (which is the value
of the restriction function at the restricted MLE).

The three tests are asymptotically equivalent. Under the null, the LR, LM, and Wald

test statistics are all distributed as c
2

 with degrees of freedom equal to the number of
restrictions. If the test statistic exceeds the test critical value (equivalently, the p-value
is less than or equal to the significance level), the null hypothesis is rejected. That is, the
restricted model is rejected in favor of the unrestricted model.

Choosing among the LR, LM, and Wald test is largely determined by computational cost:

 Model Comparison Tests

3-67

• To conduct a likelihood ratio test, you need to estimate both the restricted and
unrestricted models.

• To conduct a Lagrange multiplier test, you only need to estimate the restricted model
(but the test requires an estimate of the variance-covariance matrix).

• To conduct a Wald test, you only need to estimate the unrestricted model (but the test
requires an estimate of the variance-covariance matrix).

All things being equal, the LR test is often the preferred choice for comparing nested
models. Econometrics Toolbox has functionality for all three tests.

Likelihood Ratio Test

You can conduct a likelihood ratio test using lratiotest. The required inputs are:

•
Value of the maximized unrestricted loglikelihood, l A

MLE
()q

•
Value of the maximized restricted loglikelihood, l

MLE
()q0

• Number of restrictions (degrees of freedom)

Given these inputs, the likelihood ratio test statistic is

G l lA
MLE MLE2

02= ¥ -È
Î

˘
˚

() () .q q

When estimating conditional mean and variance models (using arima, garch, egarch,
or gjr), you can return the value of the loglikelihood objective function as an optional
output argument of estimate or infer. For multivariate time series models, you can
get the value of the loglikelihood objective function using vgxvarx.

Lagrange Multiplier Test

The required inputs for conducting a Lagrange multiplier test are:

• Gradient of the unrestricted likelihood evaluated at the restricted MLEs (the score), S
• Variance-covariance matrix for the unrestricted parameters evaluated at the

restricted MLEs, V

Given these inputs, the LM test statistic is

3 Model Selection

3-68

LM S VS= ¢
.

You can conduct an LM test using lmtest. A specific example of an LM test is Engle’s
ARCH test, which you can conduct using archtest.

Wald Test

The required inputs for conducting a Wald test are:

• Restriction function evaluated at the unrestricted MLE, r
• Jacobian of the restriction function evaluated at the unrestricted MLEs, R
• Variance-covariance matrix for the unrestricted parameters evaluated at the

unrestricted MLEs, V

Given these inputs, the test statistic for the Wald test is

W r RVR r= ¢ ¢
-

() .
1

You can conduct a Wald test using waldtest.

Tip You can often compute the Jacobian of the restriction function analytically. Or, if you
have Symbolic Math Toolbox™, you can use the function jacobian.

Covariance Matrix Estimation

For estimating a variance-covariance matrix, there are several common methods,
including:

• Outer product of gradients (OPG). Let G be the matrix of gradients of the
loglikelihood function. If your data set has N observations, and there are m
parameters in the unrestricted likelihood, then G is an N × m matrix.

The matrix ()¢
-

G G
1 is the OPG estimate of the variance-covariance matrix.

For arima, garch, egarch, and gjr models, the estimate method returns the OPG
estimate of the variance-covariance matrix.

 Model Comparison Tests

3-69

• Inverse negative Hessian (INH). Given the loglikelihood function l(),q the INH
covariance estimate has elements

cov(,)
()

.i j
l

i j

= -
∂
∂ ∂

Ê

Ë
ÁÁ

ˆ

¯
˜̃
-

2
1

q
q q

The estimation function for multivariate models, vgxvarx, returns the expected
Hessian variance-covariance matrix.

Tip If you have Symbolic Math Toolbox, you can use jacobian twice to calculate the
Hessian matrix for your loglikelihood function.

See Also
arima | egarch | garch | gjr | lmtest | lratiotest | waldtest

Related Examples
• “Conduct a Lagrange Multiplier Test” on page 3-70
• “Conduct a Wald Test” on page 3-74
• “Compare GARCH Models Using Likelihood Ratio Test” on page 3-77

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Goodness of Fit” on page 3-88
• “Information Criteria” on page 3-63
• “Maximum Likelihood Estimation for Conditional Mean Models” on page 5-98
• “Maximum Likelihood Estimation for Conditional Variance Models” on page

6-62

3 Model Selection

3-70

Conduct a Lagrange Multiplier Test

This example shows how to calculate the required inputs for conducting a Lagrange
multiplier (LM) test with lmtest. The LM test compares the fit of a restricted model
against an unrestricted model by testing whether the gradient of the loglikelihood
function of the unrestricted model, evaluated at the restricted maximum likelihood
estimates (MLEs), is significantly different from zero.

The required inputs for lmtest are the score function and an estimate of the
unrestricted variance-covariance matrix evaluated at the restricted MLEs. This example
compares the fit of an AR(1) model against an AR(2) model.

Step 1. Compute the restricted MLE.

Obtain the restricted MLE by fitting an AR(1) model (with a Gaussian innovation
distribution) to the given data. Assume you have presample observations (,) =
(9.6249,9.6396).

Y = [10.1591; 10.1675; 10.1957; 10.6558; 10.2243; 10.4429;

 10.5965; 10.3848; 10.3972; 9.9478; 9.6402; 9.7761;

 10.0357; 10.8202; 10.3668; 10.3980; 10.2892; 9.6310;

 9.6318; 9.1378; 9.6318; 9.1378];

Y0 = [9.6249; 9.6396];

model = arima(1,0,0);

fit = estimate(model,Y,'Y0',Y0);

 ARIMA(1,0,0) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 3.29993 2.46057 1.34112

 AR{1} 0.670972 0.24635 2.72366

 Variance 0.125064 0.0430152 2.90743

When conducting an LM test, only the restricted model needs to be fit.

 Conduct a Lagrange Multiplier Test

3-71

Step 2. Compute the gradient matrix.

Estimate the variance-covariance matrix for the unrestricted AR(2) model using the
outer product of gradients (OPG) method.

For an AR(2) model with Gaussian innovations, the contribution to the loglikelihood
function at time is given by

where is the variance of the innovation distribution.

The contribution to the gradient at time is

where

Evaluate the gradient matrix, , at the restricted MLEs (using).

c = fit.Constant;

phi1 = fit.AR{1};

phi2 = 0;

sig2 = fit.Variance;

Yt = Y;

Yt1 = [9.6396; Y(1:end-1)];

Yt2 = [9.6249; Yt1(1:end-1)];

N = length(Y);

G = zeros(N,4);

G(:,1) = (Yt-c-phi1*Yt1-phi2*Yt2)/sig2;

G(:,2) = Yt1.*(Yt-c-phi1*Yt1-phi2*Yt2)/sig2;

3 Model Selection

3-72

G(:,3) = Yt2.*(Yt-c-phi1*Yt1-phi2*Yt2)/sig2;

G(:,4) = -0.5/sig2 + 0.5*(Yt-c-phi1*Yt1-phi2*Yt2).^2/sig2^2;

Step 3. Estimate the variance-covariance matrix.

Compute the OPG variance-covariance matrix estimate.

V = inv(G'*G)

V =

 6.1431 -0.6966 0.0827 0.0367

 -0.6966 0.1535 -0.0846 -0.0061

 0.0827 -0.0846 0.0771 0.0024

 0.0367 -0.0061 0.0024 0.0019

Step 4. Calculate the score function.

Evaluate the score function (the sum of the individual contributions to the gradient).

score = sum(G);

Step 5. Conduct the Lagrange multiplier test.

Conduct the Lagrange multiplier test to compare the restricted AR(1) model against the
unrestricted AR(2) model. The number of restrictions (the degree of freedom) is one.

[h,p,LMstat,crit] = lmtest(score,V,1)

h =

 0

p =

 0.5787

LMstat =

 0.3084

 Conduct a Lagrange Multiplier Test

3-73

crit =

 3.8415

The restricted AR(1) model is not rejected in favor of the AR(2) model (h = 0).

See Also
arima | estimate | lmtest

Related Examples
• “Conduct a Wald Test” on page 3-74
• “Compare GARCH Models Using Likelihood Ratio Test” on page 3-77

More About
• “Model Comparison Tests” on page 3-65
• “Goodness of Fit” on page 3-88
• “Autoregressive Model” on page 5-18

3 Model Selection

3-74

Conduct a Wald Test

This example shows how to calculate the required inputs for conducting a Wald test with
waldtest. The Wald test compares the fit of a restricted model against an unrestricted
model by testing whether the restriction function, evaluated at the unrestricted
maximum likelihood estimates (MLEs), is significantly different from zero.

The required inputs for waldtest are a restriction function, the Jacobian of the
restriction function evaluated at the unrestricted MLEs, and an estimate of the variance-
covariance matrix evaluated at the unrestricted MLEs. This example compares the fit of
an AR(1) model against an AR(2) model.

Step 1. Compute the unrestricted MLE.

Obtain the unrestricted MLEs by fitting an AR(2) model (with a Gaussian innovation
distribution) to the given data. Assume you have presample observations () =
(9.6249,9.6396)

Y = [10.1591; 10.1675; 10.1957; 10.6558; 10.2243; 10.4429;

 10.5965; 10.3848; 10.3972; 9.9478; 9.6402; 9.7761;

 10.0357; 10.8202; 10.3668; 10.3980; 10.2892; 9.6310;

 9.6318; 9.1378; 9.6318; 9.1378];

Y0 = [9.6249; 9.6396];

model = arima(2,0,0);

[fit,V] = estimate(model,Y,'Y0',Y0);

 ARIMA(2,0,0) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 2.88021 2.52387 1.14119

 AR{1} 0.606229 0.40372 1.50161

 AR{2} 0.106309 0.292833 0.363034

 Variance 0.123855 0.0425975 2.90756

When conducting a Wald test, only the unrestricted model needs to be fit. estimate
returns the estimated variance-covariance matrix as an optional output.

 Conduct a Wald Test

3-75

Step 2. Compute the Jacobian matrix.

Define the restriction function, and calculate its Jacobian matrix.

For comparing an AR(1) model to an AR(2) model, the restriction function is

The Jacobian of the restriction function is

Evaluate the restriction function and Jacobian at the unrestricted MLEs.

r = fit.AR{2};

R = [0 0 1 0];

Step 3. Conduct a Wald test.

Conduct a Wald test to compare the restricted AR(1) model against the unrestricted
AR(2) model.

[h,p,Wstat,crit] = waldtest(r,R,V)

h =

 0

p =

 0.7166

Wstat =

 0.1318

crit =

 3.8415

3 Model Selection

3-76

The restricted AR(1) model is not rejected in favor of the AR(2) model (h = 0).

See Also
arima | estimate | waldtest

Related Examples
• “Conduct a Lagrange Multiplier Test” on page 3-70
• “Compare GARCH Models Using Likelihood Ratio Test” on page 3-77

More About
• “Model Comparison Tests” on page 3-65
• “Goodness of Fit” on page 3-88
• “Autoregressive Model” on page 5-18

 Compare GARCH Models Using Likelihood Ratio Test

3-77

Compare GARCH Models Using Likelihood Ratio Test

This example shows how to conduct a likelihood ratio test to choose the number of lags in
a GARCH model.

Load the Data.

Load the Deutschmark/British pound foreign-exchange rate data included with the
toolbox. Convert the daily rates to returns.

load Data_MarkPound

Y = Data;

r = price2ret(Y);

N = length(r);

figure

plot(r)

xlim([0,N])

title('Mark-Pound Exchange Rate Returns')

3 Model Selection

3-78

The daily returns exhibit volatility clustering. Large changes in the returns tend to
cluster together, and small changes tend to cluster together. That is, the series exhibits
conditional heteroscedasticity.

The returns are of relatively high frequency. Therefore, the daily changes can be small.
For numerical stability, it is good practice to scale such data. In this case, scale the
returns to percentage returns.

r = 100*r;

Specify and Fit a GARCH(1,1) Model.

Specify and fit a GARCH(1,1) model (with a mean offset) to the returns series. Return the
value of the loglikelihood objective function.

 Compare GARCH Models Using Likelihood Ratio Test

3-79

model1 = garch('Offset',NaN,'GARCHLags',1,'ARCHLags',1);

[fit1,~,LogL1] = estimate(model1,r);

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0107613 0.00132297 8.13424

 GARCH{1} 0.805974 0.0165603 48.669

 ARCH{1} 0.153134 0.0139737 10.9587

 Offset -0.00619042 0.00843359 -0.73402

Specify and Fit a GARCH(2,1) Model.

Specify and fit a GARCH(2,1) model with a mean offset.

model2 = garch(2,1);

model2.Offset = NaN;

[fit2,~,LogL2] = estimate(model2,r);

 GARCH(2,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0112262 0.001538 7.29921

 GARCH{1} 0.489644 0.111593 4.38776

 GARCH{2} 0.297688 0.102181 2.91333

 ARCH{1} 0.168419 0.0165832 10.156

 Offset -0.0049837 0.00847645 -0.587947

Conduct a Likelihood Ratio Test.

Conduct a likelihood ratio test to compare the restricted GARCH(1,1) model fit to the
unrestricted GARCH(2,1) model fit. The degree of freedom for this test is one (the
number of restrictions).

[h,p] = lratiotest(LogL2,LogL1,1)

3 Model Selection

3-80

h =

 1

p =

 0.0218

At the 0.05 significance level, the null GARCH(1,1) model is rejected (h = 1) in favor of
the unrestricted GARCH(2,1) alternative.

See Also
estimate | garch | lratiotest

Related Examples
• “Conduct a Lagrange Multiplier Test” on page 3-70
• “Conduct a Wald Test” on page 3-74
• “Compare Conditional Variance Models Using Information Criteria” on page

6-87

More About
• Using garch Objects
• “Model Comparison Tests” on page 3-65
• “Goodness of Fit” on page 3-88
• “GARCH Model” on page 6-3

 Check Fit of Multiplicative ARIMA Model

3-81

Check Fit of Multiplicative ARIMA Model

This example shows how to do goodness of fit checks. Residual diagnostic plots help
verify model assumptions, and cross-validation prediction checks help assess predictive
performance. The time series is monthly international airline passenger numbers from
1949 to 1960.

Load the data and estimate a model.

Load the airline data set.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

y = log(Data);

T = length(y);

Mdl = arima('Constant',0,'D',1,'Seasonality',12,...

 'MALags',1,'SMALags',12);

EstMdl = estimate(Mdl,y);

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 MA{1} -0.377162 0.0667944 -5.64661

 SMA{12} -0.572378 0.0854395 -6.69923

 Variance 0.00126337 0.00012395 10.1926

Check the residuals for normality.

One assumption of the fitted model is that the innovations follow a Gaussian
distribution. Infer the residuals, and check them for normality.

res = infer(EstMdl,y);

stres = res/sqrt(EstMdl.Variance);

figure

subplot(1,2,1)

qqplot(stres)

3 Model Selection

3-82

x = -4:.05:4;

[f,xi] = ksdensity(stres);

subplot(1,2,2)

plot(xi,f,'k','LineWidth',2);

hold on

plot(x,normpdf(x),'r--','LineWidth',2)

legend('Standardized Residuals','Standard Normal')

hold off

The quantile-quantile plot (QQ-plot) and kernel density estimate show no obvious
violations of the normality assumption.

 Check Fit of Multiplicative ARIMA Model

3-83

Check the residuals for autocorrelation.

Confirm that the residuals are uncorrelated. Look at the sample autocorrelation function
(ACF) and partial autocorrelation function (PACF) plots for the standardized residuals.

figure

subplot(2,1,1)

autocorr(stres)

subplot(2,1,2)

parcorr(stres)

[h,p] = lbqtest(stres,'lags',[5,10,15],'dof',[3,8,13])

h =

 0 0 0

p =

 0.1842 0.3835 0.7321

3 Model Selection

3-84

The sample ACF and PACF plots show no significant autocorrelation. More formally,
conduct a Ljung-Box Q-test at lags 5, 10, and 15, with degrees of freedom 3, 8, and 13,
respectively. The degrees of freedom account for the two estimated moving average
coefficients.

The Ljung-Box Q-test confirms the sample ACF and PACF results. The null hypothesis
that all autocorrelations are jointly equal to zero up to the tested lag is not rejected (h =
0) for any of the three lags.

Check predictive performance.

Use a holdout sample to compute the predictive MSE of the model. Use the first 100
observations to estimate the model, and then forecast the next 44 periods.

 Check Fit of Multiplicative ARIMA Model

3-85

y1 = y(1:100);

y2 = y(101:end);

Mdl1 = estimate(Mdl,y1);

yF1 = forecast(Mdl1,44,'Y0',y1);

pmse = mean((y2-yF1).^2)

figure

plot(y2,'r','LineWidth',2)

hold on

plot(yF1,'k--','LineWidth',1.5)

xlim([0,44])

title('Prediction Error')

legend('Observed','Forecast','Location','NorthWest')

hold off

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 MA{1} -0.356736 0.089461 -3.98762

 SMA{12} -0.633186 0.0987442 -6.41239

 Variance 0.00132855 0.000158823 8.36497

pmse =

 0.0069

3 Model Selection

3-86

The predictive ability of the model is quite good. You can optionally compare the PMSE
for this model with the PMSE for a competing model to help with model selection.

See Also
arima | autocorr | estimate | forecast | infer | lbqtest | parcorr

Related Examples
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Simulate Multiplicative ARIMA Models” on page 5-169

 Check Fit of Multiplicative ARIMA Model

3-87

• “Forecast Multiplicative ARIMA Model” on page 5-192
• “Detect Autocorrelation” on page 3-18

More About
• “Goodness of Fit” on page 3-88
• “Residual Diagnostics” on page 3-90
• “Check Predictive Performance” on page 3-92
• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Ljung-Box Q-Test” on page 3-16

3 Model Selection

3-88

Goodness of Fit

After specifying a model and estimating its parameters, it is good practice to perform
goodness-of-fit checks to diagnose the adequacy of your fitted model. When assessing
model adequacy, areas of primary concern are:

• Violations of model assumptions, potentially resulting in bias and inaccurate
standard errors

• Poor predictive performance
• Missing explanatory variables

Goodness-of-fit checks can help you identify areas of model inadequacy. They can also
suggest ways to improve your model. For example, if you conduct a test for residual
autocorrelation and get a significant result, you might be able to improve your model fit
by adding additional autoregressive or moving average terms.

Some strategies for evaluating goodness of fit are:

• Compare your model against an augmented alternative. Make comparisons, for
example, by conducting a likelihood ratio test. Testing your model against a more
elaborate alternative model is a way to assess evidence of inadequacy. Give careful
thought when choosing an alternative model.

• Making residual diagnostic plots is an informal—but useful—way to assess violation
of model assumptions. You can plot residuals to check for normality, residual
autocorrelation, residual heteroscedasticity, and missing predictors. Formal tests
for autocorrelation and heteroscedasticity can also help quantify possible model
violations.

• Predictive performance checks. Divide your data into two parts: a training set and
a validation set. Fit your model using only the training data, and then forecast the
fitted model over the validation period. By comparing model forecasts against the
true, holdout observations, you can assess the predictive performance of your model.
Prediction mean square error (PMSE) can be calculated as a numerical summary of
the predictive performance. When choosing among competing models, you can look at
their respective PMSE values to compare predictive performance.

Related Examples
• “Box-Jenkins Model Selection” on page 3-4
• “Check Fit of Multiplicative ARIMA Model” on page 3-81

 Goodness of Fit

3-89

• “Compare GARCH Models Using Likelihood Ratio Test” on page 3-77

More About
• “Residual Diagnostics” on page 3-90
• “Model Comparison Tests” on page 3-65
• “Check Predictive Performance” on page 3-92

3 Model Selection

3-90

Residual Diagnostics

In this section...

“Check Residuals for Normality” on page 3-90
“Check Residuals for Autocorrelation” on page 3-90
“Check Residuals for Conditional Heteroscedasticity” on page 3-91

Check Residuals for Normality

A common assumption of time series models is a Gaussian innovation distribution. After
fitting a model, you can infer residuals and check them for normality. If the Gaussian
innovation assumption holds, the residuals should look approximately normally
distributed.

Some plots for assessing normality are:

• Histogram
• Box plot
• Quantile-quantile plot
• Kernel density estimate

The last three plots are in Statistics and Machine Learning Toolbox.

If you see that your standardized residuals have excess kurtosis (fatter tails) compared
to a standard normal distribution, you can consider using a Student’s t innovation
distribution.

Check Residuals for Autocorrelation

In time series models, the innovation process is assumed to be uncorrelated. After fitting
a model, you can infer residuals and check them for any unmodeled autocorrelation.

As an informal check, you can plot the sample autocorrelation function (ACF) and partial
autocorrelation function (PACF). If either plot shows significant autocorrelation in the
residuals, you can consider modifying your model to include additional autoregression or
moving average terms.

 Residual Diagnostics

3-91

More formally, you can conduct a Ljung-Box Q-test on the residual series. This tests the
null hypothesis of jointly zero autocorrelations up to lag m, against the alternative of at
least one nonzero autocorrelation. You can conduct the test at several values of m. The
degrees of freedom for the Q-test are usually m. However, for testing a residual series,
you should use degrees of freedom m – p – q, where p and q are the number of AR and
MA coefficients in the fitted model, respectively.

Check Residuals for Conditional Heteroscedasticity

A white noise innovation process has constant variance. After fitting a model, you can
infer residuals and check them for heteroscedasticity (nonconstant variance).

As an informal check, you can plot the sample ACF and PACF of the squared residual
series. If either plot shows significant autocorrelation, you can consider modifying your
model to include a conditional variance process.

More formally, you can conduct an Engle’s ARCH test on the residual series. This tests
the null hypothesis of no ARCH effects against the alternative ARCH model with k lags.

See Also
archtest | autocorr | boxplot | histogram | ksdensity | lbqtest | parcorr |
qqplot

Related Examples
• “Box-Jenkins Model Selection” on page 3-4
• “Detect Autocorrelation” on page 3-18
• “Detect ARCH Effects” on page 3-28
• “Check Fit of Multiplicative ARIMA Model” on page 3-81

More About
• “Goodness of Fit” on page 3-88
• “Check Predictive Performance” on page 3-92
• “Ljung-Box Q-Test” on page 3-16
• “Engle’s ARCH Test” on page 3-25
• “Autocorrelation and Partial Autocorrelation” on page 3-13

3 Model Selection

3-92

Check Predictive Performance

If you plan to use a fitted model for forecasting, it is good practice to assess the predictive
ability of the model. Models that fit well in-sample are not guaranteed to forecast well.
For example, overfitting can lead to good in-sample fit, but poor predictive performance.

When checking predictive performance, it is important to not use your data twice. That
is, the data you use to fit your model should be different than the data you use to assess
forecasts. You can use cross validation to evaluate out-of-sample forecasting ability:

1 Divide your time series into two parts: a training set and a validation set.
2 Fit a model to your training data.
3 Forecast the fitted model over the validation period.
4 Compare the forecasts to the holdout validation observations using plots and

numerical summaries (such as predictive mean square error).

Prediction mean square error (PMSE) measures the discrepancy between model forecasts
and observed data. Suppose you have a time series of length N, and you set aside M

validation points, denoted y y yv v
M
v

1 2, , , .… . After fitting your model to the first N – M data

points (the training set), generate forecasts ˆ , ˆ , , ˆ .y y yv v
M
v

1 2 …

The model PMSE is calculated as

PMSE
M

y yi
v

i
v

i

M

= -()
=

Â
1

1

2

ˆ .

You can calculate PMSE for various choices of M to verify the robustness of your results.

Related Examples
• “Check Fit of Multiplicative ARIMA Model” on page 3-81

More About
• “Goodness of Fit” on page 3-88
• “Residual Diagnostics” on page 3-90

 Check Predictive Performance

3-93

• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• “MMSE Forecasting of Conditional Variance Models” on page 6-117

3 Model Selection

3-94

Nonspherical Models

What Are Nonspherical Models?

Consider the linear time series model y Xt t t= +b e , where yt is the response, xt is a
vector of values for the r predictors, β is the vector of regression coefficients, and εt is the
random innovation at time t.

Ordinary least squares (OLS) estimation and inference techniques for this framework
depend on certain assumptions, e.g., homoscedastic and uncorrelated innovations. For
more details on the classical linear model, see “Time Series Regression I: Linear Models”.
If your data exhibits signs of assumption violations, then OLS estimates or inferences
based on them might not be valid.

In particular, if the data is generated with an innovations process that exhibits
autocorrelation or heteroscedasticity, then the model (or the residuals) are nonspherical.
These characteristics are often detected through testing of model residuals (for details,
see “Time Series Regression VI: Residual Diagnostics”).

Nonspherical residuals are often considered a sign of model misspecification, and models
are revised to whiten the residuals and improve the reliability of standard estimation
techniques. In some cases, however, nonspherical models must be accepted as they are,
and estimated as accurately as possible using revised techniques. Cases include:

• Models presented by theory
• Models with predictors that are dictated by policy
• Models without available data sources, for which predictor proxies must be found

A variety of alternative estimation techniques have been developed to deal with these
situations.

Related Examples
• “Classical Model Misspecification Tests”
• “Time Series Regression I: Linear Models”
• “Time Series Regression VI: Residual Diagnostics”
• “Plot a Confidence Band Using HAC Estimates” on page 3-95
• “Change the Bandwidth of a HAC Estimator” on page 3-105

 Plot a Confidence Band Using HAC Estimates

3-95

Plot a Confidence Band Using HAC Estimates
This example shows how to plot heteroscedastic-and-autocorrelation consistent (HAC)
corrected confidence bands using Newey-West robust standard errors.

One way to estimate the coefficients of a linear model is by OLS. However, time series
models tend to have innovations that are autocorrelated and heteroscedastic (i.e., the
errors are nonspherical). If a times series model has nonspherical errors, then usual
formulae for standard errors of OLS coefficients are biased and inconsistent. Inference
based on these inefficient standard errors tends to inflate the Type I error rate. One
way to account for nonspherical errors is to use HAC standard errors. In particular,
the Newey-West estimator of the OLS coefficient covariance is relatively robust against
nonspherical errors.

Load the Data

Load the Canadian electric power consumption data set from the World Bank. The
response is Canada's electrical energy consumption in kWh (consump), the predictor is
Canada's GDP in year 2000 USD, and the data set also contains two other variables: year
(year) and the GDP defaltor (gdpDeflator).

load(fullfile(matlabroot,'examples','econ','Data_PowerConsumption.mat'));

consump = Data(:,4);

gdp = Data(:,3);

gdpDeflator = Data(:,2);

year = Data(2:end,1);

Define the Model

Model the behavior of the annual difference in electrical energy consumption with respect
to real GDP as a linear model:

consumpDiff = consump - lagmatrix(consump,1); ...

 % Annual difference in consumption

T = size(consumpDiff,1);

consumpDiff = consumpDiff(2:end)/1.0e+10;

 % Scale for numerical stability

rGDP = gdp./(gdpDeflator); % Deflate GDP

rGDP = rGDP(2:end)/1.0e+10; % Scale for numerical stability

rGDPdes = [ones(T-1,1) rGDP]; % Design matrix

Mdl = fitlm(rGDP,consumpDiff);

3 Model Selection

3-96

coeff = Mdl.Coefficients(:,1);

EstParamCov = Mdl.CoefficientCovariance;

resid = Mdl.Residuals.Raw;

Plot the Data

Plot the difference in energy consumption, consumpDiff versus the real GDP, to check
for possible heteroscedasticity.

figure

plot(rGDP,consumpDiff,'.')

title 'Annual Difference in Energy Consumption vs real GDP - Canada';

xlabel 'real GDP (year 2000 USD)';

ylabel 'Annual Difference in Energy Consumption (kWh)';

 Plot a Confidence Band Using HAC Estimates

3-97

The figure indicates that heteroscedasticity might be present in the annual difference in
energy consumption. As real GDP increases, the annual difference in energy consumption
seems to be less variable.

Plot the residuals.

Plot the residuals from Mdl against the fitted values and year to assess
heteroscedasticity and autocorrelation.

figure

subplot(2,1,1)

hold on

plot(Mdl.Fitted,resid,'.')

plot([min(Mdl.Fitted) max(Mdl.Fitted)],[0 0],'k-')

title 'Residual Plots';

xlabel 'Fitted Consumption';

ylabel 'Residuals';

axis tight

hold off

subplot(2,2,3)

autocorr(resid)

h1 = gca;

h1.FontSize = 8;

subplot(2,2,4)

parcorr(resid)

h2 = gca;

h2.FontSize = 8;

3 Model Selection

3-98

The residual plot reveals decreasing residual variance with increasing fitted
consumption. The autocorrelation function shows that autocorrelation might be present
in the first few lagged residuals.

Test for heteroscedasticity and autocorrelation.

Test for conditional heteroscedasticity using Engle's ARCH test. Test for autocorrelation
using the Ljung-Box Q test. Test for overall correlation using the Durbin-Watson test.

[~,englePValue] = archtest(resid);

englePValue

[~,lbqPValue] = lbqtest(resid,'lags',1:3);...

 % Significance of first three lags

lbqPValue

 Plot a Confidence Band Using HAC Estimates

3-99

[dwPValue] = dwtest(Mdl);

dwPValue

englePValue =

 0.1463

lbqPValue =

 0.0905 0.1966 0.0522

dwPValue =

 0.0013

The p value of Engle's ARCH test suggests significant conditional heteroscedasticity
at 15% significance level. The p value for the Ljung-Box Q test suggests significant
autocorrelation with the first and third lagged residuals at 10% significance level. The
p value for the Durbin-Watson test suggests that there is strong evidence for overall
residual autocorrelation. The results of the tests suggest that the standard linear model
conditions of homoscedasticity and uncorrelated errors are violated, and inferences based
on the OLS coefficient covariance matrix are suspect.

One way to proceed with inference (such as constructing a confidence band) is to
correct the OLS coefficient covariance matrix by estimating the Newey-West coefficient
covariance.

Estimate the Newey-West coefficient covariance.

Correct the OLS coefficient covariance matrix by estimating the Newey-West coefficient
covariance using hac. Compute the maximum lag to be weighted for the standard
Newey-West estimate, maxLag (Newey and West, 1994). Use hac to estimate the
standard Newey-West coefficient covariance.

maxLag = floor(4*(T/100)^(2/9));

[NWEstParamCov,~,NWCoeff] = hac(Mdl,'type','hac',...

 'bandwidth',maxLag + 1);

Estimator type: HAC

Estimation method: BT

3 Model Selection

3-100

Bandwidth: 4.0000

Whitening order: 0

Effective sample size: 49

Small sample correction: on

Coefficient Covariances:

 | Const x1

 Const | 0.3720 -0.2990

 x1 | -0.2990 0.2454

The Newey-West standard error for the coefficient of rGDP, labeled in the table, is less
than the usual OLS standard error. This suggests that, in this data set, correcting for
residual heteroscedasticity and autocorrelation increases the precision in measuring the
linear effect of real GDP on energy consumption.

Calculate the Working-Hotelling confidence bands.

Compute the 95% Working-Hotelling confidence band for each covariance estimate using
nlpredci (Kutner et al., 2005).

modelfun = @(b,x)(b(1)*x(:,1)+b(2)*x(:,2));

 % Define the linear model

[beta,nlresid,~,EstParamCov] = nlinfit(rGDPdes,...

 consumpDiff,modelfun,[1,1]); % estimate the model

[fity,fitcb] = nlpredci(modelfun,rGDPdes,beta,nlresid,...

 'Covar',EstParamCov,'SimOpt','on');

 % Margin of errors

conbandnl = [fity - fitcb fity + fitcb];

 % Confidence bands

[fity,NWfitcb] = nlpredci(modelfun,rGDPdes,...

 beta,nlresid,'Covar',NWEstParamCov,'SimOpt','on');

 % Corrected margin of error

NWconbandnl = [fity - NWfitcb fity + NWfitcb];

 % Corrected confidence bands

Plot the Working-Hotelling confidence bands.

Plot the Working-Hotelling confidence bands on the same axes twice: one plot displaying
electrical energy consumption with respect to real GDP, and the other displaying the
electrical energy consumption time series.

figure

hold on

 Plot a Confidence Band Using HAC Estimates

3-101

l1 = plot(rGDP,consumpDiff,'k.');

l2 = plot(rGDP,fity,'b-','LineWidth',2);

l3 = plot(rGDP,conbandnl,'r-');

l4 = plot(rGDP,NWconbandnl,'g--');

title 'Data with 95% Working-Hotelling Conf. Bands';

xlabel 'real GDP (year 2000 USD)';

ylabel 'Consumption (kWh)';

axis([0.7 1.4 -2 2.5])

legend([l1 l2 l3(1) l4(1)],'Data','Fitted','95% Conf. Band',...

 'Newey-West 95% Conf. Band','Location','SouthEast')

hold off

figure

hold on

l1 = plot(year,consumpDiff);

l2 = plot(year,fity,'k-','LineWidth',2);

l3 = plot(year,conbandnl,'r-');

l4 = plot(year,NWconbandnl,'g--');

title 'Consumption with 95% Working-Hotelling Conf. Bands';

xlabel 'Year';

ylabel 'Consumption (kWh)';

legend([l1 l2 l3(1) l4(1)],'Consumption','Fitted',...

 '95% Conf. Band','Newey-West 95% Conf. Band',...

 'Location','SouthWest')

hold off

3 Model Selection

3-102

 Plot a Confidence Band Using HAC Estimates

3-103

The plots show that the Newey-West estimator accounts for the heteroscedasticity in that
the confidence band is wide in areas of high volatility, and thin in areas of low volatility.
The OLS coefficient covariance estimator ignores this pattern of volatility.

References:

1 Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. Applied Linear Statistical
Models. 5th Ed. New York: McGraw-Hill/Irwin, 2005.

2 Newey, W. K., and K. D. West. "A Simple Positive Semidefinite, Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix." Econometrica. Vol. 55, 1987, pp.
703-708.

3 Model Selection

3-104

3 Newey, W. K, and K. D. West. "Automatic Lag Selection in Covariance Matrix
Estimation." The Review of Economic Studies. Vol. 61 No. 4, 1994, pp. 631-653.

Related Examples
• “Time Series Regression I: Linear Models”
• “Time Series Regression VI: Residual Diagnostics”
• “Change the Bandwidth of a HAC Estimator” on page 3-105

More About
• “Nonspherical Models” on page 3-94

 Change the Bandwidth of a HAC Estimator

3-105

Change the Bandwidth of a HAC Estimator

This example shows how to change the bandwidth when estimating a HAC coefficient
covariance, and compare estimates over varying bandwidths and kernels.

How does the bandwidth affect HAC estimators? If you change it, are there large
differences in the estimates, and, if so, are the differences practically significant? Explore
bandwidth effects by estimating HAC coefficient covariances over a grid of bandwidths.

Load and Plot the Data.

Determine how the cost of living affects the behavior of nominal wages. Load the Nelson
Plosser data set to explore their statistical relationship.

load Data_NelsonPlosser

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

cpi = DataTable.CPI(~isNaN); % Cost of living

wm = DataTable.WN(~isNaN); % Nominal wages

figure

plot(cpi,wm,'o')

hFit = lsline; % Regression line

xlabel('Consumer Price Index (1967 = 100)')

ylabel('Nominal Wages (current $)')

legend(hFit,'OLS Line','Location','SE')

title('{\bf Cost of Living}')

grid on

3 Model Selection

3-106

The plot suggests that a linear model might capture the relationship between the two
variables.

Define the Model.

Model the behavior of nominal wages with respect to CPI as this linear model.

Mdl = fitlm(cpi,wm)

coeffCPI = Mdl.Coefficients.Estimate(2);

seCPI = Mdl.Coefficients.SE(2);

 Change the Bandwidth of a HAC Estimator

3-107

Mdl =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ______ _______ _________

 (Intercept) -2541.5 174.64 -14.553 2.407e-21

 x1 88.041 2.6784 32.871 4.507e-40

Number of observations: 62, Error degrees of freedom: 60

Root Mean Squared Error: 494

R-squared: 0.947, Adjusted R-Squared 0.947

F-statistic vs. constant model: 1.08e+03, p-value = 4.51e-40

Plot Residuals.

Plot the residuals from Mdl against the fitted values to assess heteroscedasticity and
autocorrelation.

figure;

stem(Mdl.Residuals.Raw);

xlabel('Observation');

ylabel('Residual');

title('{\bf Linear Model Residuals}');

axis tight;

grid on;

3 Model Selection

3-108

The residual plot shows varying levels of dispersion, which indicates heteroscedasticity.
Neighboring residuals (with respect to observation) tend to have the same sign and
magnitude, which indicates the presence of autocorrelation.

Estimate HAC standard errors.

Obtain HAC standard errors over varying bandwidths using the Bartlett (for the Newey-
West estimate) and quadratic spectral kernels.

numEstimates = 10;

stdErrBT = zeros(numEstimates,1);

stdErrQS = zeros(numEstimates,1);

for bw = 1:numEstimates

 [~,seBT] = hac(cpi,wm,'bandwidth',bw,'display','off'); ...

 Change the Bandwidth of a HAC Estimator

3-109

 % Newey-West

 [~,seQS] = hac(cpi,wm,'weights','QS','bandwidth',bw, ...

 'display','off'); % HAC using quadratic spectral kernel

 stdErrBT(bw) = seBT(2);

 stdErrQS(bw) = seQS(2);

end

You can increase numEstimates to discover how increasing bandwidths affect the HAC
estimates.

Plot the standard errors.

Visually compare the Newey-West standard errors of to those using the quadratic
spectral kernel over the bandwidth grid.

figure

hold on

hCoeff = plot(1:numEstimates,repmat(coeffCPI,numEstimates, ...

 1),'LineWidth',2);

hOLS = plot(1:numEstimates,repmat(coeffCPI+seCPI, ...

 numEstimates,1),'g--');

plot(1:numEstimates,repmat(coeffCPI-seCPI,numEstimates,1),'g--')

hBT = plot(1:numEstimates,coeffCPI+stdErrBT,'ro--');

plot(1:numEstimates,coeffCPI-stdErrBT,'ro--')

hQS = plot(1:numEstimates,coeffCPI+stdErrQS,'kp--',...

 'LineWidth',2);

plot(1:numEstimates,coeffCPI-stdErrQS,'kp--','LineWidth',2)

hold off

xlabel('Bandwidth')

ylabel('CPI Coefficient')

legend([hCoeff,hOLS,hBT,hQS],{'OLS Estimate', ...

 'OLS Standard Error','Newey-West SE', ...

 'Quadratic Spectral SE'},'Location','E')

title('{\bf CPI Coefficient Standard Errors}')

grid on

3 Model Selection

3-110

The plot suggests that, for this data set, accounting for heteroscedasticity and
autocorrelation using either HAC estimate results in more conservative intervals than
the usual OLS standard error. The precision of the HAC estimates decreases as the
bandwidth increases along the defined grid.

For this data set, the Newey-West estimates are slightly more precise than those
using the quadratic spectral kernel. This might be because the latter captures
heteroscedasticity and autocorrelation better than the former.

References:

1 Andrews, D. W. K. "Heteroskedasticity and Autocorrelation Consistent Covariance
Matrix Estimation." Econometrica. Vol. 59, 1991, pp. 817-858.

 Change the Bandwidth of a HAC Estimator

3-111

2 Newey, W. K., and K. D. West. "A Simple, Positive Semi-definite, Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix." Econometrica. Vol. 55, No. 3,
1987, pp. 703-708.\

3 Newey, W. K., and K. D. West. "Automatic Lag Selection in Covariance Matrix
Estimation." The Review of Economic Studies. Vol. 61, No. 4, 1994, pp. 631-653.

Related Examples
• “Classical Model Misspecification Tests”
• “Time Series Regression I: Linear Models”
• “Time Series Regression VI: Residual Diagnostics”
• “Plot a Confidence Band Using HAC Estimates” on page 3-95

More About
• “Nonspherical Models” on page 3-94

3 Model Selection

3-112

Check Model Assumptions for Chow Test

This example shows how to check the model assumptions for a Chow test. The model
is of U.S. gross domestic product (GDP), with consumer price index (CPI) and paid
compensation of employees (COE) as predictors. The forecast horizon is 2007 - 2009, just
before and after the 2008 U.S. recession began.

Load and Inspect Data

Load the U.S. macroeconomic data set.

load Data_USEconModel

The time series in the data set contain quarterly, macroeconomic measurements from
1947 to 2009. For more details, a list of variables, and descriptions, enter Description
at the command line.

Extract the predictors, and then the response (the response should be the last column).
Focus the sample on observations taken from 1960 - 2009.

idx = year(dates) >= 1960;

y = DataTable.GDP(idx);

X = DataTable{idx,{'CPIAUCSL' 'COE'}};

varNames = {'CPIAUCSL' 'COE' 'GDP'};

dates = dates(idx);

Identify forecast horizon indices.

fHIdx = year(dates) >= 2007;

Plot all series individually. Identify the periods of recession.

figure;

subplot(2,2,1);

plot(dates,y)

title(varNames{end});

xlabel('Year');

axis tight

datetick;

recessionplot;

for j = 1:size(X,2);

 subplot(2,2,j + 1);

 plot(dates,X(:,j))

 title(varNames{j});

 Check Model Assumptions for Chow Test

3-113

 xlabel('Year');

 axis tight

 datetick;

 recessionplot;

end

All variables appear to grow exponentially. Also, around the last recession, a decline
appears. Suppose that a linear regreession model of GDP onto CPI and COE is
appropriate, and you want to test whether there is a structural change in the model in
2007.

Check Chow Test Assumptions

Chow tests rely on:

3 Model Selection

3-114

• Independent, Gaussian-distributed innovations
• Constancy of the innovations variance within subsamples
• Constancy of the innovations across any structural breaks

If a model violates these assumptions, then the Chow test result might not be correct, or
the Chow test might lack power. Investigate whether the assumptions hold. If any do not,
preprocess the data further.

Fit the linear model to the entire series. Include an intercept.

Mdl = fitlm(X,y);

Mdl is a LinearModel class model object.

Extract the residuals from the estimated linear model. Draw two histogram plots using
the residuals: one with respect to fitted values in case order, and the other with respect
to the previous residual.

res = Mdl.Residuals.Raw;

figure;

plotResiduals(Mdl,'lagged');

figure;

plotResiduals(Mdl,'caseorder');

 Check Model Assumptions for Chow Test

3-115

3 Model Selection

3-116

Because the scatter plot of residual vs. lagged residual forms a trend, autocorrelation
exists in the residuals. Also, residuals on the extremes seem to flare out, which suggests
the presence of heteroscedasticity.

Conduct Engle's ARCH test at 5% level of significance to assess whether the innovations
are heteroscedastic.

[hARCH,pValueARCH] = archtest(res)

hARCH =

 1

 Check Model Assumptions for Chow Test

3-117

pValueARCH =

 0

hARCH = 1 suggests to reject the null hypothesis that the entire residual series has no
conditional heteroscedasticity.

Apply the log transformation to all series that appear to grow exponentially to reduce the
effects of heteroscedasticity.

y = log(y);

X = log(X);

To account for autocorrelation, create predictor variables for all exponential series by
lagging them by one period.

LagMat = lagmatrix([X y],1);

X = [X(2:end,:) LagMat(2:end,:)]; % Concatenate data and remove first row

fHIdx = fHIdx(2:end);

y = y(2:end);

Based on the residual diagnostics, choose this linear model for GDP

 should be a Gaussian series of innovations with mean zero and constant variance .

Diagnose the residuals again.

Mdl = fitlm(X,y);

res = Mdl.Residuals.Raw;

figure;

plotResiduals(Mdl,'lagged');

figure;

plotResiduals(Mdl,'caseorder');

[hARCH,pValueARCH] = archtest(res)

SubMdl = {fitlm(X(~fHIdx,:),y(~fHIdx)) fitlm(X(fHIdx,:),y(fHIdx))};

3 Model Selection

3-118

subRes = {SubMdl{1}.Residuals.Raw SubMdl{2}.Residuals.Raw};

[hVT2,pValueVT2] = vartest2(subRes{1},subRes{2})

hARCH =

 0

pValueARCH =

 0.2813

hVT2 =

 0

pValueVT2 =

 0.1645

 Check Model Assumptions for Chow Test

3-119

3 Model Selection

3-120

The residuals plots and tests suggest that the innovations are homoscedastic and
uncorrelated.

Conduct a Kolmogorov-Smirnov test to assess whether the innovations are Gaussian.

[hKS,pValueKS] = kstest(res/std(res))

hKS =

 0

pValueKS =

 Check Model Assumptions for Chow Test

3-121

 0.2347

hKS = 0 suggests to not reject the null hypothesis that the innovations are Gaussian.

For the distributed lag model, the Chow test assumptions appear valid.

Conduct Chow Test

Treating 2007 and beyond as a post-recession regime, test whether the linear
model is stable. Specify that the break point is the last quarter of 2006. Because the
complementary subsample size is greater than the number of coefficients, conduct a
break point test.

bp = find(~fHIdx,1,'last');

chowtest(X,y,bp,'Display','summary');

RESULTS SUMMARY

Test 1

Sample size: 196

Breakpoint: 187

Test type: breakpoint

Coefficients tested: All

Statistic: 1.3741

Critical value: 2.1481

P value: 0.2272

Significance level: 0.0500

Decision: Fail to reject coefficient stability

The test fails to reject the stability of the linear model. Evidence is inefficient to infer a
structural change between Q4-2006 and Q1-2007.

See Also
archtest | chowtest | fitlm | LinearModel | vartest2

3 Model Selection

3-122

Related Examples
• “Power of the Chow Test” on page 3-123

 Power of the Chow Test

3-123

Power of the Chow Test
This example shows how to estimate the power of a Chow test using a Monte Carlo
simulation.

Introduction

Statistical power is the probability of rejecting the null hypothesis given that it is
actually false. To estimate the power of a test:

1 Simulate many data sets from a model that typifies the alternative hypothesis.
2 Test each data set.
3 Estimate the power, which is the proportion of times the test rejects the null

hypothesis.

The following can compromise the power of the Chow test:

• Linear model assumption departures
• Relatively large innovation variance
• Using the forecast test when the sample size of the complementary subsample is

greater than the number of coefficients in the test [24].

Departures from model assumptions allow for an examination of the factors that most
affect the power of the Chow test.

Consider the model

• innov is a vector of random Gaussian variates with mean zero and standard
deviation sigma.

• X1 and X2 are the sets of predictor data for initial and complementary subsamples,
respectively.

• beta1 and beta2 are the regression coefficient vectors for the initial and
complementary subsamples, respectively.

Simulate Predictor Data

Specify four predictors, 50 observations, and a break point at period 44 for the simulated
linear model.

3 Model Selection

3-124

numPreds = 4;

numObs = 50;

bp = 44;

rng(1); % For reproducibility

Form the predictor data by specifying means for the predictors, and then adding random,
standard Gaussian noise to each of the means.

mu = [0 1 2 3];

X = repmat(mu,numObs,1) + randn(numObs,numPreds);

To indicate an intercept, add a column of ones to the predictor data.

X = [ones(numObs,1) X];

X1 = X(1:bp,:); % Initial subsample predictors

X2 = X(bp+1:end,:); % Complementary subsample predictors

Specify the true values of the regression coefficients.

beta1 = [1 2 3 4 5]'; % Initial subsample coefficients

Estimate Power for Small and Large Jump

Compare the power between the break point and forecast tests for jumps of different
sizes small in the intercept and second regression coefficient. In this example, a small
jump is a 10% increase in the current value, and a large jump is a 15% increase.
Complementary subsample coefficients

beta2Small = beta1 + [beta1(1)*0.1 0 beta1(3)*0.1 0 0]';

beta2Large = beta1 + [beta1(1)*0.15 0 beta1(3)*0.15 0 0]';

Simulate 1000 response paths of the linear model for each of the small and large
coefficient jumps. Specify that sigma is 0.2. Choose to test the intercept and the second
regression coefficient.

M = 1000;

sigma = 0.2;

Coeffs = [true false true false false];

h1BP = nan(M,2); % Preallocation

h1F = nan(M,2);

for j = 1:M

 innovSmall = sigma*randn(numObs,1);

 innovLarge = sigma*randn(numObs,1);

 ySmall = [X1 zeros(bp,size(X2,2)); ...

 Power of the Chow Test

3-125

 zeros(numObs - bp,size(X1,2)) X2]*[beta1; beta2Small] + innovSmall;

 yLarge = [X1 zeros(bp,size(X2,2)); ...

 zeros(numObs - bp,size(X1,2)) X2]*[beta1; beta2Large] + innovLarge;

 h1BP(j,1) = chowtest(X,ySmall,bp,'Intercept',false,'Coeffs',Coeffs,...

 'Display','off')';

 h1BP(j,2) = chowtest(X,yLarge,bp,'Intercept',false,'Coeffs',Coeffs,...

 'Display','off')';

 h1F(j,1) = chowtest(X,ySmall,bp,'Intercept',false,'Coeffs',Coeffs,...

 'Test','forecast','Display','off')';

 h1F(j,2) = chowtest(X,yLarge,bp,'Intercept',false,'Coeffs',Coeffs,...

 'Test','forecast','Display','off')';

end

Estimate the power by computing the proportion of times chowtest correctly rejected
the null hypothesis of coefficient stability.

power1BP = mean(h1BP);

power1F = mean(h1F);

table(power1BP',power1F','RowNames',{'Small_Jump','Large_Jump'},...

 'VariableNames',{'Breakpoint','Forecast'})

ans =

 Breakpoint Forecast

 __________ ________

 Small_Jump 0.717 0.645

 Large_Jump 0.966 0.94

In this scenario, the Chow test can detect a change in the coefficient with more power
when the jump is larger. The break point test has greater power to detect the jump than
the forecast test.

Estimate Power for Large Innovations Variance

Simulate 1000 response paths of the linear model for a large coefficient jump. Specify
that sigma is 0.4. Choose to test the intercept and the second regression coefficient.

sigma = 0.4;

h2BP = nan(M,1);

h2F = nan(M,1);

for j = 1:M

 innov = sigma*randn(numObs,1);

3 Model Selection

3-126

 y = [X1 zeros(bp,size(X2,2)); ...

 zeros(numObs - bp,size(X1,2)) X2]*[beta1; beta2Large] + innov;

 h2BP(j) = chowtest(X,y,bp,'Intercept',false,'Coeffs',Coeffs,...

 'Display','off')';

 h2F(j) = chowtest(X,y,bp,'Intercept',false,'Coeffs',Coeffs,...

 'Test','forecast','Display','off')';

end

power2BP = mean(h2BP);

power2F = mean(h2F);

table([power1BP(2); power2BP],[power1F(2); power2F],...

 'RowNames',{'Small_sigma','Large_Sigma'},...

 'VariableNames',{'Breakpoint','Forecast'})

ans =

 Breakpoint Forecast

 __________ ________

 Small_sigma 0.966 0.94

 Large_Sigma 0.418 0.352

For larger innovation variance, both Chow tests have difficulty detecting the large
structural breaks in the intercept and second regression coefficient.

See Also
chowtest

Related Examples
• “Check Model Assumptions for Chow Test” on page 3-112

4

Time Series Regression Models

• “Time Series Regression Models” on page 4-3
• “Regression Models with Time Series Errors” on page 4-6
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Modify regARIMA Model Properties” on page 4-22
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with ARIMA Errors” on page 4-48
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify a Regression Model with SARIMA Errors” on page 4-60
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69
• “Impulse Response for Regression Models with ARIMA Errors” on page 4-75
• “Plot the Impulse Response of regARIMA Models” on page 4-77
• “Maximum Likelihood Estimation of regARIMA Models” on page 4-86
• “regARIMA Model Estimation Using Equality Constraints” on page 4-89
• “Presample Values for regARIMA Model Estimation” on page 4-95
• “Initial Values for regARIMA Model Estimation” on page 4-98
• “Optimization Settings for regARIMA Model Estimation” on page 4-100
• “Estimate a Regression Model with ARIMA Errors” on page 4-105
• “Estimate a Regression Model with Multiplicative ARIMA Errors” on page 4-114
• “Select a Regression Model with ARIMA Errors” on page 4-123
• “Choose Lags for an ARMA Error Model” on page 4-125
• “Intercept Identifiability in Regression Models with ARIMA Errors” on page 4-130
• “Compare Alternative ARIMA Model Representations” on page 4-136

4 Time Series Regression Models

4-2

• “Simulate Regression Models with ARMA Errors” on page 4-145
• “Simulate Regression Models with Nonstationary Errors” on page 4-171
• “Simulate Regression Models with Multiplicative Seasonal Errors” on page 4-181
• “Monte Carlo Simulation of Regression Models with ARIMA Errors” on page 4-187
• “Presample Data for regARIMA Model Simulation” on page 4-191
• “Transient Effects in regARIMA Model Simulations” on page 4-192
• “Forecast a Regression Model with ARIMA Errors” on page 4-202
• “Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors” on page

4-206
• “Verify Predictive Ability Robustness of a regARIMA Model” on page 4-212
• “MMSE Forecasting Regression Models with ARIMA Errors” on page 4-215
• “Monte Carlo Forecasting of regARIMA Models” on page 4-220

 Time Series Regression Models

4-3

Time Series Regression Models

Time series regression models attempt to explain the current response using the response
history (autoregressive dynamics) and the transfer of dynamics from relevant predictors
(or otherwise). Theoretical frameworks for potential relationships among variables often
permit different representations of the system.

Use time series regression models to analyze time series data, which are measurements
that you take at successive time points. For example, use time series regression modeling
to:

• Examine the linear effects of the current and past unemployment rates and past
inflation rates on the current inflation rate.

• Forecast GDP growth rates by using an ARIMA model and include the CPI growth
rate as a predictor.

• Determine how a unit increase in rainfall, amount of fertilizer, and labor affect crop
yield.

You can start a time series analysis by building a design matrix (Xt), which can include
current and past observations of predictors. You can also complement the regression
component with an autoregressive (AR) component to account for the possibility of
response (yt) dynamics. For example, include past measurements of inflation rate in
the regression component to explain the current inflation rate. AR terms account for
dynamics unexplained by the regression component, which is necessarily underspecified
in econometric applications. Also, the AR terms absorb residual autocorrelations, simplify
innovation models, and generally improve forecast performance. Then, apply ordinary
least squares (OLS) to the multiple linear regression (MLR) model:

y X ut t t= +b .

If a residual analysis suggests classical linear model assumption departures such as that
heteroscedasticity or autocorrelation (i.e., nonspherical errors), then:

• You can estimate robust HAC (heteroscedasticity and autocorrelation consistent)
standard errors (for details, see hac).

• If you know the innovation covariance matrix (at least up to a scaling factor), then
you can apply generalized least squares (GLS). Given that the innovation covariance
matrix is correct, GLS effectively reduces the problem to a linear regression where the
residuals have covariance I.

4 Time Series Regression Models

4-4

• If you do not know the structure of the innovation covariance matrix, but know the
nature of the heteroscedasticity and autocorrelation, then you can apply feasible
generalized least squares (FGLS). FGLS applies GLS iteratively, but uses the
estimated residual covariance matrix. FGLS estimators are efficient under certain
conditions. For details, see [1], Chapter 11.

There are time series models that model the dynamics more explicitly than MLR models.
These models can account for AR and predictor effects as with MLR models, but have the
added benefits of:

• Accounting for moving average (MA) effects. Include MA terms to reduce the number
of AR lags, effectively reducing the number of observation required to initialize the
model.

• Easily modeling seasonal effects. In order to model seasonal effects with an MLR
model, you have to build an indicator design matrix.

• Modeling nonseasonal and seasonal integration for unit root nonstationary processes.

These models also differ from MLR in that they rely on distribution assumptions (i.e.,
they use maximum likelihood for estimation). Popular types of time series regression
models include:

• Autoregressive integrated moving average with exogenous predictors (ARIMAX). This
is an ARIMA model that linearly includes predictors (exogenous or otherwise). For
details, see arima or “ARIMAX(p,D,q) Model” on page 5-58.

• Regression model with ARIMA time series errors. This is an MLR model where the
unconditional disturbance process (ut) is an ARIMA time series. In other words, you
explicitly model ut as a linear time series. For details, see regARIMA.

• Distributed lag model (DLM). This is an MLR model that includes the effects of
predictors that persist over time. In other words, the regression component contains
coefficients for contemporaneous and lagged values of predictors. Econometrics
Toolbox does not contain functions that model DLMs explicitly, but you can use
regARIMA or fitlm with an appropriately constructed predictor (design) matrix to
analyze a DLM.

• Transfer function (autoregressive distributed lag) model. This model extends the
distributed lag framework in that it includes autoregressive terms (lagged responses).
Econometrics Toolbox does not contain functions that model DLMs explicitly, but you
can use the arima functionality with an appropriately constructed predictor matrix to
analyze an autoregressive DLM.

 Time Series Regression Models

4-5

The choice you make on which model to use depends on your goals for the analysis, and
the properties of the data.

References

[1] Greene, W. H. Econometric Analysis. 6th ed. Englewood Cliffs, NJ: Prentice Hall,
2008.

See Also
arima | fitlm | hac | regARIMA

More About
• “ARIMAX(p,D,q) Model” on page 5-58
• “Regression Models with Time Series Errors” on page 4-6

4 Time Series Regression Models

4-6

Regression Models with Time Series Errors

In this section...

“What Are Regression Models with Time Series Errors?” on page 4-6
“Conventions” on page 4-7

What Are Regression Models with Time Series Errors?

Regression models with time series errors attempt to explain the mean behavior of a
response series (yt, t = 1,...,T) by accounting for linear effects of predictors (Xt) using
a multiple linear regression (MLR). However, the errors (ut), called unconditional
disturbances, are time series rather than white noise, which is a departure from the
linear model assumptions. Unlike the ARIMA model that includes exogenous predictors,
regression models with time series errors preserve the sensitivity interpretation of the
regression coefficients (β) [2].

These models are particularly useful for econometric data. Use these models to:

• Analyze the effects of a new policy on a market indicator (an intervention model).
• Forecast population size adjusting for predictor effects, such as expected prevalence of

a disease.
• Study the behavior of a process adjusting for calender effects. For example, you can

analyze traffic volume by adjusting for the effects of major holidays. For details, see
[3].

• Estimate the trend by including time (t) in the model.
• Forecast total energy consumption accounting for current and past prices of oil and

electricity (distributed lag model).

Use these tools in Econometrics Toolbox to:

• Specify a regression model with ARIMA errors (see regARIMA).
• Estimate parameters using a specified model, and response and predictor data (see

estimate).
• Simulate responses using a model and predictor data (see simulate).
• Forecast responses using a model and future predictor data (see forecast).
• Infer residuals and estimated unconditional disturbances from a model using the

model and predictor data (see infer).

 Regression Models with Time Series Errors

4-7

• filter innovations through a model using the model and predictor data
• Generate impulse responses (see impulse).
• Compare a regression model with ARIMA errors to an ARIMAX model (see arima).

Conventions

A regression model with time series errors has the following form (in lag operator
notation):

y c X u

a L A L L L u b L B L

t t t

D s
t t

= + +

() () -() -() = () ()

b

e1 1 ,

where

• t = 1,...,T.
• yt is the response series.
• Xt is row t of X, which is the matrix of concatenated predictor data vectors. That is, Xt

is observation t of each predictor series.
• c is the regression model intercept.
• β is the regression coefficient.
• ut is the disturbance series.
• εt is the innovations series.
•

L y yj
t t j=

-
.

•
a L a aL Lp

p() = - - -()1 1 ... , which is the degree p, nonseasonal autoregressive

polynomial.
•

A L A L A Lp
p

s

s() = -()- -1 1 ... , which is the degree ps, seasonal autoregressive

polynomial.
•

1 -()L
D

, which is the degree D, nonseasonal integration polynomial.

•
1 -()L

s
, which is the degree s, seasonal integration polynomial.

4 Time Series Regression Models

4-8

•
b L b L b Lq

q() = +()+ +1 1 ... , which is the degree q, nonseasonal moving average

polynomial.
•

B L B L B Lq
q

s

s() = +()+ +1 1 ... , which is the degree qs, seasonal moving average

polynomial.

Following Box and Jenkins methodology, ut is a stationary or unit root nonstationary,
regular, linear time series. However, if ut is unit root nonstationary, then you do not have
to explicitly difference the series as they recommend in [1]. You can simply specify the
seasonal and nonseasonal integration degree using the software. For details, see “Specify
Regression Models with ARIMA Errors Using regARIMA” on page 4-10.

Another deviation from the Box and Jenkins methodology is that ut does not have a
constant term (conditional mean), and therefore its unconditional mean is 0. However,
the regression model contains an intercept term, c.

Note: If the unconditional disturbance process is nonstationary (i.e., the nonseasonal
or seasonal integration degree is greater than 0), then the regression intercept, c, is not
identifiable. For details, see “Intercept Identifiability in Regression Models with ARIMA
Errors” on page 4-130.

The software enforces stability and invertibility of the ARMA process. That is,

y y y()
() ()

...,
() ()

L
b L B L

L L
a L A L

= + += +1 1 2
2

where the series {ψt} must be absolutely summable. The conditions for {ψt} to be
absolutely summable are:

• a(L) and A(L) are stable (i.e., the eigenvalues of a(L) = 0 and A(L) = 0 lie inside the
unit circle).

• b(L) and B(L) are invertible (i.e., their eigenvalues lie of b(L) = 0 and B(L) = 0 inside
the unit circle).

The software uses maximum likelihood for parameter estimation. You can choose either a
Gaussian or Student’s t distribution for the innovations, εt.

 Regression Models with Time Series Errors

4-9

The software treats predictors as nonstochastic variables for estimation and inference.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Hyndman, R. J. (2010, October). “The ARIMAX Model Muddle.” Rob J. Hyndman.
Retrieved February 7, 2013 from http://robjhyndman.com/researchtips/arimax/.

[3] Ruey, T. S. “Regression Models with Time Series Errors.” Journal of the American
Statistical Association. Vol. 79, Number 385, March 1984, pp. 118–124.

See Also
arima | estimate | filter | forecast | impulse | infer | regARIMA | simulate

Related Examples
• “Compare Alternative ARIMA Model Representations” on page 4-136
• “Intercept Identifiability in Regression Models with ARIMA Errors” on page

4-130

More About
• “ARIMA Model Including Exogenous Covariates” on page 5-58
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10

http://robjhyndman.com/researchtips/arimax/

4 Time Series Regression Models

4-10

Specify Regression Models with ARIMA Errors Using regARIMA

In this section...

“Default Regression Model with ARIMA Errors Specifications” on page 4-10
“Specify regARIMA Models Using Name-Value Pair Arguments” on page 4-12

Default Regression Model with ARIMA Errors Specifications

Regression models with ARIMA errors have the following form (in lag operator notation):

y c X u

a L A L L L u b L B L

t t t

D s
t t

= + +

() () -() -() = () ()

b

e1 1 ,

where

• t = 1,...,T.
• yt is the response series.
• Xt is row t of X, which is the matrix of concatenated predictor data vectors. That is, Xt

is observation t of each predictor series.
• c is the regression model intercept.
• β is the regression coefficient.
• ut is the disturbance series.
• εt is the innovations series.
•

L y yj
t t j=

-
.

•
a L a aL Lp

p() = - - -()1 1 ... , which is the degree p, nonseasonal autoregressive

polynomial.
•

A L A L A Lp
p

s

s() = -()- -1 1 ... , which is the degree ps, seasonal autoregressive

polynomial.

 Specify Regression Models with ARIMA Errors Using regARIMA

4-11

•
1 -()L

D
, which is the degree D, nonseasonal integration polynomial.

•
1 -()L

s
, which is the degree s, seasonal integration polynomial.

•
b L b L b Lq

q() = +()+ +1 1 ... , which is the degree q, nonseasonal moving average

polynomial.
•

B L B L B Lq
q

s

s() = +()+ +1 1 ... , which is the degree qs, seasonal moving average

polynomial.

For simplicity, use the shorthand notation Mdl = regARIMA(p,D,q) to specify a
regression model with ARIMA(p,D,q) errors, where p, D, and q are nonnegative integers.
Mdl has the following default properties.

Property Name Property Data Type

AR Length p cell vector of NaNs
Beta Empty vector [] of regression coefficients,

corresponding to the predictor series
D Nonnegative scalar, corresponding to D
Distribution Gaussian, corresponding to the

distribution of εt

Intercept NaN, corresponding to c
MA Length q cell vector of NaNs
P Number of AR terms plus degree of

integration, p + D
Q Number of MA terms, q
SAR Empty cell vector
SMA Empty cell vector
Variance NaN, corresponding to the variance of εt

Seasonality 0, corresponding to s

If you specify nonseasonal ARIMA errors, then

4 Time Series Regression Models

4-12

• The properties D and Q are the inputs D and q, respectively.
• Property P = p + D, which is the degree of the compound, nonseasonal autoregressive

polynomial. In other words, P is the degree of the product of the nonseasonal
autoregressive polynomial, a(L) and the nonseasonal integration polynomial, (1 – L)D.

The values of properties P and Q indicate how many presample observations the software
requires to initialize the time series.

You can modify the properties of Mdl using dot notation. For example, Mdl.Variance =
0.5 sets the innovation variance to 0.5.

For maximum flexibility in specifying a regression model with ARIMA errors, use name-
value pair arguments to, for example, set each of the autoregressive parameters to a
value, or specify multiplicative seasonal terms. For example, Mdl = regARIMA('AR',
{0.2 0.1}) defines a regression model with AR(2) errors, and the coefficients are a1 =
0.2 and a2 = 0.1.

Specify regARIMA Models Using Name-Value Pair Arguments

You can only specify the nonseasonal autoregressive and moving average polynomial
degrees, and nonseasonal integration degree using the shorthand notation
regARIMA(p,D,q). Some tasks, such as forecasting and simulation, require you to
specify values for parameters. You cannot specify parameter values using shorthand
notation. For maximum flexibility, use name-value pair arguments to specify regression
models with ARIMA errors.

The nonseasonal ARIMA error model might contain the following polynomials:

• The degree p autoregressive polynomial a(L) = 1 – a1L – a2L2 –...– apLp. The
eigenvalues of a(L) must lie within the unit circle (i.e., a(L) must be a stable
polynomial).

• The degree q moving average polynomial b(L) = 1 + b1L + b2L2 +...+ bqLq. The
eigenvalues of b(L) must lie within the unit circle (i.e., b(L) must be an invertible
polynomial).

• The degree D nonseasonal integration polynomial is (1 – L)D.

The following table contains the name-value pair arguments that you use to specify
the ARIMA error model (i.e., a regression model with ARIMA errors, but without a
regression component and intercept):

 Specify Regression Models with ARIMA Errors Using regARIMA

4-13

y

a L L b L

ut t

D
t

=

- =()() () .1 e

Name-Value Pair Arguments for Nonseasonal ARIMA Error Models

Name Corresponding
Model Term(s) in
Equation 4-2

When to Specify

AR Nonseasonal AR
coefficients: a1,
a2,...,ap

• To set equality constraints for the AR
coefficients. For example, to specify the AR
coefficients in the ARIMA error model
u u u

t t t t
= - +

- -
0 8 0 21 2. . ,e

specify 'AR',{0.8,-0.2}.
• You only need to specify the nonzero

elements of AR. If the nonzero coefficients
are at nonconsecutive lags, specify the
corresponding lags using ARLags.

• The coefficients must correspond to a stable
AR polynomial.

ARLags Lags
corresponding
to nonzero,
nonseasonal AR
coefficients

• ARLags is not a model property.
Use this argument as a shortcut for
specifying AR when the nonzero AR
coefficients correspond to nonconsecutive
lags. For example, to specify nonzero AR
coefficients at lags 1 and 12, e.g.,
u a u a u

t t t t
= + +

- -1 1 2 12 e ,

specify 'ARLags',[1,12].
• Use AR and ARLags together to specify

known nonzero AR coefficients at
nonconsecutive lags. For example, if in
the given AR(12) error model with a1 =
0.6 and a12 = –0.3, then specify 'AR',
{0.6,-0.3},'ARLags',[1,12].

D Degree of
nonseasonal
differencing, D

• To specify a degree of nonseasonal
differencing greater than zero. For example,

4 Time Series Regression Models

4-14

Name Corresponding
Model Term(s) in
Equation 4-2

When to Specify

to specify one degree of differencing, specify
'D',1.

• By default, D has value 0 (meaning no
nonseasonal integration).

Distribution Distribution of
the innovation
process, εt

• Use this argument to specify a
Student’s t distribution. By default, the
innovation distribution is Gaussian.
For example, to specify a t distribution
with unknown degrees of freedom, specify
'Distribution','t'.

• To specify a t innovation distribution
with known degrees of freedom, assign
Distribution a structure with fields Name
and DoF. For example, for a t distribution
with nine degrees of freedom, specify
'Distribution',struct('Name','t','DoF',9).

MA Nonseasonal MA
coefficients: b1,
b2,...,bq

• To set equality constraints for the MA
coefficients. For example, to specify the MA
coefficients in the ARIMA error model
u

t t t t
= + +

- -
e e e0 5 0 21 2. . ,

specify 'MA',{0.5,0.2}.
• You only need to specify the nonzero

elements of MA. If the nonzero coefficients
are at nonconsecutive lags, specify the
corresponding lags using MALags.

• The coefficients must correspond to an
invertible MA polynomial.

MALags Lags
corresponding
to nonzero,
nonseasonal MA
coefficients

• MALags is not a model property.
• Use this argument as a shortcut for

specifying MA when the nonzero MA
coefficients correspond to nonconsecutive
lags. For example, to specify nonzero MA
coefficients at lags 1 and 4, e.g.,

 Specify Regression Models with ARIMA Errors Using regARIMA

4-15

Name Corresponding
Model Term(s) in
Equation 4-2

When to Specify

u b bt t t t= + +
- -

e e e1 1 4 4,

specify 'MALags',[1,4].
• Use MA and MALags together to specify

known nonzero MA coefficients at
nonconsecutive lags. For example, if in the
given MA(4) error model b1 = 0.5 and b4 =
0.2, specify 'MA',{0.4,0.2},'MALags',
[1,4].

Variance Scalar variance,
σ2, of the
innovation
process, εt

To set equality constraints for σ2. For
example, for an ARIMA error model with
known innovation variance 0.1, specify
'Variance',0.1. By default, Variance has
value NaN.

Use the name-value pair arguments in the following table in conjunction with those
in Name-Value Pair Arguments for Nonseasonal ARIMA Error Models to specify the
regression components of the regression model with ARIMA errors:

y

a L L b L

c X ut t t

D
t

= + +

- =

b

e()() () .1

Name-Value Pair Arguments for the Regression Component of the regARIMA Model

Name Corresponding
Model Term(s) in
Equation 4-3

When to Specify

Beta Regression
coefficient
values
corresponding
to the predictor
series, β

• Use this argument to specify the values
of the coefficients of the predictor series.
For example, use 'Beta',[0.5 7 -2] to
specify

b = -[]¢0 5 7 2. .

• By default, Beta is an empty vector, [].

4 Time Series Regression Models

4-16

Name Corresponding
Model Term(s) in
Equation 4-3

When to Specify

Intercept Intercept
term for the
regression
model, c

• To set equality constraints for c. For
example, for a model with no intercept term,
specify 'Intercept',0.

• By default, Intercept has value NaN.

If the time series has seasonality s, then

• The degree ps seasonal autoregressive polynomial is A(L) = 1 – A 1L – A2L2 –...– ApsL
ps.

• The degree qs seasonal moving average polynomial is B(L) 1 + B 1L + B2L2 +...+ BqsL
qs.

• The degree s seasonal integration polynomial is (1 – Ls).

Use the name-value pair arguments in the following table in conjunction with those in
tables Name-Value Pair Arguments for Nonseasonal ARIMA Error Models and Name-
Value Pair Arguments for the Regression Component of the regARIMA Model to specify
the regression model with multiplicative seasonal ARIMA errors:

y

a L L

c X u

A L L b L B L

t t t

D s
t

= + +

- =-

b

e()() .()() () ()1 1

Name-Value Pair Arguments for Seasonal ARIMA Models

Argument Corresponding Model
Term(s) in Equation 4-4

When to Specify

SAR Seasonal AR coefficients:
A1, A2,...,Aps

• To set equality constraints for the seasonal
AR coefficients.

• Use SARLags to specify the lags of the
nonzero seasonal AR coefficients. Specify the
lags associated with the seasonal polynomials
in the periodicity of the observed data (e.g.,
4, 8,... for quarterly data, or 12, 24,... for
monthly data), and not as multiples of the
seasonality (e.g., 1, 2,...).
For example, to specify the ARIMA error
model

 Specify Regression Models with ARIMA Errors Using regARIMA

4-17

Argument Corresponding Model
Term(s) in Equation 4-4

When to Specify

(.)(.) ,1 0 8 1 0 2 12
- - =L L u

t t
e

specify
'AR',0.8,'SAR',0.2,'SARLags',12.

• The coefficients must correspond to a stable
seasonal AR polynomial.

SARLags Lags corresponding
to nonzero seasonal
AR coefficients, in
the periodicity of the
responses

• SARLags is not a model property.
• Use this argument when specifying SAR to

indicate the lags of the nonzero seasonal
AR coefficients. For example, to specify the
ARIMA error model
()() ,1 11 12

12
- - =a L A L ut te

specify 'ARLags',1,'SARLags',12.
SMA Seasonal MA

coefficients: B1, B2,...,Bqs

• To set equality constraints for the seasonal
MA coefficients.

• Use SMALags to specify the lags of the
nonzero seasonal MA coefficients. Specify the
lags associated with the seasonal polynomials
in the periodicity of the observed data (e.g.,
4, 8,... for quarterly data, or 12, 24,... for
monthly data), and not as multiples of the
seasonality (e.g., 1, 2,...).
For example, to specify the ARIMA error
model
u L L

t t
= + +(.)(.) ,1 0 6 1 0 2 4

e

specify
'MA',0.6,'SMA',0.2,'SMALags',4.

• The coefficients must correspond to an
invertible seasonal MA polynomial.

SMALags Lags corresponding to
the nonzero seasonal
MA coefficients, in
the periodicity of the
responses

• SMALags is not a model property.
• Use this argument when specifying SMA to

indicate the lags of the nonzero seasonal

4 Time Series Regression Models

4-18

Argument Corresponding Model
Term(s) in Equation 4-4

When to Specify

MA coefficients. For example, to specify the
model
u b L B Lt t= + +()() ,1 11 4

4
e

specify 'MALags',1,'SMALags',4.
Seasonality Seasonal periodicity, s • To specify the degree of seasonal integration

s in the seasonal differencing polynomial Δs =
1 – Ls. For example, to specify the periodicity
for seasonal integration of quarterly data,
specify 'Seasonality',4.

• By default, Seasonality has value 0
(meaning no periodicity nor seasonal
integration).

Note: You cannot assign values to the properties P and Q. For multiplicative ARIMA
error models,

• regARIMA sets P equal to p + D + ps + s.

• regARIMA sets Q equal to q + qs

See Also
regARIMA

Related Examples
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Modify regARIMA Model Properties” on page 4-22
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

 Specify Regression Models with ARIMA Errors Using regARIMA

4-19

More About
• “Regression Models with Time Series Errors” on page 4-6

4 Time Series Regression Models

4-20

Specify the Default Regression Model with ARIMA Errors

This example shows how to specify the default regression model with ARIMA errors
using the shorthand ARIMA(, ,) notation corresponding to the following equation:

Specify a regression model with ARIMA(3,1,2) errors.

Mdl = regARIMA(3,1,2)

Mdl =

 ARIMA(3,1,2) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 4

 D: 1

 Q: 2

 AR: {NaN NaN NaN} at Lags [1 2 3]

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The model specification for Mdl appears in the Command Window. By default, regARIMA
sets:

• The autoregressive (AR) parameter values to NaN at lags [1 2 3]
• The moving average (MA) parameter values to NaN at lags [1 2]
• The variance (Variance) of the innovation process, , to NaN
• The distribution (Distribution) of to Gaussian
• The regression model intercept to NaN

There is no regression component (Beta) by default.

The property:

 Specify the Default Regression Model with ARIMA Errors

4-21

• P = p + D, which represents the number of presample observations that the software
requires to initialize the autoregressive component of the model to perform, for
example, estimation.

• D represents the level of nonseasonal integration.
• Q represents the number of presample observations that the software requires

to initialize the moving average component of the model to perform, for example,
estimation.

Fit Mdl to data by passing it and the data into estimate. If you pass the predictor series
into estimate, then estimate estimates Beta by default.

You can modify the properties of Mdl using dot notation.

References:

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
estimate | forecast | regARIMA | simulate

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Modify regARIMA Model Properties” on page 4-22
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

More About
• “Regression Models with Time Series Errors” on page 4-6

4 Time Series Regression Models

4-22

Modify regARIMA Model Properties

In this section...

“Modify Properties Using Dot Notation” on page 4-22
“Nonmodifiable Properties” on page 4-25

Modify Properties Using Dot Notation

If you create a regression model with ARIMA errors using regARIMA, then the software
assigns values to all of its properties. To change any of these property values, you do
not need to reconstruct the entire model. You can modify property values of an existing
model using dot notation. To access the property, type the model name, then the property
name, separated by '|.|' (a period).

Specify the regression model with ARIMA(3,1,2) errors

Mdl = regARIMA(3,1,2);

Use cell array notation to set the autoregressive and moving average parameters to
values.

Mdl.AR = {0.2 0.1 0.05};

Mdl.MA = {0.1 -0.05}

Mdl =

 ARIMA(3,1,2) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 4

 D: 1

 Q: 2

 AR: {0.2 0.1 0.05} at Lags [1 2 3]

 SAR: {}

 MA: {0.1 -0.05} at Lags [1 2]

 SMA: {}

 Modify regARIMA Model Properties

4-23

 Variance: NaN

Use dot notation to display the autoregressive coefficients of Mdl in the Command
Window.

ARCoeff = Mdl.AR

ARCoeff =

 [0.2000] [0.1000] [0.0500]

ARCoeff is a 1-by-3 cell array. Each, successive cell contains the next autoregressive
lags.

You can also add more lag coefficients.

Mdl.MA = {0.1 -0.05 0.01}

Mdl =

 ARIMA(3,1,3) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 4

 D: 1

 Q: 3

 AR: {0.2 0.1 0.05} at Lags [1 2 3]

 SAR: {}

 MA: {0.1 -0.05 0.01} at Lags [1 2 3]

 SMA: {}

 Variance: NaN

By default, the specification sets the new coefficient to the next, consecutive lag. The
addition of the new coefficient increases Q by 1.

You can specify a lag coefficient to a specific lag term by using cell indexing.

Mdl.AR{12} = 0.01

Mdl =

4 Time Series Regression Models

4-24

 ARIMA(12,1,3) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 13

 D: 1

 Q: 3

 AR: {0.2 0.1 0.05 0.01} at Lags [1 2 3 12]

 SAR: {}

 MA: {0.1 -0.05 0.01} at Lags [1 2 3]

 SMA: {}

 Variance: NaN

The autoregressive coefficient 0.01 is located at the 12th lag. Property P increases to 13
with the new specification.

Set the innovation distribution to the t distribution with NaN degrees of freedom.

Distribution = struct('Name','t','DoF',NaN);

Mdl.Distribution = Distribution

Mdl =

 ARIMA(12,1,3) Error Model:

 Distribution: Name = 't', DoF = NaN

 Intercept: NaN

 P: 13

 D: 1

 Q: 3

 AR: {0.2 0.1 0.05 0.01} at Lags [1 2 3 12]

 SAR: {}

 MA: {0.1 -0.05 0.01} at Lags [1 2 3]

 SMA: {}

 Variance: NaN

If DoF is NaN, then estimate estimates the degrees of freedom. For other tasks, such as
simulating or forecasting a model, you must specify a value for DoF.

To specify a regression coefficient, assign a vector to the property Beta.

Mdl.Beta = [1; 3; -5]

 Modify regARIMA Model Properties

4-25

Mdl =

 Regression with ARIMA(12,1,3) Error Model:

 --

 Distribution: Name = 't', DoF = NaN

 Intercept: NaN

 Beta: [1 3 -5]

 P: 13

 D: 1

 Q: 3

 AR: {0.2 0.1 0.05 0.01} at Lags [1 2 3 12]

 SAR: {}

 MA: {0.1 -0.05 0.01} at Lags [1 2 3]

 SMA: {}

 Variance: NaN

If you pass Mdl into estimate with the response data and three predictor series, then
the software fixes the non-|NaN| parameters at their values, and estimate Intercept,
Variance, and DoF. For example, if you want to simulate data from this model, then you
must specify Variance and DoF.

Nonmodifiable Properties

Not all properties of a regARIMA model are modifiable. To change them directly, you
must redefine the model using regARIMA. Nonmodifiable properties include:

• P, which is the compound autoregressive polynomial degree. The software determines
P from p, d, ps, and s. For details on notation, see “Regression Model with ARIMA
Time Series Errors” on page 9-851.

• Q, which is the compound moving average degree. The software determines Q from q
and qs

• DoF, which is the degrees of freedom for models having a t-distributed innovation
process

Though they are not explicitly properties, you cannot reassign or print the lag structure
using ARLags, MALags, SARLags, or SMALags. Pass these and the lag structure into
regARIMA as name-value pair arguments when you specify the model.

For example, specify a regression model with ARIMA(4,1) errors using regARIMA, where
the autoregressive coefficients occur at lags 1 and 4.

Mdl = regARIMA('ARLags',[1 4],'MALags',1)

4 Time Series Regression Models

4-26

Mdl =

 ARIMA(4,0,1) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 4

 D: 0

 Q: 1

 AR: {NaN NaN} at Lags [1 4]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: NaN

You can produce the same results by specifying a regression model with ARMA(1,1)
errors, then adding an autoregressive coefficient at the fourth lag.

Mdl = regARIMA(1,0,1);

Mdl.AR{4} = NaN

Mdl =

 ARIMA(4,0,1) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 4

 D: 0

 Q: 1

 AR: {NaN NaN} at Lags [1 4]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: NaN

To change the value of DoF, you must define a new structure for the distribution, and use
dot notation to pass it into the model. For example, specify a regression model with AR(1)
errors having t-distributed innovations.

Mdl = regARIMA('AR',0.5,'Distribution','t')

 Modify regARIMA Model Properties

4-27

Mdl =

 ARIMA(1,0,0) Error Model:

 Distribution: Name = 't', DoF = NaN

 Intercept: NaN

 P: 1

 D: 0

 Q: 0

 AR: {0.5} at Lags [1]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The value of DoF is NaN by default.

Specify that the t distribution has 10 degrees of freedom.

Distribution = struct('Name','t','DoF',10);

Mdl.Distribution = Distribution

Mdl =

 ARIMA(1,0,0) Error Model:

 Distribution: Name = 't', DoF = 10

 Intercept: NaN

 P: 1

 D: 0

 Q: 0

 AR: {0.5} at Lags [1]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

See Also
estimate | forecast | regARIMA | simulate

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10

4 Time Series Regression Models

4-28

• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

More About
• “Regression Models with Time Series Errors” on page 4-6

 Specify Regression Models with AR Errors

4-29

Specify Regression Models with AR Errors

In this section...

“Default Regression Model with AR Errors” on page 4-29
“AR Error Model Without an Intercept” on page 4-30
“AR Error Model with Nonconsecutive Lags” on page 4-31
“Known Parameter Values for a Regression Model with AR Errors” on page 4-32
“Regression Model with AR Errors and t Innovations” on page 4-33

Default Regression Model with AR Errors

This example shows how to apply the shorthand regARIMA(p,D,q) syntax to specify a
regression model with AR errors.

Specify the default regression model with AR(3) errors:

Mdl = regARIMA(3,0,0)

Mdl =

 ARIMA(3,0,0) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 3

 D: 0

 Q: 0

 AR: {NaN NaN NaN} at Lags [1 2 3]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The software sets the innovation distribution to Gaussian, and each parameter to NaN.
The AR coefficients are at lags 1 through 3.

4 Time Series Regression Models

4-30

Pass Mdl into estimate with data to estimate the parameters set to NaN. Though
Beta is not in the display, if you pass a matrix of predictors () into estimate, then
estimate estimates Beta. The estimate function infers the number of regression
coefficients in Beta from the number of columns in .

Tasks such as simulation and forecasting using simulate and forecast do not
accept models with at least one NaN for a parameter value. Use dot notation to modify
parameter values.

AR Error Model Without an Intercept

This example shows how to specify a regression model with AR errors without a
regression intercept.

Specify the default regression model with AR(3) errors:

 Mdl = regARIMA('ARLags',1:3,'Intercept',0)

Mdl =

 ARIMA(3,0,0) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: 0

 P: 3

 D: 0

 Q: 0

 AR: {NaN NaN NaN} at Lags [1 2 3]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The software sets Intercept to 0, but all other parameters in Mdl are |NaN|s by
default.

 Specify Regression Models with AR Errors

4-31

Since Intercept is not a NaN, it is an equality constraint during estimation. In other
words, if you pass Mdl and data into estimate, then estimate sets Intercept to 0
during estimation.

You can modify the properties of Mdl using dot notation.

AR Error Model with Nonconsecutive Lags

This example shows how to specify a regression model with AR errors, where the nonzero
AR terms are at nonconsecutive lags.

Specify the regression model with AR(4) errors:

Mdl = regARIMA('ARLags',[1,4])

Mdl =

 ARIMA(4,0,0) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 4

 D: 0

 Q: 0

 AR: {NaN NaN} at Lags [1 4]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The AR coefficients are at lags 1 and 4.

Verify that the AR coefficients at lags 2 and 3 are 0.

Mdl.AR

ans =

4 Time Series Regression Models

4-32

 [NaN] [0] [0] [NaN]

The software displays a 1-by-4 cell array. Each consecutive cell contains the
corresponding AR coefficient value.

Pass Mdl and data into estimate. The software estimates all parameters that have the
value NaN. Then, estimate holds = 0 and = 0 during estimation.

Known Parameter Values for a Regression Model with AR Errors

This example shows how to specify values for all parameters of a regression model with
AR errors.

Specify the regression model with AR(4) errors:

where is Gaussian with unit variance.

Mdl = regARIMA('AR',{0.2,0.1},'ARLags',[1,4],...

 'Constant',0,'Beta',[-2;0.5],'Variance',1)

Mdl =

 Regression with ARIMA(4,0,0) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 0

 Beta: [-2 0.5]

 P: 4

 D: 0

 Q: 0

 AR: {0.2 0.1} at Lags [1 4]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: 1

 Specify Regression Models with AR Errors

4-33

There are no NaN values in any Mdl properties, and therefore there is no need to estimate
Mdl using estimate. However, you can simulate or forecast responses from Mdl using
simulate or forecast.

Regression Model with AR Errors and t Innovations

This example shows how to set the innovation distribution of a regression model with AR
errors to a distribution.

Specify the regression model with AR(4) errors:

where has a distribution with the default degrees of freedom and unit variance.

Mdl = regARIMA('AR',{0.2,0.1},'ARLags',[1,4],...

 'Constant',0,'Beta',[-2;0.5],'Variance',1,...

 'Distribution','t')

Mdl =

 Regression with ARIMA(4,0,0) Error Model:

 --

 Distribution: Name = 't', DoF = NaN

 Intercept: 0

 Beta: [-2 0.5]

 P: 4

 D: 0

 Q: 0

 AR: {0.2 0.1} at Lags [1 4]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: 1

The default degrees of freedom is NaN. If you don't know the degrees of freedom, then you
can estimate it by passing Mdl and the data to estimate.

Specify a distribution.

4 Time Series Regression Models

4-34

Mdl.Distribution = struct('Name','t','DoF',10)

Mdl =

 Regression with ARIMA(4,0,0) Error Model:

 --

 Distribution: Name = 't', DoF = 10

 Intercept: 0

 Beta: [-2 0.5]

 P: 4

 D: 0

 Q: 0

 AR: {0.2 0.1} at Lags [1 4]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: 1

You can simulate or forecast responses using simulate or forecast because Mdl is
completely specified.

In applications, such as simulation, the software normalizes the random innovations.
In other words, Variance overrides the theoretical variance of the random variable
(which is DoF/(DoF - 2)), but preserves the kurtosis of the distribution.

See Also
estimate | forecast | regARIMA | simulate

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

More About
• “Regression Models with Time Series Errors” on page 4-6

 Specify Regression Models with MA Errors

4-35

Specify Regression Models with MA Errors

In this section...

“Default Regression Model with MA Errors” on page 4-35
“MA Error Model Without an Intercept” on page 4-36
“MA Error Model with Nonconsecutive Lags” on page 4-37
“Known Parameter Values for a Regression Model with MA Errors” on page 4-38
“Regression Model with MA Errors and t Innovations” on page 4-39

Default Regression Model with MA Errors

This example shows how to apply the shorthand regARIMA(p,D,q) syntax to specify the
regression model with MA errors.

Specify the default regression model with MA(2) errors:

Mdl = regARIMA(0,0,2)

Mdl =

 ARIMA(0,0,2) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 0

 D: 0

 Q: 2

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The software sets each parameter to NaN, and the innovation distribution to Gaussian.
The MA coefficients are at lags 1 and 2.

4 Time Series Regression Models

4-36

Pass Mdl into estimate with data to estimate the parameters set to NaN. Though
Beta is not in the display, if you pass a matrix of predictors () into estimate, then
estimate estimates Beta. The estimate function infers the number of regression
coefficients in Beta from the number of columns in .

Tasks such as simulation and forecasting using simulate and forecast do not
accept models with at least one NaN for a parameter value. Use dot notation to modify
parameter values.

MA Error Model Without an Intercept

This example shows how to specify a regression model with MA errors without a
regression intercept.

Specify the default regression model with MA(2) errors:

Mdl = regARIMA('MALags',1:2,'Intercept',0)

Mdl =

 ARIMA(0,0,2) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: 0

 P: 0

 D: 0

 Q: 2

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The software sets Intercept to 0, but all other parameters in Mdl are NaN values by
default.

Since Intercept is not a NaN, it is an equality constraint during estimation. In other
words, if you pass Mdl and data into estimate, then estimate sets Intercept to 0
during estimation.

 Specify Regression Models with MA Errors

4-37

You can modify the properties of Mdl using dot notation.

MA Error Model with Nonconsecutive Lags

This example shows how to specify a regression model with MA errors, where the
nonzero MA terms are at nonconsecutive lags.

Specify the regression model with MA(12) errors:

Mdl = regARIMA('MALags',[1, 12])

Mdl =

 ARIMA(0,0,12) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 0

 D: 0

 Q: 12

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 12]

 SMA: {}

 Variance: NaN

The MA coefficients are at lags 1 and 12.

Verify that the MA coefficients at lags 2 through 11 are 0.

Mdl.MA'

ans =

 [NaN]

 [0]

 [0]

 [0]

4 Time Series Regression Models

4-38

 [0]

 [0]

 [0]

 [0]

 [0]

 [0]

 [0]

 [NaN]

After applying the transpose, the software displays a 12-by-1 cell array. Each consecutive
cell contains the corresponding MA coefficient value.

Pass Mdl and data into estimate. The software estimates all parameters that have the
value NaN. Then estimate holds = =...= = 0 during estimation.

Known Parameter Values for a Regression Model with MA Errors

This example shows how to specify values for all parameters of a regression model with
MA errors.

Specify the regression model with MA(2) errors:

where is Gaussian with unit variance.

Mdl = regARIMA('Intercept',0,'Beta',[0.5; -3; 1.2],...

 'MA',{0.5, -0.1},'Variance',1)

Mdl =

 Regression with ARIMA(0,0,2) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 0

 Beta: [0.5 -3 1.2]

 P: 0

 Specify Regression Models with MA Errors

4-39

 D: 0

 Q: 2

 AR: {}

 SAR: {}

 MA: {0.5 -0.1} at Lags [1 2]

 SMA: {}

 Variance: 1

The parameters in Mdl do not contain NaN values, and therefore there is no need to
estimate Mdl using estimate. However, you can simulate or forecast responses from
Mdl using simulate or forecast.

Regression Model with MA Errors and t Innovations

This example shows how to set the innovation distribution of a regression model with MA
errors to a t distribution.

Specify the regression model with MA(2) errors:

where has a t distribution with the default degrees of freedom and unit variance.

Mdl = regARIMA('Intercept',0,'Beta',[0.5; -3; 1.2],...

 'MA',{0.5, -0.1},'Variance',1,'Distribution','t')

Mdl =

 Regression with ARIMA(0,0,2) Error Model:

 --

 Distribution: Name = 't', DoF = NaN

 Intercept: 0

 Beta: [0.5 -3 1.2]

 P: 0

 D: 0

 Q: 2

 AR: {}

 SAR: {}

4 Time Series Regression Models

4-40

 MA: {0.5 -0.1} at Lags [1 2]

 SMA: {}

 Variance: 1

The default degrees of freedom is NaN. If you don't know the degrees of freedom, then you
can estimate it by passing Mdl and the data to estimate.

Specify a distribution.

Mdl.Distribution = struct('Name','t','DoF',15)

Mdl =

 Regression with ARIMA(0,0,2) Error Model:

 --

 Distribution: Name = 't', DoF = 15

 Intercept: 0

 Beta: [0.5 -3 1.2]

 P: 0

 D: 0

 Q: 2

 AR: {}

 SAR: {}

 MA: {0.5 -0.1} at Lags [1 2]

 SMA: {}

 Variance: 1

You can simulate and forecast responses from by passing Mdl to simulate or forecast
because Mdl is completely specified.

In applications, such as simulation, the software normalizes the random t innovations.
In other words, Variance overrides the theoretical variance of the t random variable
(which is DoF/(DoF - 2)), but preserves the kurtosis of the distribution.

See Also
estimate | forecast | regARIMA | simulate

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20

 Specify Regression Models with MA Errors

4-41

• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

More About
• “Regression Models with Time Series Errors” on page 4-6

4 Time Series Regression Models

4-42

Specify Regression Models with ARMA Errors

In this section...

“Default Regression Model with ARMA Errors” on page 4-42
“ARMA Error Model Without an Intercept” on page 4-43
“ARMA Error Model with Nonconsecutive Lags” on page 4-44
“Known Parameter Values for a Regression Model with ARMA Errors” on page 4-44
“Regression Model with ARMA Errors and t Innovations” on page 4-45

Default Regression Model with ARMA Errors

This example shows how to apply the shorthand regARIMA(p,D,q) syntax to specify the
regression model with ARMA errors.

Specify the default regression model with ARMA(3,2) errors:

Mdl = regARIMA(3,0,2)

Mdl =

 ARIMA(3,0,2) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 3

 D: 0

 Q: 2

 AR: {NaN NaN NaN} at Lags [1 2 3]

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The software sets each parameter to NaN, and the innovation distribution to Gaussian.
The AR coefficients are at lags 1 through 3, and the MA coefficients are at lags 1 and 2.

 Specify Regression Models with ARMA Errors

4-43

Pass Mdl into estimate with data to estimate the parameters set to NaN. The regARIMA
model sets Beta to [] and does not display it. If you pass a matrix of predictors () into
estimate, then estimate estimates Beta. The estimate function infers the number of
regression coefficients in Beta from the number of columns in .

Tasks such as simulation and forecasting using simulate and forecast do not
accept models with at least one NaN for a parameter value. Use dot notation to modify
parameter values.

ARMA Error Model Without an Intercept

This example shows how to specify a regression model with ARMA errors without a
regression intercept.

Specify the default regression model with ARMA(3,2) errors:

Mdl = regARIMA('ARLags',1:3,'MALags',1:2,'Intercept',0)

Mdl =

 ARIMA(3,0,2) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: 0

 P: 3

 D: 0

 Q: 2

 AR: {NaN NaN NaN} at Lags [1 2 3]

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The software sets Intercept to 0, but all other parameters in Mdl are NaN values by
default.

Since Intercept is not a NaN, it is an equality constraint during estimation. In other
words, if you pass Mdl and data into estimate, then estimate sets Intercept to 0
during estimation.

4 Time Series Regression Models

4-44

You can modify the properties of Mdl using dot notation.

ARMA Error Model with Nonconsecutive Lags

This example shows how to specify a regression model with ARMA errors, where the
nonzero ARMA terms are at nonconsecutive lags.

Specify the regression model with ARMA(8,4) errors:

Mdl = regARIMA('ARLags',[1,4,8],'MALags',[1,4])

Mdl =

 ARIMA(8,0,4) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 8

 D: 0

 Q: 4

 AR: {NaN NaN NaN} at Lags [1 4 8]

 SAR: {}

 MA: {NaN NaN} at Lags [1 4]

 SMA: {}

 Variance: NaN

The AR coefficients are at lags 1, 4, and 8, and the MA coefficients are at lags 1 and 4.
The software sets the interim lags to 0.

Pass Mdl and data into estimate. The software estimates all parameters that have the
value NaN. Then estimate holds all interim lag coefficients to 0 during estimation.

Known Parameter Values for a Regression Model with ARMA Errors

This example shows how to specify values for all parameters of a regression model with
ARMA errors.

 Specify Regression Models with ARMA Errors

4-45

Specify the regression model with ARMA(3,2) errors:

where is Gaussian with unit variance.

Mdl = regARIMA('Intercept',0,'Beta',[2.5; -0.6],...

 'AR',{0.7, -0.3, 0.1},'MA',{0.5, 0.2},'Variance',1)

Mdl =

 Regression with ARIMA(3,0,2) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 0

 Beta: [2.5 -0.6]

 P: 3

 D: 0

 Q: 2

 AR: {0.7 -0.3 0.1} at Lags [1 2 3]

 SAR: {}

 MA: {0.5 0.2} at Lags [1 2]

 SMA: {}

 Variance: 1

The parameters in Mdl do not contain NaN values, and therefore there is no need to
estimate Mdl using estimate. However, you can simulate or forecast responses from
Mdl using simulate or forecast.

Regression Model with ARMA Errors and t Innovations

This example shows how to set the innovation distribution of a regression model with
ARMA errors to a t distribution.

Specify the regression model with ARMA(3,2) errors:

4 Time Series Regression Models

4-46

where has a t distribution with the default degrees of freedom and unit variance.

Mdl = regARIMA('Intercept',0,'Beta',[2.5; -0.6],...

 'AR',{0.7, -0.3, 0.1},'MA',{0.5, 0.2},'Variance',1,...

 'Distribution','t')

Mdl =

 Regression with ARIMA(3,0,2) Error Model:

 --

 Distribution: Name = 't', DoF = NaN

 Intercept: 0

 Beta: [2.5 -0.6]

 P: 3

 D: 0

 Q: 2

 AR: {0.7 -0.3 0.1} at Lags [1 2 3]

 SAR: {}

 MA: {0.5 0.2} at Lags [1 2]

 SMA: {}

 Variance: 1

The default degrees of freedom is NaN. If you don't know the degrees of freedom, then you
can estimate it by passing Mdl and the data to estimate.

Specify a distribution.

Mdl.Distribution = struct('Name','t','DoF',5)

Mdl =

 Regression with ARIMA(3,0,2) Error Model:

 --

 Distribution: Name = 't', DoF = 5

 Intercept: 0

 Beta: [2.5 -0.6]

 P: 3

 D: 0

 Q: 2

 AR: {0.7 -0.3 0.1} at Lags [1 2 3]

 SAR: {}

 MA: {0.5 0.2} at Lags [1 2]

 SMA: {}

 Specify Regression Models with ARMA Errors

4-47

 Variance: 1

You can simulate or forecast responses from Mdl using simulate or forecast because
Mdl is completely specified.

In applications, such as simulation, the software normalizes the random t innovations.
In other words, Variance overrides the theoretical variance of the t random variable
(which is DoF/(DoF - 2)), but preserves the kurtosis of the distribution.

See Also
estimate | forecast | regARIMA | simulate

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARIMA Errors” on page 4-48
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

More About
• “Regression Models with Time Series Errors” on page 4-6

4 Time Series Regression Models

4-48

Specify Regression Models with ARIMA Errors

In this section...

“Default Regression Model with ARIMA Errors” on page 4-48
“ARIMA Error Model Without an Intercept” on page 4-49
“ARIMA Error Model with Nonconsecutive Lags” on page 4-50
“Known Parameter Values for a Regression Model with ARIMA Errors” on page 4-51
“Regression Model with ARIMA Errors and t Innovations” on page 4-52

Default Regression Model with ARIMA Errors

This example shows how to apply the shorthand regARIMA(p,D,q) syntax to specify the
regression model with ARIMA errors.

Specify the default regression model with ARIMA(3,1,2) errors:

Mdl = regARIMA(3,1,2)

Mdl =

 ARIMA(3,1,2) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 4

 D: 1

 Q: 2

 AR: {NaN NaN NaN} at Lags [1 2 3]

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The software sets each parameter to NaN, and the innovation distribution to Gaussian.
The AR coefficients are at lags 1 through 3, and the MA coefficients are at lags 1 and

 Specify Regression Models with ARIMA Errors

4-49

2. The property P = p + D = 3 + 1 = 4. Therefore, the software requires at least four
presample values to initialize the time series.

Pass Mdl into estimate with data to estimate the parameters set to NaN. The regARIMA
model sets Beta to [] and does not display it. If you pass a matrix of predictors () into
estimate, then estimate estimates Beta. The estimate function infers the number of
regression coefficients in Beta from the number of columns in .

Tasks such as simulation and forecasting using simulate and forecast do not
accept models with at least one NaN for a parameter value. Use dot notation to modify
parameter values.

Be aware that the regression model intercept (Intercept) is not identifiable in
regression models with ARIMA errors. If you want to estimate Mdl, then you must
set Intercept to a value using, for example, dot notation. Otherwise, estimate might
return a spurious estimate of Intercept.

ARIMA Error Model Without an Intercept

This example shows how to specify a regression model with ARIMA errors without a
regression intercept.

Specify the default regression model with ARIMA(3,1,2) errors:

Mdl = regARIMA('ARLags',1:3,'MALags',1:2,'D',1,'Intercept',0)

Mdl =

 ARIMA(3,1,2) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: 0

 P: 4

 D: 1

 Q: 2

 AR: {NaN NaN NaN} at Lags [1 2 3]

4 Time Series Regression Models

4-50

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The software sets Intercept to 0, but all other parameters in Mdl are NaN values by
default.

Since Intercept is not a NaN, it is an equality constraint during estimation. In other
words, if you pass Mdl and data into estimate, then estimate sets Intercept to 0
during estimation.

In general, if you want to use estimate to estimate a regression models with ARIMA
errors where D > 0 or s > 0, then you must set Intercept to a value before estimation.

You can modify the properties of Mdl using dot notation.

ARIMA Error Model with Nonconsecutive Lags

This example shows how to specify a regression model with ARIMA errors, where the
nonzero AR and MA terms are at nonconsecutive lags.

Specify the regression model with ARIMA(8,1,4) errors:

Mdl = regARIMA('ARLags',[1,4,8],'D',1,'MALags',[1,4],...

 'Intercept',0)

Mdl =

 ARIMA(8,1,4) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: 0

 P: 9

 D: 1

 Q: 4

 AR: {NaN NaN NaN} at Lags [1 4 8]

 SAR: {}

 Specify Regression Models with ARIMA Errors

4-51

 MA: {NaN NaN} at Lags [1 4]

 SMA: {}

 Variance: NaN

The AR coefficients are at lags 1, 4, and 8, and the MA coefficients are at lags 1 and 4.
The software sets the interim lags to 0.

Pass Mdl and data into estimate. The software estimates all parameters that have the
value NaN. Then estimate holds all interim lag coefficients to 0 during estimation.

Known Parameter Values for a Regression Model with ARIMA Errors

This example shows how to specify values for all parameters of a regression model with
ARIMA errors.

Specify the regression model with ARIMA(3,1,2) errors:

where is Gaussian with unit variance.

Mdl = regARIMA('Intercept',0,'Beta',[2.5; -0.6],...

 'AR',{0.7, -0.3, 0.1},'MA',{0.5, 0.2},...

 'Variance',1,'D',1)

Mdl =

 Regression with ARIMA(3,1,2) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 0

 Beta: [2.5 -0.6]

 P: 4

 D: 1

 Q: 2

 AR: {0.7 -0.3 0.1} at Lags [1 2 3]

 SAR: {}

 MA: {0.5 0.2} at Lags [1 2]

 SMA: {}

4 Time Series Regression Models

4-52

 Variance: 1

The parameters in Mdl do not contain NaN values, and therefore there is no need
to estimate it. However, you can simulate or forecast responses by passing Mdl to
simulate or forecast.

Regression Model with ARIMA Errors and t Innovations

This example shows how to set the innovation distribution of a regression model with
ARIMA errors to a t distribution.

Specify the regression model with ARIMA(3,1,2) errors:

where has a t distribution with the default degrees of freedom and unit variance.

Mdl = regARIMA('Intercept',0,'Beta',[2.5; -0.6],...

 'AR',{0.7, -0.3, 0.1},'MA',{0.5, 0.2},'Variance',1,...

 'Distribution','t','D',1)

Mdl =

 Regression with ARIMA(3,1,2) Error Model:

 --

 Distribution: Name = 't', DoF = NaN

 Intercept: 0

 Beta: [2.5 -0.6]

 P: 4

 D: 1

 Q: 2

 AR: {0.7 -0.3 0.1} at Lags [1 2 3]

 SAR: {}

 MA: {0.5 0.2} at Lags [1 2]

 SMA: {}

 Variance: 1

The default degrees of freedom is NaN. If you don't know the degrees of freedom, then you
can estimate it by passing Mdl and the data to estimate.

 Specify Regression Models with ARIMA Errors

4-53

Specify a distribution.

Mdl.Distribution = struct('Name','t','DoF',10)

Mdl =

 Regression with ARIMA(3,1,2) Error Model:

 --

 Distribution: Name = 't', DoF = 10

 Intercept: 0

 Beta: [2.5 -0.6]

 P: 4

 D: 1

 Q: 2

 AR: {0.7 -0.3 0.1} at Lags [1 2 3]

 SAR: {}

 MA: {0.5 0.2} at Lags [1 2]

 SMA: {}

 Variance: 1

You can simulate or forecast responses by passing Mdl to simulate or forecast
because Mdl is completely specified.

In applications, such as simulation, the software normalizes the random t innovations.
In other words, Variance overrides the theoretical variance of the t random variable
(which is DoF/(DoF - 2)), but preserves the kurtosis of the distribution.

See Also
estimate | forecast | regARIMA | simulate

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

4 Time Series Regression Models

4-54

More About
• “Regression Models with Time Series Errors” on page 4-6

 Specify Regression Models with SARIMA Errors

4-55

Specify Regression Models with SARIMA Errors

In this section...

“SARMA Error Model Without an Intercept” on page 4-55
“Known Parameter Values for a Regression Model with SARIMA Errors” on page
4-56
“Regression Model with SARIMA Errors and t Innovations” on page 4-57

SARMA Error Model Without an Intercept

This example shows how to specify a regression model with SARMA errors without a
regression intercept.

Specify the default regression model with errors:

Mdl = regARIMA('ARLags',1,'SARLags',[4, 8],...

 'Seasonality',4,'MALags',1,'SMALags',4,'Intercept',0)

Mdl =

 ARIMA(1,0,1) Error Model Seasonally Integrated with Seasonal AR(8) and MA(4):

 --

 Distribution: Name = 'Gaussian'

 Intercept: 0

 P: 13

 D: 0

 Q: 5

 AR: {NaN} at Lags [1]

 SAR: {NaN NaN} at Lags [4 8]

 MA: {NaN} at Lags [1]

 SMA: {NaN} at Lags [4]

 Seasonality: 4

 Variance: NaN

4 Time Series Regression Models

4-56

The name-value pair argument:

• 'ARLags',1 specifies which lags have nonzero coefficients in the nonseasonal
autoregressive polynomial, so .

• 'SARLags',[4 8] specifies which lags have nonzero coefficients in the seasonal
autoregressive polynomial, so .

• 'MALags',1 specifies which lags have nonzero coefficients in the nonseasonal moving
average polynomial, so .

• 'SMALags',4 specifies which lags have nonzero coefficients in the seasonal moving
average polynomial, so .

• 'Seasonality',4 specifies the degree of seasonal integration and corresponds to
.

The software sets Intercept to 0, but all other parameters in Mdl are NaN values by
default.

Property P = p + D + + s = 1 + 0 + 8 + 4 = 13, and property Q = q + = 1 + 4 = 5.
Therefore, the software requires at least 13 presample observation to initialize Mdl.

Since Intercept is not a NaN, it is an equality constraint during estimation. In other
words, if you pass Mdl and data into estimate, then estimate sets Intercept to 0
during estimation.

You can modify the properties of Mdl using dot notation.

Be aware that the regression model intercept (Intercept) is not identifiable in
regression models with ARIMA errors. If you want to estimate Mdl, then you must set
Intercept to a value using, for example, dot notation. Otherwise, estimate might
return a spurious estimate of Intercept.

Known Parameter Values for a Regression Model with SARIMA Errors

This example shows how to specify values for all parameters of a regression model with
SARIMA errors.

Specify the regression model with errors:

 Specify Regression Models with SARIMA Errors

4-57

where is Gaussian with unit variance.

Mdl = regARIMA('AR',0.2,'SAR',{0.25, 0.1},'SARLags',[12 24],...

 'D',1,'Seasonality',12,'MA',0.15,'Intercept',0,'Variance',1)

Mdl =

 ARIMA(1,1,1) Error Model Seasonally Integrated with Seasonal AR(24):

 Distribution: Name = 'Gaussian'

 Intercept: 0

 P: 38

 D: 1

 Q: 1

 AR: {0.2} at Lags [1]

 SAR: {0.25 0.1} at Lags [12 24]

 MA: {0.15} at Lags [1]

 SMA: {}

 Seasonality: 12

 Variance: 1

The parameters in Mdl do not contain NaN values, and therefore there is no need to
estimate Mdl. However, you can simulate or forecast responses by passing Mdl to
simulate or forecast.

Regression Model with SARIMA Errors and t Innovations

This example shows how to set the innovation distribution of a regression model with
SARIMA errors to a t distribution.

Specify the regression model with errors:

where has a t distribution with the default degrees of freedom and unit variance.

Mdl = regARIMA('AR',0.2,'SAR',{0.25, 0.1},'SARLags',[12 24],...

 'D',1,'Seasonality',12,'MA',0.15,'Intercept',0,...

4 Time Series Regression Models

4-58

 'Variance',1,'Distribution','t')

Mdl =

 ARIMA(1,1,1) Error Model Seasonally Integrated with Seasonal AR(24):

 Distribution: Name = 't', DoF = NaN

 Intercept: 0

 P: 38

 D: 1

 Q: 1

 AR: {0.2} at Lags [1]

 SAR: {0.25 0.1} at Lags [12 24]

 MA: {0.15} at Lags [1]

 SMA: {}

 Seasonality: 12

 Variance: 1

The default degrees of freedom is NaN. If you don't know the degrees of freedom, then you
can estimate it by passing Mdl and the data to estimate.

Specify a distribution.

Mdl.Distribution = struct('Name','t','DoF',10)

Mdl =

 ARIMA(1,1,1) Error Model Seasonally Integrated with Seasonal AR(24):

 Distribution: Name = 't', DoF = 10

 Intercept: 0

 P: 38

 D: 1

 Q: 1

 AR: {0.2} at Lags [1]

 SAR: {0.25 0.1} at Lags [12 24]

 MA: {0.15} at Lags [1]

 SMA: {}

 Seasonality: 12

 Variance: 1

You can simulate or forecast responses by passing Mdl to simulate or forecast
because Mdl is completely specified.

 Specify Regression Models with SARIMA Errors

4-59

In applications, such as simulation, the software normalizes the random t innovations.
In other words, Variance overrides the theoretical variance of the t random variable
(which is DoF/(DoF - 2)), but preserves the kurtosis of the distribution.

See Also
estimate | forecast | regARIMA | simulate

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify a Regression Model with SARIMA Errors” on page 4-60
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

More About
• “Regression Models with Time Series Errors” on page 4-6

4 Time Series Regression Models

4-60

Specify a Regression Model with SARIMA Errors

This example shows how to specify a regression model with multiplicative seasonal
ARIMA errors.

Load the Airline data set from the MATLAB® root folder, and load the recession data set.
Plot the monthly passenger totals and log-totals.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

load Data_Recessions;

y = Data;

logY = log(y);

figure

subplot(2,1,1)

plot(y)

title('{\bf Monthly Passenger Totals (Jan1949 - Dec1960)}')

datetick

subplot(2,1,2)

plot(log(y))

title('{\bf Monthly Passenger Log-Totals (Jan1949 - Dec1960)}')

datetick

 Specify a Regression Model with SARIMA Errors

4-61

The log transformation seems to linearize the time series.

Construct this predictor, which is whether the country was in a recession during the
sampled period. 0 means the country was not in a recession, and 1 means that it was in a
recession.

X = zeros(numel(dates),1); % Preallocation

for j = 1:size(Recessions,1)

 X(dates >= Recessions(j,1) & dates <= Recessions(j,2)) = 1;

end

Fit the simple linear regression model,

4 Time Series Regression Models

4-62

to the data.

Fit = fitlm(X,logY);

Fit is a LinearModel that contains the least squares estimates.

Perform a residual diagnosis by plotting the residuals several ways.

figure

subplot(2,2,1)

plotResiduals(Fit,'caseorder','ResidualType','Standardized',...

 'LineStyle','-','MarkerSize',0.5)

subplot(2,2,2)

plotResiduals(Fit,'lagged','ResidualType','Standardized')

subplot(2,2,3)

plotResiduals(Fit,'probability','ResidualType','Standardized')

subplot(2,2,4)

plotResiduals(Fit,'histogram','ResidualType','Standardized')

r = Fit.Residuals.Standardized;

figure

subplot(2,1,1)

autocorr(r)

subplot(2,1,2)

parcorr(r)

 Specify a Regression Model with SARIMA Errors

4-63

4 Time Series Regression Models

4-64

The residual plots indicate that the residuals are autocorrelated. The probability plot and
histogram seem to indicate that the residuals are Gaussian.

The ACF of the residuals confirms that they are autocorrelated.

Take the 1st difference of the residuals and plot the ACF and PACF of the differenced
residuals.

dR = diff(r);

figure

subplot(2,1,1)

autocorr(dR,50)

subplot(2,1,2)

 Specify a Regression Model with SARIMA Errors

4-65

parcorr(dR,50)

The ACF shows that there are significantly large autocorrelations, particularly at every
12th lag. This indicates that the residuals have 12th degree seasonal integration.

Take the first and 12th differences of the residuals. Plot the differenced residuals, and
their ACF and PACF.

DiffPoly = LagOp([1 -1]);

SDiffPoly = LagOp([1 -1],'Lags',[0, 12]);

diffR = filter(DiffPoly*SDiffPoly,r);

figure

4 Time Series Regression Models

4-66

subplot(2,1,1)

plot(diffR)

axis tight

subplot(2,2,3)

autocorr(diffR)

axis tight

subplot(2,2,4)

parcorr(diffR)

axis tight

The residuals resemble white noise (with possible heteroscedasticity). According to
Box and Jenkins (1994), Chapter 9, the ACF and PACF indicate that the unconditional
disturbances are an model.

 Specify a Regression Model with SARIMA Errors

4-67

Specify the regression model with errors:

Mdl = regARIMA('MALags',1,'D',1,'Seasonality',12,'SMALags',12)

Mdl =

 ARIMA(0,1,1) Error Model Seasonally Integrated with Seasonal MA(12):

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 13

 D: 1

 Q: 13

 AR: {}

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {NaN} at Lags [12]

 Seasonality: 12

 Variance: NaN

Mdl is a regression model with errors. By default, the
innovations are Gaussian, and all parameters are NaN. The property:

• P = p + D + + s = 0 + 1 + 0 + 12 = 13.
• Q = q + = 1 + 12 = 13.

Therefore, the software requires at least 13 presample observations to initialize the
model.

Pass Mdl, y, and X into estimate to estimate the model. In order to simulate or forecast
responses using simulate or forecast, you need to set values to all parameters.

References:

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
estimate | forecast | LinearModel | regARIMA | simulate

4 Time Series Regression Models

4-68

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with SARIMA Errors” on page 4-55
• “Specify the ARIMA Error Model Innovation Distribution” on page 4-69

More About
• “Regression Models with Time Series Errors” on page 4-6

 Specify the ARIMA Error Model Innovation Distribution

4-69

Specify the ARIMA Error Model Innovation Distribution

In this section...

“About the Innovation Process” on page 4-69
“Innovation Distribution Options” on page 4-70
“Specify the Innovation Distribution” on page 4-71

About the Innovation Process

A regression model with ARIMA errors has the following general form:

y c X u

a L A L L L u b L B L

t t t

D s
t t

= + +

() () -() -() = () ()

b

e1 1 ,

where

• t = 1,...,T.
• yt is the response series.
• Xt is row t of X, which is the matrix of concatenated predictor data vectors. That is, Xt

is observation t of each predictor series.
• c is the regression model intercept.
• β is the regression coefficient.
• ut is the disturbance series.
• εt is the innovations series.
•

L y yj
t t j=

-
.

•
a L a aL Lp

p() = - - -()1 1 ... , which is the degree p, nonseasonal autoregressive

polynomial.
•

A L A L A Lp
p

s

s() = -()- -1 1 ... , which is the degree ps, seasonal autoregressive

polynomial.
•

1 -()L
D

, which is the degree D, nonseasonal integration polynomial.

4 Time Series Regression Models

4-70

•
1 -()L

s
, which is the degree s, seasonal integration polynomial.

•
b L b L b Lq

q() = +()+ +1 1 ... , which is the degree q, nonseasonal moving average

polynomial.
•

B L B L B Lq
q

s

s() = +()+ +1 1 ... , which is the degree qs, seasonal moving average

polynomial.

Suppose that the unconditional disturbance series (ut) is a stationary stochastic
processes. Then, you can express the second equation in Equation 4-5 as

u a L A L L L b L B L Lt
D s

t t= - - =
- - - -1 1 11 1() ()() () () () () ,e eY

where Ψ(L) is an infinite degree lag operator polynomial [1].

The innovation process (εt) is an independent and identically distributed (iid), mean 0
process with a known distribution. Econometrics Toolbox generalizes the innovation
process to εt = σzt, where zt is a series of iid random variables with mean 0 and variance
1, and σ2 is the constant variance of εt.

regARIMA models contain two properties that describe the distribution of εt:

• Variance stores σ2.
• Distribution stores the parametric form of zt.

Innovation Distribution Options

• The default value of Variance is NaN, meaning that the innovation variance is
unknown. You can assign a positive scalar to Variance when you specify the model
using the name-value pair argument 'Variance',sigma2 (where sigma2 = σ2), or
by modifying an existing model using dot notation. Alternatively, you can estimate
Variance using estimate.

• You can specify the following distributions for zt (using name-value pair arguments or
dot notation):

• Standard Gaussian

 Specify the ARIMA Error Model Innovation Distribution

4-71

• Standardized Student’s t with degrees of freedom ν > 2. Specifically,

z T
t

=
-

n

n

n

2
,

where Tν is a Student’s t distribution with degrees of freedom ν > 2.

The t distribution is useful for modeling innovations that are more extreme than
expected under a Gaussian distribution. Such innovation processes have excess
kurtosis, a more peaked (or heavier tailed) distribution than a Gaussian. Note that
for ν > 4, the kurtosis (fourth central moment) of Tν is the same as the kurtosis of
the Standardized Student’s t (zt), i.e., for a t random variable, the kurtosis is scale
invariant.

Tip It is good practice to assess the distributional properties of the residuals
to determine if a Gaussian innovation distribution (the default distribution) is
appropriate for your model.

Specify the Innovation Distribution

regARIMA stores the distribution (and degrees of freedom for the t distribution) in the
Distribution property. The data type of Distribution is a struct array with
potentially two fields: Name and DoF.

• If the innovations are Gaussian, then the Name field is Gaussian, and there is no DoF
field. regARIMA sets Distribution to Gaussian by default.

• If the innovations are t-distributed, then the Name field is t and the DoF field is NaN
by default, or you can specify a scalar that is greater than 2.

To illustrate specifying the distribution, consider this regression model with AR(2) errors:

Mdl = regARIMA(2,0,0);

Mdl.Distribution

4 Time Series Regression Models

4-72

ans =

 Name: 'Gaussian'

By default, Distribution property of Mdl is a struct array with the field Name having
the value Gaussian.

If you want to specify a t innovation distribution, then you can either specify the model
using the name-value pair argument 'Distribution','t', or use dot notation to
modify an existing model.

Specify the model using the name-value pair argument.

Mdl = regARIMA('ARLags',1:2,'Distribution','t');

Mdl.Distribution

ans =

 Name: 't'

 DoF: NaN

If you use the name-value pair argument to specify the t innovation distribution, then the
default degrees of freedom is NaN.

You can use dot notation to yield the same result.

Mdl = regARIMA(2,0,0);

Mdl.Distribution = 't'

Mdl =

 ARIMA(2,0,0) Error Model:

 Distribution: Name = 't', DoF = NaN

 Intercept: NaN

 P: 2

 D: 0

 Q: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 Specify the ARIMA Error Model Innovation Distribution

4-73

 SMA: {}

 Variance: NaN

If the innovation distribution is , then you can use dot notation to modify the
Distribution property of the existing model Mdl. You cannot modify the fields of
Distribution using dot notation, e.g., Mdl.Distribution.DoF = 10 is not a value
assignment. However, you can display the value of the fields using dot notation.

Mdl.Distribution = struct('Name','t','DoF',10)

tDistributionDoF = Mdl.Distribution.DoF

Mdl =

 ARIMA(2,0,0) Error Model:

 Distribution: Name = 't', DoF = 10

 Intercept: NaN

 P: 2

 D: 0

 Q: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

tDistributionDoF =

 10

Since the DoF field is not a NaN, it is an equality constraint when you estimate Mdl using
estimate.

Alternatively, you can specify the innovation distribution using the name-value pair
argument.

Mdl = regARIMA('ARLags',1:2,'Constant',0,...

 'Distribution',struct('Name','t','DoF',10))

Mdl =

4 Time Series Regression Models

4-74

 ARIMA(2,0,0) Error Model:

 Distribution: Name = 't', DoF = 10

 Intercept: 0

 P: 2

 D: 0

 Q: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

References

[1] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

See Also
estimate | forecast | regARIMA | simulate | struct

Related Examples
• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Specify Regression Models with AR Errors” on page 4-29
• “Specify Regression Models with MA Errors” on page 4-35
• “Specify Regression Models with ARMA Errors” on page 4-42
• “Specify Regression Models with SARIMA Errors” on page 4-55

More About
• “Regression Models with Time Series Errors” on page 4-6

 Impulse Response for Regression Models with ARIMA Errors

4-75

Impulse Response for Regression Models with ARIMA Errors

The general form of a regression model with ARIMA errors is:

y c X u

L u L

t t t

t t

= + +

=

b

eH N() () ,

where

• t = 1,...,T.
• H(L) is the compound autoregressive polynomial.
• N(L) is the compound moving average polynomial.

Solve for ut in the ARIMA error model to obtain

u L L L
t t t

= =-H N1() () () ,e y e

where ψ(L) = 1 + ψ1L + ψ2L2 + ... is an infinite degree polynomial.

The coefficient ψj is called a dynamic multiplier [1]. You can interpret ψj as the change in
the future response (yt+j) due to a one-time unit change in the current innovation (εt) and
no changes in future innovations (εt+1,εt+2,...). That is, the impulse response function is

y
e

j
t j

t

y
=

∂

∂

+
.

Equation 4-7 implies that the regression intercept (c) and predictors (Xt) of Equation 4-6
do not impact the impulse response function. In other words, the impulse response
function describes the change in the response that is solely due to the one-time unit
shock of the innovation εt.

• If the series {ψj} is absolutely summable, then Equation 4-6 is a stationary stochastic
process [2].

• If the ARIMA error model is stationary, then the impact on the response due to a
change in εt is not permanent. That is, the effect of the impulse decays to 0.

• If the ARIMA error model is nonstationary, then the impact on the response due to a
change in εt persists.

4 Time Series Regression Models

4-76

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

 Plot the Impulse Response of regARIMA Models

4-77

Plot the Impulse Response of regARIMA Models

Impulse response functions help examine the effects of a unit innovation shock to future
values of the response of a time series model, without accounting for the effects of
exogenous predictors. For example, if an innovation shock to an aggregate output series,
e.g., GDP, is persistent, then GDP is sensitive to such shocks. The examples below show
how to plot impulse response functions for regression models with various ARIMA error
model structures using impulse.

In this section...

“Regression Model with AR Errors” on page 4-77
“Regression Model with MA Errors” on page 4-79
“Regression Model with ARMA Errors” on page 4-80
“Regression Model with ARIMA Errors” on page 4-82

Regression Model with AR Errors

This example shows how to plot the impulse response function for a regression model
with AR errors.

Specify the regression model with AR(4) errors:

Mdl = regARIMA('Intercept',2,'Beta',[5; -1],'AR',...

 {0.9, -0.8, 0.75, -0.6})

Mdl =

 Regression with ARIMA(4,0,0) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 2

 Beta: [5 -1]

 P: 4

 D: 0

 Q: 0

4 Time Series Regression Models

4-78

 AR: {0.9 -0.8 0.75 -0.6} at Lags [1 2 3 4]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The dynamic multipliers are absolutely summable because the autoregressive component
is stable. Therefore, Mdl is stationary.

You do not need to specify the innovation variance.

Plot the impulse response function.

impulse(Mdl)

 Plot the Impulse Response of regARIMA Models

4-79

The impulse response decays to 0 since Mdl defines a stationary error process. The
regression component does not impact the impulse responses.

Regression Model with MA Errors

This example shows how to plot a regression model with MA errors.

Specify the regression model with MA(10) errors:

Mdl = regARIMA('Intercept',2,'Beta',[5; -1],...

 'MA',{0.5,-0.4,-0.3,0.2,-0.1},'MALags',[2 4 6 8 10])

Mdl =

 Regression with ARIMA(0,0,10) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 2

 Beta: [5 -1]

 P: 0

 D: 0

 Q: 10

 AR: {}

 SAR: {}

 MA: {0.5 -0.4 -0.3 0.2 -0.1} at Lags [2 4 6 8 10]

 SMA: {}

 Variance: NaN

The dynamic multipliers are absolutely summable because the moving average
component is invertible. Therefore, Mdl is stationary.

You do not need to specify the innovation variance.

Plot the impulse response function for 10 responses.

impulse(Mdl,10)

4 Time Series Regression Models

4-80

The impulse response of an MA error model is simply the MA coefficients at their
corresponding lags.

Regression Model with ARMA Errors

This example shows how to plot the impulse response function of a regression model with
ARMA errors.

Specify the regression model with ARMA(4,10) errors:

 Plot the Impulse Response of regARIMA Models

4-81

Mdl = regARIMA('Intercept',2,'Beta',[5; -1],...

 'AR',{0.9, -0.8, 0.75, -0.6},...

 'MA',{0.5, -0.4, -0.3, 0.2, -0.1},'MALags',[2 4 6 8 10])

Mdl =

 Regression with ARIMA(4,0,10) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 2

 Beta: [5 -1]

 P: 4

 D: 0

 Q: 10

 AR: {0.9 -0.8 0.75 -0.6} at Lags [1 2 3 4]

 SAR: {}

 MA: {0.5 -0.4 -0.3 0.2 -0.1} at Lags [2 4 6 8 10]

 SMA: {}

 Variance: NaN

The dynamic multipliers are absolutely summable because the autoregressive component
is stable, and the moving average component is invertible. Therefore, Mdl defines a
stationary error process.

You do not need to specify the innovation variance.

Plot the first 30 impulse responses.

impulse(Mdl,30)

4 Time Series Regression Models

4-82

The impulse response decays to 0 since Mdl defines a stationary error process.

Regression Model with ARIMA Errors

This example shows how to plot the impulse response function of a regression model with
ARIMA errors.

Specify the regression model with ARIMA(4,1,10) errors:

 Plot the Impulse Response of regARIMA Models

4-83

Mdl = regARIMA('Intercept',2,'Beta',[5; -1],...

 'AR',{0.9, -0.8, 0.75, -0.6},...

 'MA',{0.5, -0.4, -0.3, 0.2, -0.1},...

 'MALags',[2 4 6 8 10],'D',1)

Mdl =

 Regression with ARIMA(4,1,10) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 2

 Beta: [5 -1]

 P: 5

 D: 1

 Q: 10

 AR: {0.9 -0.8 0.75 -0.6} at Lags [1 2 3 4]

 SAR: {}

 MA: {0.5 -0.4 -0.3 0.2 -0.1} at Lags [2 4 6 8 10]

 SMA: {}

 Variance: NaN

One of the roots of the compound autoregressive polynomial is 1, therefore Mdl defines a
nonstationary error process.

You do not need to specify the innovation variance.

Plot the first impulse responses.

quot = sum([1,cell2mat(Mdl.MA)])/sum([1,-cell2mat(Mdl.AR)])

impulse(Mdl,50)

hold on

plot([1 50],[quot quot],'r--','Linewidth',2.5)

hold off

quot =

 1.2000

4 Time Series Regression Models

4-84

The impulse responses do not decay to 0. They settle at the quotient of the sums of the
moving average and autoregressive polynomial coefficients (quot).

See Also
impulse | regARIMA

Related Examples
• “Specify Regression Models with ARMA Errors” on page 4-42

 Plot the Impulse Response of regARIMA Models

4-85

• “Specify Regression Models with ARIMA Errors” on page 4-48

More About
• “Impulse Response for Regression Models with ARIMA Errors” on page 4-75

4 Time Series Regression Models

4-86

Maximum Likelihood Estimation of regARIMA Models

Innovation Distribution

For regression models with ARIMA time series errors in Econometrics Toolbox, εt = σzt,
where:

• εt is the innovation corresponding to observation t.
• σ is the constant variance of the innovations. You can set its value using the

Variance property of a regARIMA model.
• zt is the innovation distribution. You can set the distribution using the

Distribution property of a regARIMA model. Specify either a standard Gaussian
(the default) or standardized Student’s t with ν > 2 or NaN degrees of freedom.

Note: If εt has a Student’s t distribution, then

z T
t

=
-

n

n

n

2
,

where Tν is a Student’s t random variable with ν > 2 degrees of freedom.
Subsequently, zt is t-distributed with mean 0 and variance 1, but has the same
kurtosis as Tν. Therefore, εt is t-distributed with mean 0, variance σ, and has the same
kurtosis as Tν.

estimate builds and optimizes the likelihood objective function based on εt by:

1 Estimating c and β using MLR
2 Inferring the unconditional disturbances from the estimated regression model,

ˆ ˆ ˆu y c Xt t t= - - b

3
Estimating the ARIMA error model, ˆ () () ,u L L

t t
=

-
H N

1
e where H(L) is the compound

autoregressive polynomial and N(L) is the compound moving average polynomial
4

Inferring the innovations from the ARIMA error model, ˆ ˆ () ˆ () ˆe
t t

L L u=
-

H N
1

5 Maximizing the loglikelihood objective function with respect to the free parameters

 Maximum Likelihood Estimation of regARIMA Models

4-87

Note: If the unconditional disturbance process is nonstationary (i.e., the nonseasonal
or seasonal integration degree is greater than 0), then the regression intercept, c, is not
identifiable. estimate returns a NaN for c when it fits integrated models. For details, see
“Intercept Identifiability in Regression Models with ARIMA Errors” on page 4-130.

estimate estimates all parameters in the regARIMA model set to NaN. estimate honors
any equality constraints in the regARIMA model, i.e., estimate fixes the parameters at
the values that you set during estimation.

Loglikelihood Functions

Given its history, the innovations are conditionally independent. Let Ht denote the
history of the process available at time t, where t = 1,...,T. The likelihood function of the
innovations is

f fHT T

t

T

t t() (),, ...,e e e1 1
1

1| |H-

=

-= ’

where f is the standard Gaussian or t probability density function.

The exact form of the loglikelihood objective function depends on the parametric form of
the innovation distribution.

• If zt is standard Gaussian, then the loglikelihood objective function is

logL
T T

t
t

T

= - - -

=

Â
2

2
2

1

2

2

2

2

1

log() log .p s
s

e

• If zt is a standardized Student’s t, then the loglikelihood objective function is

logL lT
T

=

+

-
-

+
Ê
Ë
Á

ˆ
¯
˜

Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-log

()

G

G

n

n p n
s

n
1

2

12

2

2 2

2

tt

T
tog

=
Â +

È

Î
Í
Í

˘

˚
˙
˙-1

2

2
1

2

e

s n()
.

esitmate performs covariance matrix estimation for maximum likelihood estimates
using the outer product of gradients (OPG) method.

4 Time Series Regression Models

4-88

See Also
estimate | regARIMA

More About
• “regARIMA Model Estimation Using Equality Constraints” on page 4-89
• “Presample Values for regARIMA Model Estimation” on page 4-95
• “Initial Values for regARIMA Model Estimation” on page 4-98
• “Optimization Settings for regARIMA Model Estimation” on page 4-100

 regARIMA Model Estimation Using Equality Constraints

4-89

regARIMA Model Estimation Using Equality Constraints

estimate requires a regARIMA model and a vector of univariate response data to
estimate a regression model with ARIMA errors. Without predictor data, the model
specifies the parametric form of an intercept-only regression component with an ARIMA
error model. This is not the same as a conditional mean model with a constant. For
details, see “Compare Alternative ARIMA Model Representations” on page 4-136. If
you specify a T-by-r matrix of predictor data, then estimate includes a linear regression
component for the r series.

estimate returns fitted values for any parameters in the input model with NaN values.
For example, if you specify a default regARIMA model and pass a T-by-r matrix of
predictor data, then the software sets all parameters to NaN including the r regression
coefficients, and estimates them all. If you specify non-NaN values for any parameters,
then estimate views these values as equality constraints and honors them during
estimation.

For example, suppose residual diagnostics from a linear regression suggest integrated
unconditional disturbances. Since the regression intercept is unidentifiable in integrated
models, you decide to set the intercept to 0. Specify 'Intercept',0 in the regARIMA
model that you pass into estimate. The software views this non-NaN value as an
equality constraint, and does not estimate the intercept, its standard error, and its
covariance with other estimates. To illustrate further, suppose the true model for a
response series yt is

y

u

ut t

t t

= +

=

0

e ,

where εt is Gaussian with variance 1. The loglikelihood function for a simulated data set
from this model can resemble the surface in the following figure over a grid of variances
and intercepts.

rng(1); % For reproducibility

e = randn(100,1);

Variance = 1;

Intercept = 0;

Mdl = regARIMA('Intercept',Intercept,'Variance',Variance);

y = filter(Mdl,e);

gridLength = 50;

intGrid1 = linspace(-1,1,50);

4 Time Series Regression Models

4-90

varGrid1 = linspace(0.1,4,50);

[varGrid2,intGrid2] = meshgrid(varGrid1,intGrid1);

LogLGrid = zeros(numel(varGrid1),numel(intGrid1));

for k1 = 1:numel(intGrid1)

 for k2 = 1:numel(varGrid1)

 ToEstMdl = regARIMA('Intercept',...

 intGrid1(k1),'Variance',varGrid1(k2));

 [~,~,LogLGrid(k1,k2)] = estimate(ToEstMdl,y);

 end

end

surf(intGrid2,varGrid2,LogLGrid) % 3D loglikelihood plot

xlabel 'Intercept';

ylabel 'Variance';

zlabel 'Loglikelihood';

shading interp

 regARIMA Model Estimation Using Equality Constraints

4-91

Notice that the maximum (darkest red region) occurs around Intercept = 0 and
Variance = 1. If you apply an equality constraint, then the optimizer views a two-
dimensional slice (in this example) of the loglikelihood function at that constraint.
The following plots display the loglikelihood at several different Intercept equality
constraints.

intValue = [intGrid1(10), intGrid1(20),...

 intGrid1(30), intGrid1(40)];

for k = 1:4

 subplot(2,2,k)

% plot(varGrid1,LogLGrid(find(intGrid2 == intValue(k))))

 plot(varGrid1,LogLGrid(intGrid2 == intValue(k)))

 title(sprintf('Loglikelihood, Intercpet = %.3f',intValue(k)))

 xlabel 'Variance';

4 Time Series Regression Models

4-92

 ylabel 'Loglikelihood';

 hold on

 h1 = gca;

 plot([Variance Variance],h1.YLim,'r:')

 hold off

end

In each case, Variance = 1 (its true value) occurs very close to the maximum of the
loglikelihood function. Rather than constrain Intercept, the following plots display the
likelihood function using several Variance equality constraints.

varValue = [varGrid1(10),varGrid1(20),varGrid1(30),varGrid1(40)];

for k = 1:4

 regARIMA Model Estimation Using Equality Constraints

4-93

 subplot(2,2,k)

% plot(intGrid1,LogLGrid(find(varGrid2 == varValue(k))))

 plot(intGrid1,LogLGrid(varGrid2 == varValue(k)))

 title(sprintf('Loglikelihood, Variance = %.3f',varValue(k)))

 xlabel('Intercept')

 ylabel('Loglikelihood')

 hold on

 h2 = gca;

 plot([Intercept Intercept],h2.YLim,'r:')

 hold off

end

In each case, Intercept = 0 (its true value) occurs very close to the maximum of the
loglikelihood function.

4 Time Series Regression Models

4-94

estimate also honors a subset of equality constraints while estimating all other
parameters set to NaN. For example, suppose r = 3, and you know that β2 = 5. Specify
Beta = [NaN; 5; NaN] in the regARIMA model, and pass this model with the data to
estimate.

estimate optionally returns the estimated variance-covariance matrix for the estimated
parameters. The parameter order in this matrix is:

• Intercept
• Nonzero AR coefficients at positive lags
• Nonzero SAR coefficients at positive lags
• Nonzero MA coefficients at positive lags
• Nonzero SMA coefficients at positive lags
• Regression coefficients (when you specify X in estimate)
• Innovation variance
• Degrees of freedom for the t distribution

If any parameter known to the optimizer has an equality constraint, then the
corresponding row and column of the variance-covariance matrix has all 0s.

In addition to your equality constraints, estimate sets any AR, MA, SAR, and SMA
coefficient with an estimate less than 1e-12 in magnitude equal to 0.

See Also
estimate | regARIMA

More About
• “Maximum Likelihood Estimation of regARIMA Models” on page 4-86
• “Presample Values for regARIMA Model Estimation” on page 4-95
• “Initial Values for regARIMA Model Estimation” on page 4-98
• “Optimization Settings for regARIMA Model Estimation” on page 4-100

 Presample Values for regARIMA Model Estimation

4-95

Presample Values for regARIMA Model Estimation

Presample data comes from time points before the beginning of the observation period.
In Econometrics Toolbox, you can specify your own presample data or use generated
presample data.

In regression models with ARIMA errors, the distribution of the current innovation
(εt) is conditional on historic information (Ht). Historic information can include past
unconditional disturbances or past innovations, i.e., Ht = {ut – 1,εt – 1,ut – 2,εt – 2,...,u0,ε0,u–1,ε–

1,...}. However, the software does not include past responses (yt) nor past predictors (Xt) in
Ht. For example, in a regression model with ARIMA(2,1,1) errors, you can write the error
model in several ways:

•
1 1 1

1 2

2

1
- -()-() = +()f f q eL L L u L

t t
.

•
1 11

2
2

2 3
1- - () ()- - -() = +()L uL L L L Lt tf f q e .

• u u u u u u
t t t t t t t t

= + - + - + +- - - - - -1 1 1 2 2 2 3 1 1f f e q e() () .

• e f f q e
t t t t t t t t

u u u u u u= - - - - --- - - - - -1 1 1 2 2 2 3 1 1() () .

The last equation implies that:

4 Time Series Regression Models

4-96

• The first innovation in the series (ε1) depends on the history H1 = {u–2,u–1,u0,ε0}. H1 is
not observable nor inferable from the regression model.

• The second innovation in the series (ε2) depends on the history H2 = {u–1,u0,u1,ε1}. The
software can infer u1 and ε1, but not the others.

• The third innovation in the series (ε3) depends on the history H3 = {u0,u1,u2,ε2}. The
software can infer u1, u2, and ε1, but not u0.

• The rest of the innovations depend on inferable unconditional disturbances and
innovations.

Therefore, the software requires three presample unconditional disturbances to initialize
the autoregressive portion, and one presample innovation to initialize the moving
average portion.

The degrees of the compound autoregressive and moving average polynomials determine
the number of past unconditional disturbances and innovations that εt depends on.
The compound autoregressive polynomial includes the seasonal and nonseasonal
autoregressive, and seasonal and nonseasonal integration polynomials. The compound
moving average polynomial includes the seasonal and nonseasonal moving average
polynomials. In the example, the degree of the compound autoregressive polynomial is
P = 3, and the degree of the moving average polynomial is Q = 1. Therefore, the software
requires three presample unconditional disturbances and one presample innovation.

If you do not have presample values (or do not supply them), then, by default, the
software backcasts for the necessary presample unconditional disturbances, and sets the
necessary presample innovations to 0.

Another option to obtain presample unconditional disturbances is to partition the data
set into a presample portion and estimation portion:

1 Partition the data such that the presample portion contains at least max(P,Q)
observations. The software uses the most recent max(P,Q) observations and ignores
the rest.

2 For the presample portion, regress yt onto Xt.
3 Infer the residuals from the regression model. These are the presample

unconditional disturbances.
4 Pass the presample unconditional disturbances (U0) and the estimation portion of

the data into estimate.

This option results in a loss of sample size. Note that when comparing multiple models
using likelihood-based measures of fit (such as likelihood ratio tests or information

 Presample Values for regARIMA Model Estimation

4-97

criteria), then the data must have the same estimation portions, and the presample
portions must be of equal size.

If you plan on specifying presample values, then you must specify at least the number
necessary to initialize the series.

You can specify both presample unconditional disturbances and innovations, one or the
other, or neither.

More About
• “Maximum Likelihood Estimation of regARIMA Models” on page 4-86
• “regARIMA Model Estimation Using Equality Constraints” on page 4-89
• “Initial Values for regARIMA Model Estimation” on page 4-98
• “Optimization Settings for regARIMA Model Estimation” on page 4-100

4 Time Series Regression Models

4-98

Initial Values for regARIMA Model Estimation

estimate uses fmincon from Optimization Toolbox™ to minimize the negative
loglikelihood objective function. fmincon requires initial (i.e., starting) values to begin
the optimization process.

If you want to specify your own initial values, then use name-value pair arguments. For
example, to specify 0.1 for the initial value of a nonseasonal AR coefficient of the error
model, pass the name-value pair argument 'AR0',0.1 into estimate.

By default, estimate generates initial values using standard time series techniques. If
you partially specify initial values (that is, specify initial values for some parameters),
estimate honors the initial values that you set, and generates default initial values for
the remaining parameters.

estimate enforces stability and invertibility for all seasonal and nonseasonal AR and
MA lag operator polynomials of the error model. When you specify initial values for the
AR and MA coefficients, it is possible that estimate cannot find initial values for the
remaining coefficients that satisfy stability and invertibility. In this case, estimate
honors your initial values, and sets the remaining initial coefficient values to 0.

The way estimate generates default initial values depends on the model.

• If the model contains a regression component and intercept, then estimate
performs ordinary least squares (OLS). estimate uses the estimates for Beta0
and Intercept0. Then, estimate infers the unconditional disturbances using the
regression model. estimate uses the inferred unconditional disturbances and the
ARIMA error model to gather the other initial values.

• If the model does not contain a regression component and an intercept, then
the unconditional disturbance series is the response series. estimate uses the
unconditional disturbances and the ARIMA error model to gather the other initial
values.

This table summarizes the techniques that estimate uses to gather the remaining
initial values.

 Initial Values for regARIMA Model Estimation

4-99

 Technique to Generate Initial Values

Parameter Error Model Does Not Contain
MA Terms

Error Model Contains MA
Terms

AR OLS Solve the Yule-Walker
equations [1].

MA N/A Solve the Yule-Walker
equations [1].

Variance Population variance of OLS
residuals

Variance of inferred
innovation process (using
initial MA coefficients)

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
estimate | fmincon

More About
• “Maximum Likelihood Estimation of regARIMA Models” on page 4-86
• “regARIMA Model Estimation Using Equality Constraints” on page 4-89
• “Presample Values for regARIMA Model Estimation” on page 4-95
• “Optimization Settings for regARIMA Model Estimation” on page 4-100

4 Time Series Regression Models

4-100

Optimization Settings for regARIMA Model Estimation

In this section...

“Optimization Options” on page 4-100
“Constraints on Regression Models with ARIMA Errors” on page 4-104

Optimization Options

estimate maximizes the loglikelihood function using fmincon from Optimization
Toolbox. fmincon has many optimization options, such as choice of optimization
algorithm and constraint violation tolerance. Choose optimization options using
optimoptions.

estimate uses the fmincon optimization options by default, with these exceptions. For
details, see fmincon and optimoptions in Optimization Toolbox.

optimoptions Properties Description estimate Settings

Algorithm Algorithm for minimizing
the negative loglikelihood
function

'sqp'

Display Level of display for
optimization progress

'off'

Diagnostics Display for diagnostic
information about the
function to be minimized

'off'

TolCon Termination tolerance on
constraint violations

1e-7

If you want to use optimization options that differ from the default, then set your own
using optimoptions.

For example, suppose that you want estimate to display optimization diagnostics.
The best practice is to set the name-value pair argument 'Display','diagnostics'
in estimate. Alternatively, you can direct the optimizer to display optimization
diagnostics.

Specify a regression model with AR(1) errors (Mdl) and simulate data from it.

 Optimization Settings for regARIMA Model Estimation

4-101

Mdl = regARIMA('AR',0.5,'Intercept',0,'Variance',1);

rng(1); % For reproducibility

y = simulate(Mdl,25);

Mdl does not have a regression component. By default, fmincon does not display the
optimization diagnostics. Use optimoptions to set it to display the optimization
diagnostics, and set the other fmincon properties to the default settings of estimate
listed in the previous table.

options = optimoptions(@fmincon,'Diagnostics','on','Algorithm',...

 'sqp','Display','off','TolCon',1e-7)

% @fmincon is the function handle for fmincon

options =

 fmincon options:

 Options used by current Algorithm ('sqp'):

 (Other available algorithms: 'active-set', 'interior-point', 'trust-region-reflective')

 Set by user:

 Algorithm: 'sqp'

 Diagnostics: 'on'

 Display: 'off'

 TolCon: 1.0000e-07

 Default:

 DerivativeCheck: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 GradConstr: 'off'

 GradObj: 'off'

 MaxFunEvals: '100*numberOfVariables'

 MaxIter: 400

 ObjectiveLimit: -1.0000e+20

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolFun: 1.0000e-06

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

4 Time Series Regression Models

4-102

 UseParallel: 0

 Options not used by current Algorithm ('sqp')

 Default:

 AlwaysHonorConstraints: 'bounds'

 HessFcn: []

 HessMult: []

 HessPattern: 'sparse(ones(numberOfVariables))'

 Hessian: 'not applicable'

 InitBarrierParam: 0.1000

 InitTrustRegionRadius: 'sqrt(numberOfVariables)'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 MaxProjCGIter: '2*(numberOfVariables-numberOfEqualities)'

 MaxSQPIter: '10*max(numberOfVariables,numberOfInequalities+…'

 PrecondBandWidth: 0

 RelLineSrchBnd: []

 RelLineSrchBndDuration: 1

 SubproblemAlgorithm: 'ldl-factorization'

 TolConSQP: 1.0000e-06

 TolPCG: 0.1000

 TolProjCG: 0.0100

 TolProjCGAbs: 1.0000e-10

The options that you set appear under the Set by user: heading. The properties under
the Default: heading are other options that you can set.

Fit Mdl to y using the new optimization options.

ToEstMdl = regARIMA(1,0,0);

EstMdl = estimate(ToEstMdl,y,'Options',options);

__

 Diagnostic Information

Number of variables: 3

Functions

Objective: @(X)nLogLike(X,YData,XData,E,U,Mdl,AR.Lags,MA.Lags,maxPQ,T,isDistributionT,userSpecifiedU0,trapValue)

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

Nonlinear constraints: @(x)internal.econ.arimaNonLinearConstraints(x,LagsAR,LagsSAR,LagsMA,LagsSMA,tolerance)

Nonlinear constraints gradient: finite-differencing

 Optimization Settings for regARIMA Model Estimation

4-103

Constraints

Number of nonlinear inequality constraints: 1

Number of nonlinear equality constraints: 0

Number of linear inequality constraints: 0

Number of linear equality constraints: 0

Number of lower bound constraints: 3

Number of upper bound constraints: 3

Algorithm selected

 sqp

__

 End diagnostic information

 ARIMA(1,0,0) Error Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept -0.12097 0.447475 -0.270338

 AR{1} 0.463859 0.157813 2.9393

 Variance 1.23081 0.472745 2.60354

Note:

• estimate numerically maximizes the loglikelihood function potentially using
equality, inequality, and lower and upper bound constraints. If you set Algorithm to
anything other than sqp, then check that the algorithm supports similar constraints,
such as interior-point. For example, fmincon sets Algorithm to trust-
region-reflective by default. trust-region-reflective does not support
inequality constraints. Therefore, if you do not change the default Algorithm
property value of fmincon, then estimate displays a warning. During estimation,
fmincon temporarily sets Algorithm to active-set by default to satisfy the
constraints.

• estimate sets a constraint level of TolCon so constraints are not violated. Be aware
that an estimate with an active constraint has unreliable standard errors since

4 Time Series Regression Models

4-104

variance-covariance estimation assumes the likelihood function is locally quadratic
around the maximum likelihood estimate.

Constraints on Regression Models with ARIMA Errors

The software enforces these constraints while estimating a regression model with ARIMA
errors:

• Stability of nonseasonal and seasonal AR operator polynomials
• Invertibility of nonseasonal and seasonal MA operator polynomials
• Innovation variance strictly greater than zero
• Degrees of freedom strictly greater than two for a t innovation distribution

See Also
estimate | fmincon | optimoptions | regARIMA

More About
• “Maximum Likelihood Estimation of regARIMA Models” on page 4-86
• “regARIMA Model Estimation Using Equality Constraints” on page 4-89
• “Presample Values for regARIMA Model Estimation” on page 4-95
• “Initial Values for regARIMA Model Estimation” on page 4-98

 Estimate a Regression Model with ARIMA Errors

4-105

Estimate a Regression Model with ARIMA Errors

This example shows how to estimate the sensitivity of the US Gross Domestic Product
(GDP) to changes in the Consumer Price Index (CPI) using estimate.

Load the US macroeconomic data set, Data_USEconModel. Plot the GDP and CPI.

load Data_USEconModel

gdp = DataTable.GDP;

cpi = DataTable.CPIAUCSL;

figure

plot(dates,gdp)

title('{\bf US Gross Domestic Product, Q1 in 1947 to Q1 in 2009}')

datetick

axis tight

figure

plot(dates,cpi)

title('{\bf US Consumer Price Index, Q1 in 1947 to Q1 in 2009}')

datetick

axis tight

4 Time Series Regression Models

4-106

 Estimate a Regression Model with ARIMA Errors

4-107

gdp and cpi seem to increase exponentially.

Regress gdp onto cpi. Plot the residuals.

XDes = [ones(length(cpi),1) cpi]; % Design matrix

beta = XDes\gdp;

u = gdp - XDes*beta; % Residuals

figure

plot(u)

h1 = gca;

hold on

plot(h1.XLim,[0 0],'r:')

title('{\bf Residual Plot}')

4 Time Series Regression Models

4-108

hold off

The pattern of the residuals suggests that the standard linear model assumption of
uncorrelated errors is violated. The residuals appear autocorrelated.

Plot correlograms for the residuals.

figure

subplot(2,1,1)

autocorr(u)

subplot(2,1,2)

parcorr(u)

 Estimate a Regression Model with ARIMA Errors

4-109

The autocorrelation function suggests that the residuals are a nonstationary process.

Apply the first difference to the logged series to stabilize the residuals.

dlGDP = diff(log(gdp));

dlCPI = diff(log(cpi));

dlXDes = [ones(length(dlCPI),1) dlCPI];

beta = dlXDes\dlGDP;

u = dlGDP - dlXDes*beta;

figure

plot(u);

h2 = gca;

hold on

4 Time Series Regression Models

4-110

plot(h2.XLim,[0 0],'r:')

title('{\bf Residual Plot, Transformed Series}')

hold off

figure

subplot(2,1,1)

autocorr(u)

subplot(2,1,2)

parcorr(u)

 Estimate a Regression Model with ARIMA Errors

4-111

The residual plot from the transformed data suggests stabilized, albeit heteroscedastic,
unconditional disturbances. The correlograms suggest that the unconditional
disturbances follow an AR(1) process.

Specify the regression model with AR(1) errors:

Mdl = regARIMA('ARLags',1);

estimate estimates any parameter having a value of NaN.

Fit Mdl to the data.

4 Time Series Regression Models

4-112

EstMdl = estimate(Mdl,dlGDP,'X',dlCPI,'Display','params');

 Regression with ARIMA(1,0,0) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.0127623 0.00134717 9.47336

 AR{1} 0.382447 0.0524938 7.28557

 Beta1 0.398902 0.0772861 5.16137

 Variance 9.01012e-05 5.94704e-06 15.1506

Alternatively, estimate the regression coefficients and Newey-West standard errors using
hac.

hac(dlCPI,dlGDP,'intercept',true,'display','full');

Estimator type: HAC

Estimation method: BT

Bandwidth: 4.1963

Whitening order: 0

Effective sample size: 248

Small sample correction: on

Coefficient Estimates:

 | Coeff SE

 Const | 0.0115 0.0012

 x1 | 0.5421 0.1005

Coefficient Covariances:

 | Const x1

 Const | 0.0000 -0.0001

 x1 | -0.0001 0.0101

The intercept estimates are close, but the regression coefficient estimates corresponding
to dlCPI are not. This is because regARIMA explicitly models for the autocorrelation
of the disturbances. hac estimates the coefficients using ordinary least squares,

 Estimate a Regression Model with ARIMA Errors

4-113

and returns standard errors that are robust to the residual autocorrelation and
heteroscedasticity.

Assuming that the model is correct, the results suggest that an increase of one point in
the CPI rate increases the GDP growth rate by 0.399 points. This effect is significant
according to the t statistic.

From here, you can use forecast or simulate to obtain forecasts and forecast intervals
for the GDP rate. You can also compare several models by computing their AIC statistics
using aicbic.

See Also
aicbic | estimate | forecast | simulate

More About
• “Maximum Likelihood Estimation of regARIMA Models” on page 4-86
• “Presample Values for regARIMA Model Estimation” on page 4-95
• “Initial Values for regARIMA Model Estimation” on page 4-98

4 Time Series Regression Models

4-114

Estimate a Regression Model with Multiplicative ARIMA Errors

This example shows how to fit a regression model with multiplicative ARIMA errors to
data using estimate.

Load the Airline data set from the MATLAB® root folder, and load the Recession data
set. Plot the monthly passenger totals and the log of the totals.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

load Data_Recessions

y = Data;

logY = log(y);

figure

subplot(2,1,1)

plot(y)

title('{\bf Monthly Passenger Totals (Jan1949 - Dec1960)}')

datetick

subplot(2,1,2)

plot(log(y))

title('{\bf Monthly Passenger Log-Totals (Jan1949 - Dec1960)}')

datetick

 Estimate a Regression Model with Multiplicative ARIMA Errors

4-115

The log transformation seems to linearize the time series.

Construct the predictor (X), which is whether the country was in a recession during the
sampled period. A 0 in row t means the country was not in a recession in month t, and a 1
in row t means that it was in a recession in month t.

X = zeros(numel(dates),1); % Preallocation

for j = 1:size(Recessions,1)

 X(dates >= Recessions(j,1) & dates <= Recessions(j,2)) = 1;

end

Fit the simple linear regression model

4 Time Series Regression Models

4-116

to the data.

Fit = fitlm(X,logY);

Fit is a LinearModel that contains the least squares estimates.

Check for standard linear model assumption departures by plotting the residuals several
ways.

figure

subplot(2,2,1)

plotResiduals(Fit,'caseorder','ResidualType','Standardized',...

 'LineStyle','-','MarkerSize',0.5)

subplot(2,2,2)

plotResiduals(Fit,'lagged','ResidualType','Standardized')

subplot(2,2,3)

plotResiduals(Fit,'probability','ResidualType','Standardized')

subplot(2,2,4)

plotResiduals(Fit,'histogram','ResidualType','Standardized')

r = Fit.Residuals.Standardized;

figure

subplot(2,1,1)

autocorr(r)

subplot(2,1,2)

parcorr(r)

 Estimate a Regression Model with Multiplicative ARIMA Errors

4-117

4 Time Series Regression Models

4-118

The residual plots indicate that the unconditional disturbances are autocorrelated. The
probability plot and histogram seem to indicate that the unconditional disturbances are
Gaussian.

The ACF of the residuals confirms that the unconditional disturbances are
autocorrelated.

Take the 1st difference of the residuals and plot the ACF and PACF of the differenced
residuals.

dR = diff(r);

figure

 Estimate a Regression Model with Multiplicative ARIMA Errors

4-119

subplot(2,1,1)

autocorr(dR,50)

subplot(2,1,2)

parcorr(dR,50)

The ACF shows that there are significantly large autocorrelations, particularly at every
12th lag. This indicates that the unconditional disturbances have 12th degree seasonal
integration.

Take the first and 12th differences of the residuals. Plot the differenced residuals, and
their ACF and PACF.

DiffPoly = LagOp([1 -1]);

4 Time Series Regression Models

4-120

SDiffPoly = LagOp([1 -1],'Lags',[0, 12]);

diffR = filter(DiffPoly*SDiffPoly,r);

figure

subplot(2,1,1)

plot(diffR)

axis tight

subplot(2,2,3)

autocorr(diffR)

axis tight

subplot(2,2,4)

parcorr(diffR)

axis tight

 Estimate a Regression Model with Multiplicative ARIMA Errors

4-121

The residuals resemble white noise (with possible heteroscedasticity). According to
Box and Jenkins (1994), Chapter 9, the ACF and PACF indicate that the unconditional
disturbances are an model.

Specify the regression model with errors:

Mdl = regARIMA('MALags',1,'D',1,'Seasonality',12,'SMALags',12)

Mdl =

 ARIMA(0,1,1) Error Model Seasonally Integrated with Seasonal MA(12):

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 13

 D: 1

 Q: 13

 AR: {}

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {NaN} at Lags [12]

 Seasonality: 12

 Variance: NaN

Partition the data set into the presample and estimation sample so that you can initialize
the series. P = Q = 13, so the presample should be at least 13 periods long.

preLogY = logY(1:13); % Presample responses

estLogY = logY(14:end); % Estimation sample responses

preX = X(1:13); % Presample predictors

estX = X(14:end); % Estimation sample predictors

Obtain presample unconditional disturbances from a linear regression of the presample
data.

PreFit = fitlm(preX,preLogY);...

 % Presample fit for presample residuals

EstFit = fitlm(estX,estLogY);...

 % Estimation sample fit for the intercept

4 Time Series Regression Models

4-122

U0 = PreFit.Residuals.Raw;

If the error model is integrated, then the regression model intercept is not identifiable.
Set Intercept to the estimated intercept from a linear regression of the estimation
sample data. Estimate the regression model with IMA errors.

Mdl.Intercept = EstFit.Coefficients{1,1};

EstMdl = estimate(Mdl,estLogY,'X',estX,'U0',U0);

 Regression with ARIMA(0,1,1) Error Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 5.57217 Fixed Fixed

 MA{1} -0.0253657 0.221971 -0.114275

 SMA{12} -0.80255 0.0527051 -15.2272

 Beta1 0.00275883 0.10139 0.0272102

 Variance 0.00724633 0.000159736 45.3645

MA{1} and Beta1 are not significantly different from 0. You can remove these
parameters from the model, possibly add other parameters (e.g., AR parameters), and
compare multiple model fits using aicbic. Note that the estimation and presample
should be the same over competing models.

References:

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
aicbic | estimate | regARIMA

More About
• “Maximum Likelihood Estimation of regARIMA Models” on page 4-86
• “Presample Values for regARIMA Model Estimation” on page 4-95
• “Intercept Identifiability in Regression Models with ARIMA Errors” on page

4-130

 Select a Regression Model with ARIMA Errors

4-123

Select a Regression Model with ARIMA Errors

Regression models with ARIMA time series errors contain two components: a regression
model and an error model. Typically, the research emphasis is on the regression model.
But, in order to properly select the predictors, you must properly model the error
structure. The following steps outline the infinite loop that you might experience when
selecting a regression model with ARIMA errors:

1 To determine the appropriate lags to include in the error model, you must infer the
unconditional disturbances, ut, where t = 1,...,T.

2 To properly infer ut from the regression model, you must estimate the regression
model including all appropriate predictors, Xt.

3 To determine the appropriate predictors, you must properly model the error
structure, ut. That is, you must determine the appropriate lags for the error model.

If econometric theory suggests that a particular regression model is appropriate, then fit
the regression model over varying autoregressive and moving average degrees. Choose
the model that yields the lowest information criterion. For example, see “Choose Lags for
an ARMA Error Model” on page 4-125.

However, if you want statistical methods to choose both the regression and error
models, then one way to choose an appropriate regression model with ARIMA errors (as
recommended in [1]) is to:

1 Check each variable for stationarity. Transform or difference the nonstationary
series to make them stationary. To maintain the interpretation of the relationships
between the variables, transform or difference all variables the same way. For
details, see “Data Transformations” on page 2-2.

2 Assume that the error model is AR(2) or an appropriate multiplicative seasonal
AR(2) model. Estimate the regression model using estimate including all predictors
and the possibly transformed or differenced data.

3 Infer ut from the fitted regression model using infer.

4 Determine an appropriate ARIMA error model. For details, see “Box-Jenkins
Methodology” on page 3-2 and “Autocorrelation and Partial Autocorrelation” on page
3-13.

5 Use the new ARIMA error model to reestimate the regression model with ARIMA
errors.

4 Time Series Regression Models

4-124

6 Check that the innovations (e
t
) are a white noise sequence. For details, see

“Residual Diagnostics” on page 3-90. If the innovations are not a white noise
sequence, then choose a different ARIMA error model, reestimate the regression
model with ARIMA errors, and recheck the innovations.

7 Compute information criteria for the final model using aicbic.
8 Perform the full procedure repeatedly using a subset of predictors for each trial.

Choose the model with the lowest information criterion.

References

[1] Hyndman, R. J. and G. Athanasopoulos. “Dynamic Regression Models.” Forecasting:
Principles and Practice. April 2013. http://www.otexts.org/fpp/9/1.

See Also
aicbic | estimate | infer

Related Examples
• “Choose Lags for an ARMA Error Model” on page 4-125
• “Estimate a Regression Model with ARIMA Errors” on page 4-105

More About
• “Regression Models with Time Series Errors” on page 4-6
• “Box-Jenkins Methodology” on page 3-2
• “Data Transformations” on page 2-2
• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Residual Diagnostics” on page 3-90

http://www.otexts.org/fpp/9/1

 Choose Lags for an ARMA Error Model

4-125

Choose Lags for an ARMA Error Model

This example shows how to use Akaike Information Criterion (AIC) to select the
nonseasonal autoregressive and moving average lag polynomial degrees for a regression
model with ARMA errors.

Estimate several models by passing the data to estimate. Vary the autoregressive and
moving average degrees p and q, respectively. Each fitted model contains an optimized
loglikelihood objective function value, which you pass to aicbic to calculate AIC
fit statistics. The AIC fit statistic penalizes the optimized loglikelihood function for
complexity (i.e., for having more parameters). Assume that econometric theory dictates
that the predictors of the regression model are appropriate.

Simulate response and predictor data for the regression model with ARMA errors:

where is Gaussian with mean 0 and variance 1.

Mdl = regARIMA('Intercept',2,'Beta',[-2; 1.5],...

 'AR',{0.75, -0.5},'MA',0.7,'Variance',1);

rng(2); % For reproducibility

X = randn(1000,2); % Predictors

y = simulate(Mdl,1000,'X',X);

Regress the response onto the predictors. Plot the residuals (i.e., estimated unconditional
disturbances).

Fit = fitlm(X,y);

u = Fit.Residuals.Raw;

figure

plot(u)

title('{\bf Estimated Unconditional Disturbances}')

4 Time Series Regression Models

4-126

Plot the ACF and PACF of the residuals.

figure

subplot(2,1,1)

autocorr(u)

subplot(2,1,2)

parcorr(u)

 Choose Lags for an ARMA Error Model

4-127

The ACF and PACF decay slowly, which indicates an ARMA process. It is difficult to
use these correlograms to determine the lags. However, it seems reasonable that both
polynomials should have four or fewer lags based on the lengths of the autocorrelations
and partial autocorrelations.

To determine the number of AR and MA lags, define and estimate regression models with
ARMA(p, q) errors by varying p = 1,..,4 and q = 1,...,4. Store the optimized loglikelihood
objective function value for each model fit.

pMax = 4;

qMax = 4;

LogL = zeros(pMax,qMax);

SumPQ = LogL;

4 Time Series Regression Models

4-128

for p = 1:pMax

 for q = 1:qMax

 ToEstMdl = regARIMA(p,0,q);

 [~,~,LogL(p,q)] = estimate(ToEstMdl,y,'X',X,...

 'Display','off');

 SumPQ(p,q) = p+q;

 end

end

Calculate AIC for each model fit. The number of parameters is p + q + 4 (i.e., the
intercept, two regression coefficients, and innovation variance).

logL = reshape(LogL,pMax*qMax,1);...

 % Elements taken column-wise

numParams = reshape(SumPQ,pMax*qMax,1) + 4;

aic = aicbic(logL,numParams);

AIC = reshape(aic,pMax,qMax)

minAIC = min(aic)

[bestP,bestQ] = find(AIC == minAIC)

AIC =

 1.0e+03 *

 3.1323 3.0195 2.9984 2.9462

 2.9280 2.9297 2.9314 2.9331

 2.9297 2.9305 2.9321 2.9345

 2.9314 2.9325 2.9343 2.9358

minAIC =

 2.9280e+03

bestP =

 2

bestQ =

 1

 Choose Lags for an ARMA Error Model

4-129

The best fitting model is the regression model with AR(2,1) errors because its
corresponding AIC is the lowest.

See Also
aicbic | estimate

Related Examples
• “Estimate a Regression Model with ARIMA Errors” on page 4-105

More About
• “Select a Regression Model with ARIMA Errors” on page 4-123

4 Time Series Regression Models

4-130

Intercept Identifiability in Regression Models with ARIMA Errors

In this section...

“Intercept Identifiability” on page 4-130
“Intercept Identifiability Illustration” on page 4-132

Intercept Identifiability

A regression model with ARIMA errors has the following general form (t = 1,...,T)

y c X u

a L A L L L u b L B L

t t t

D s
t t

= + +

() () -() -() = () ()

b

e1 1 ,

where

• t = 1,...,T.
• yt is the response series.
• Xt is row t of X, which is the matrix of concatenated predictor data vectors. That is, Xt

is observation t of each predictor series.
• c is the regression model intercept.
• β is the regression coefficient.
• ut is the disturbance series.
• εt is the innovations series.
•

L y yj
t t j=

-
.

•
a L a aL Lp

p() = - - -()1 1 ... , which is the degree p, nonseasonal autoregressive

polynomial.
•

A L A L A Lp
p

s

s() = -()- -1 1 ... , which is the degree ps, seasonal autoregressive

polynomial.
•

1 -()L
D

, which is the degree D, nonseasonal integration polynomial.

 Intercept Identifiability in Regression Models with ARIMA Errors

4-131

•
1 -()L

s
, which is the degree s, seasonal integration polynomial.

•
b L b L b Lq

q() = +()+ +1 1 ... , which is the degree q, nonseasonal moving average

polynomial.
•

B L B L B Lq
q

s

s() = +()+ +1 1 ... , which is the degree qs, seasonal moving average

polynomial.

• If you specify that D = s = 0 (i.e., you do not indicate seasonal or nonseasonal
integration), then every parameter is identifiable. In other words, the likelihood
objective function is sensitive to a change in a parameter, given the data.

• If you specify that D > 0 or s > 0, and you want to estimate the intercept, c, then c is
not identifiable.

You can show that this is true.

• Consider Equation 4-8. Solve for ut in the second equation and substitute it into the
first.

y c X L Lt t t= + + -b eH N1() () ,

where

•
H() ()() ()().L a L L L LA

D s
= - -1 1

• N() () ().L b L B L=

• The likelihood function is based on the distribution of εt. Solve for εt.

e bt t tL L y L L c L L X= + +- - -N H N H N H1 1 1
() () () () () () .

• Note that Ljc = c. The constant term contributes to the likelihood as follows.

N H N

N

- -

-

= - -

= -

1 1

1

1 1

1

() () () () ()() ()

() () ()(

L L c L a L A L L L c

L a L A L L

D s

)) ()
D

c c-

= 0

4 Time Series Regression Models

4-132

or

N H N

N

- -

-

= - -

= -

1 1

1

1 1

1

() () () () ()()()

() () ()(

L L c L a L A L L L c

L a L A L L

s D

ss D

s D

L

L a L A L L L

L c

c c

)()

() () ()()()

()

()

.

1

1 1

1

0

1

1 1

-

- -

-

= -

=

-

- -
N

Therefore, when the ARIMA error model is integrated, the likelihood objective function
based on the distribution of εt is invariant to the value of c.

In general, the effective constant in the equivalent ARIMAX representation of a
regression model with ARIMA errors is a function of the compound autoregressive
coefficients and the original intercept c, and incorporates a nonlinear constraint. This
constraint is seamlessly incorporated for applications such as Monte Carlo simulation of
integrated models with nonzero intercepts. However, for estimation, the ARIMAX model
is unable to identify the constant in the presence of an integrated polynomial, and this
results in spurious or unusual parameter estimates.

You should exclude an intercept from integrated models in most applications.

Intercept Identifiability Illustration

As an illustration, consider the regression model with ARIMA(2,1,1) errors without
predictors

y u

L L L u L

t t

t t

= +

- +() - = +

0 5

1 0 8 0 4 1 1 0 32

.

. . () (.) ,e

or

y

L

u

L L u L

t t

t t

= +

- +() = +-

0 5

1 1 8 1 2 1 0 30 4
2 3

.

. . (.). .e

 Intercept Identifiability in Regression Models with ARIMA Errors

4-133

You can rewrite Equation 4-10 using substitution and some manipulation

y y y yt t t t t t= - + + +- + -() + - - - -1 1 8 1 2 0 4 0 5 1 8 1 2 0 4 0 3
1 2 3 1

.e e

Note that

1 1 8 1 2 0 4 0 5 0 0 5 0- + -() = =. . . . (.) .

Therefore, the regression model with ARIMA(2,1,1) errors in Equation 4-10 has an
ARIMA(2,1,1) model representation

y y y yt t t t t t= - + + +
- - - -

1 8 1 2 0 4 0 3
1 2 3 1

.e e

You can see that the constant is not present in the model (which implies its value is 0),
even though the value of the regression model with ARIMA errors intercept is 0.5.

You can also simulate this behavior. Start by specifying the regression model with
ARIMA(2,1,1) errors in Equation 4-10.

Mdl = regARIMA('D',1,'AR',{0.8 -0.4},'MA',0.3,...

 'Intercept',0.5,'Variance', 0.2);

Simulate 1000 observations.

rng(1);

T = 1000;

y = simulate(Mdl, T);

Fit Mdl to the data.

ToEstMdl = regARIMA('ARLags',1:2,'MALags',1,'D',1);...

 % "Empty" model to pass into estimate

[EstMdl,EstParamCov] = estimate(ToEstMdl,y,'Display','params');

Warning: When ARIMA error model is integrated, the intercept is unidentifiable

and cannot be estimated; a NaN is returned.

4 Time Series Regression Models

4-134

 ARIMA(2,1,1) Error Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept NaN NaN NaN

 AR{1} 0.896466 0.0485066 18.4813

 AR{2} -0.451015 0.0389158 -11.5895

 MA{1} 0.188039 0.054505 3.44994

 Variance 0.197893 0.00835124 23.6963

estimate displays a warning to inform you that the intercept is not identifiable, and
sets its estimate, standard error, and t-statistic to NaN.

Plot the profile likelihood for the intercept.

c = linspace(Mdl.Intercept - 50,...

 Mdl.Intercept + 50,100); % Grid of intercepts

logL = nan(numel(c),1); % For preallocation

for i = 1:numel(logL)

 EstMdl.Intercept = c(i);

 [~,~,~,logL(i)] = infer(EstMdl,y);

end

figure

plot(c,logL)

title('Profile Log-Likelihood with Respect to the Intercept')

xlabel('Intercept')

ylabel('Loglikelihood')

 Intercept Identifiability in Regression Models with ARIMA Errors

4-135

The loglikelihood does not change over the grid of intercept values. The slight oscillation
is a result of the numerical routine used by infer.

Related Examples
• “Estimate a Regression Model with ARIMA Errors” on page 4-105

4 Time Series Regression Models

4-136

Compare Alternative ARIMA Model Representations

In this section...

“regARIMA to ARIMAX Model Conversion” on page 4-136
“Illustrate regARIMA to ARIMAX Model Conversion” on page 4-137

regARIMA to ARIMAX Model Conversion

ARIMAX models and regression models with ARIMA errors are closely related, and the
choice of which to use is generally dictated by your goals for the analysis. If your objective
is to fit a parsimonious model to data and forecast responses, then there is very little
difference between the two models.

If you are more interested in preserving the usual interpretation of a regression
coefficient as a measure of sensitivity, i.e., the effect of a unit change in a predictor
variable on the response, then use a regression model with ARIMA errors. Regression
coefficients in ARIMAX models do not possess that interpretation because of the dynamic
dependence on the response [1].

Suppose that you have the parameter estimates from a regression model with ARIMA
errors, and you want to see how the model structure compares to ARIMAX model.
Or, suppose you want some insight as to the underlying relationship between the two
models.

The ARIMAX model is (t = 1,...,T):

H N() () ,L y c X Lt t t= + +b e

where

• yt is the univariate response series.
• Xt is row t of X, which is the matrix of concatenated predictor series. That is, Xt is

observation t of each predictor series.
• β is the regression coefficient.
• c is the regression model intercept.

 Compare Alternative ARIMA Model Representations

4-137

•
H F() ()() ()() ... ,L L L L L L L L

D s

P

P
= - - = - - - -f h h h1 1 1 1 2

2
 which is the degree

P lag operator polynomial that captures the combined effect of the seasonal and
nonseasonal autoregressive polynomials, and the seasonal and nonseasonal
integration polynomials. For more details on notation, see “Multiplicative ARIMA
Model” on page 5-46.

•
N Q() () () ... ,L L L L L LQ

Q
= = + + + +q n n n1 1 2

2

 which is the degree Q lag operator
polynomial that captures the combined effect of the seasonal and nonseasonal moving
average polynomials.

• εt is a white noise innovation process.

The regression model with ARIMA errors is (t = 1,...,T)

y

A L u

c X u

B L

t t t

t t

= + +

=

b

e() ,()

where

• ut is the unconditional disturbances process.
•

A L L L L L a L a L a L
D s

P
P() ,()() ()() ...= - - = - - - -f 1 1 1 1 2

2
F which is the degree

P lag operator polynomial that captures the combined effect of the seasonal and
nonseasonal autoregressive polynomials, and the seasonal and nonseasonal
integration polynomials.

•
B L L L b L b L b LQ

Q() ,() () ...= = + + + +q Q 1 1 2
2 which is the degree Q lag operator

polynomial that captures the combined effect of the seasonal and nonseasonal moving
average polynomials.

The values of the variables defined in Equation 4-12 are not necessarily equivalent to the
values of the variables in Equation 4-11, even though the notation might be similar.

Illustrate regARIMA to ARIMAX Model Conversion

Consider Equation 4-12, the regression model with ARIMA errors. Use the following
operations to convert the regression model with ARIMA errors to its corresponding
ARIMAX model.

1 Solve for ut..

4 Time Series Regression Models

4-138

y

u
A L

c X u

B L

t t t

t t

= + +

=

b

e
()

()
.

2 Substitute ut into the regression equation.

y
B L

A L

A L y

c X

A L c A L X B L

t t t

t t t

= + +

= + +

b e

b e

()

()

() .() () ()

3 Solve for yt.

y

A L c Z

A L c A L X a y B L

a y

t t k

k

P

t k t

t k
k

P

t k

= + + +

+ += +

=
-

=
-

Â

Â

() () ()

()

b e
1

1

G BB L t() .e

In Equation 4-13,

• A(L)c = (1 – a1 – a2 –...– aP)c. That is, the constant in the ARIMAX model is the
intercept in the regression model with ARIMA errors with a nonlinear constraint.
Though applications, such as simulate, handle this constraint, estimate cannot
incorporate such a constraint. In the latter case, the models are equivalent when
you fix the intercept and constant to 0.

• In the term A(L)Xtβ, the lag operator polynomial A(L) filters the T-by-1 vector
Xtβ, which is the linear combination of the predictors weighted by the regression
coefficients. This filtering process requires P presample observations of the
predictor series.

• arima constructs the matrix Zt as follows:

• Each column of Zt corresponds to each term in A(L).
• The first column of Zt is the vector Xtβ.
• The second column of Zt is a sequence of d2 NaNs (d2 is the degree of the second

term in A(L)), followed by the product L X
d

t
j b . That is, the software attaches

 Compare Alternative ARIMA Model Representations

4-139

d2 NaNs at the beginning of the T-by-1 column, attaches Xtβ after the NaNs, but
truncates the end of that product by d2 observations.

• The jth column of Zt is a sequence of dj NaNs (dj is the degree of the jth term

in A(L)), followed by the product L X
d

t
j b . That is, the software attaches dj

NaNs at the beginning of the T-by-1 column, attaches Xtβ after the NaNs, but
truncates the end of that product by dj observations.

.
• Γ = [1 –a1 –a2 ... –aP]'.

The arima converter removes all zero-valued autoregressive coefficients of
the difference equation. Subsequently, the arima converter does not associate
zero-valued autoregressive coefficients with columns in Zt, nor does it include
corresponding, zero-valued coefficients in Γ.

4 Rewrite Equation 4-13,

y a c X a X a yt k
k

P

t k
k

P

t k k t k
k

P

t t k
k

Q

= - + - + + +
= =

- -
=

-
=

Â Â Â Â() .1

1 1 1 1

b b e e

For example, consider the following regression model whose errors are ARMA(2,1):

y

L L u

X u

L

t t t

t t

= + +

= +()- +()

0 2 0 5

1 0 31 0 8 0 4
2

. .

.. . .e

The equivalent ARMAX model is:

y X yL L y Lt t t t t= + - + - + +() +

=

- -0 12 0 5 0 4 0 2 0 4 1 0 30 8

0 12

2
1 2. (.).

.

e

++ + - + +- -Z y y Lt t t tG 0 8 0 4 1 0 31 2. ,. (.)e

or

(. .) . ,(.)1 0 8 0 4 0 12 1 0 32
- + = + + +L L y Z Lt t tG e

where Γ = [1 –0.8 0.4]' and

4 Time Series Regression Models

4-140

Z

x

x x

x x x

x x x

t

T T T

=

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

- -

0 5

1

2 1

3 2 1

1 2

. .

NaN NaN

NaN

M M M

This model is not integrated because all of the eigenvalues associated with the AR
polynomial are within the unit circle, but the predictors might affect the otherwise stable
process. Also, you need presample predictor data going back at least 2 periods to, for
example, fit the model to data.

You can illustrate this further through simulation and estimation.

1 Specify the regression model with ARIMA errors in Equation 4-14.

Mdl1 = regARIMA('Intercept',0.2,'AR',{0.8 -0.4},...

 'MA',0.3,'Beta',[0.3 -0.2],'Variance',0.2);

2 Generate presample observations and predictor data.

rng(1); % For reproducibility

T = 100;

maxPQ = max(Mdl1.P,Mdl1.Q);

numObs = T + maxPQ;...

 % Adjust number of observations to account for presample

X1 = randn(numObs,2); % Simulate predictor data

u0 = randn(maxPQ,1); % Presample unconditional disturbances u(t)

e0 = randn(maxPQ,1); % Presample innovations e(t)

3 Simulate data from Mdl1.

rng(100) % For reproducibility

[y1,e1,u1] = simulate(Mdl1,T,'U0',u0,...

 'E0',e0,'X',X1);

4 Convert Mdl1 to an ARIMAX model.

[Mdl2,X2] = arima(Mdl1,'X',X1);

Mdl2

Mdl2 =

 ARIMAX(2,0,1) Model:

 Compare Alternative ARIMA Model Representations

4-141

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 1

 Constant: 0.12

 AR: {0.8 -0.4} at Lags [1 2]

 SAR: {}

 MA: {0.3} at Lags [1]

 SMA: {}

 Beta: [1 -0.8 0.4]

 Variance: 0.2

5 Generate presample responses for the ARIMAX model to ensure consistency with
Mdl1. Simulate data from Mdl2.

y0 = Mdl1.Intercept + X1(1:maxPQ,:)*Mdl1.Beta' + u0;

rng(100)

y2 = simulate(Mdl2,T,'Y0',y0,'E0',e0,'X',X2);

figure

plot(y1,'LineWidth',3)

hold on

plot(y2,'r:','LineWidth',2.5)

hold off

title('{\bf Simulated Paths for Both Models}')

legend('regARIMA Model','ARIMAX Model','Location','Best')

4 Time Series Regression Models

4-142

The simulated paths are equivalent because the arima converter enforces the
nonlinear constraint when it converts the regression model intercept to the ARIMAX
model constant.

6 Fit a regression model with ARIMA errors to the simulated data.

ToEstMdl1 = regARIMA('ARLags',[1 2],'MALags',1);

EstMdl1 = estimate(ToEstMdl1,y1,'E0',e0,'U0',u0,'X',X1);

 Regression with ARIMA(2,0,1) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Compare Alternative ARIMA Model Representations

4-143

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.140736 0.101405 1.38787

 AR{1} 0.830611 0.137504 6.04065

 AR{2} -0.454025 0.116397 -3.90067

 MA{1} 0.428031 0.151453 2.82616

 Beta1 0.295519 0.0229383 12.8832

 Beta2 -0.176007 0.0306069 -5.75057

 Variance 0.182313 0.0277648 6.56633

7 Fit an ARIMAX model to the simulated data.

ToEstMdl2 = arima('ARLags',[1 2],'MALags',1);

EstMdl2 = estimate(ToEstMdl2,y2,'E0',e0,'Y0',...

 y0,'X',X2);

 ARIMAX(2,0,1) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0849961 0.0642166 1.32359

 AR{1} 0.831361 0.136345 6.09748

 AR{2} -0.455993 0.11788 -3.86828

 MA{1} 0.426 0.157526 2.70431

 Beta1 1.05303 0.136849 7.69485

 Beta2 -0.6904 0.192617 -3.58432

 Beta3 0.453993 0.153522 2.95718

 Variance 0.181119 0.0288359 6.28103

8 Convert EstMdl1 to an ARIMAX model.

ConvertedMdl2 = arima(EstMdl1,'X',X1)

ConvertedMdl2 =

 ARIMAX(2,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 2

4 Time Series Regression Models

4-144

 D: 0

 Q: 1

 Constant: 0.087737

 AR: {0.830611 -0.454025} at Lags [1 2]

 SAR: {}

 MA: {0.428031} at Lags [1]

 SMA: {}

 Beta: [1 -0.830611 0.454025]

 Variance: 0.182313

The estimated ARIMAX model constant is not equivalent to the ARIMAX model
constant converted from the regression model with ARIMA errors. In other words,
EstMdl2.Constant = 0.0849961 and ConvertedMdl2.Constant = 0.087737.
This is because estimate does not enforce the nonlinear constraint that the arima
converter enforces. As a result, the other estimates are not equivalent either, albeit
close.

References

[1] Hyndman, R. J. (2010, October). “The ARIMAX Model Muddle.” Rob J. Hyndman.
Retrieved February 7, 2013 from http://robjhyndman.com/researchtips/arimax/.

See Also
arima | estimate | estimate

Related Examples
• “Estimate a Regression Model with ARIMA Errors” on page 4-105

http://robjhyndman.com/researchtips/arimax/

 Simulate Regression Models with ARMA Errors

4-145

Simulate Regression Models with ARMA Errors

In this section...

“Simulate an AR Error Model” on page 4-145
“Simulate an MA Error Model” on page 4-153
“Simulate an ARMA Error Model” on page 4-161

Simulate an AR Error Model

This example shows how to simulate sample paths from a regression model with AR
errors without specifying presample disturbances.

Specify the regression model with AR(2) errors:

where is Gaussian with mean 0 and variance 1.

Beta = [-2; 1.5];

Intercept = 2;

a1 = 0.75;

a2 = -0.5;

Variance = 1;

Mdl = regARIMA('AR',{a1, a2},'Intercept',Intercept,...

 'Beta',Beta,'Variance',Variance);

Generate two length T = 50 predictor series by random selection from the standard
Gaussian distribution.

T = 50;

rng(1); % For reproducibility

X = randn(T,2);

The software treats the predictors as nonstochastic series.

Generate and plot one sample path of responses from Mdl.

rng(2);

ySim = simulate(Mdl,T,'X',X);

4 Time Series Regression Models

4-146

figure

plot(ySim)

title('{\bf Simulated Response Series}')

simulate requires P = 2 presample unconditional disturbances () to initialize the
error series. Without them, as in this case, simulate sets the necessary presample
unconditional disturbances to 0.

Alternatively, filter a random innovation series through Mdl using filter.

rng(2);

e = randn(T,1);

yFilter = filter(Mdl,e,'X',X);

 Simulate Regression Models with ARMA Errors

4-147

figure

plot(yFilter)

title('{\bf Simulated Response Series Using Filtered Innovations}')

The plots suggest that the simulated responses and the responses generated from the
filtered innovations are equivalent.

Simulate 1000 response paths from Mdl. Assess transient effects by plotting the
unconditional disturbance (U) variances across the simulated paths at each period.

numPaths = 1000;

[Y,~,U] = simulate(Mdl,T,'NumPaths',numPaths,'X',X);

figure

4 Time Series Regression Models

4-148

h1 = plot(Y,'Color',[.85,.85,.85]);

title('{\bf 1000 Simulated Response Paths}')

hold on

h2 = plot(1:T,Intercept+X*Beta,'k--','LineWidth',2);

legend([h1(1),h2],'Simulated Path','Mean')

hold off

figure

h1 = plot(var(U,0,2),'r','LineWidth',2);

hold on

theoVarFix = ((1-a2)*Variance)/((1+a2)*((1-a2)^2-a1^2));

h2 = plot([1 T],[theoVarFix theoVarFix],'k--','LineWidth',2);

title('{\bf Unconditional Disturbance Variance}')

legend([h1,h2],'Simulation Variance','Theoretical Variance')

hold off

 Simulate Regression Models with ARMA Errors

4-149

4 Time Series Regression Models

4-150

The simulated response paths follow their theoretical mean, , which is not
constant over time (and might look nonstationary).

The variance of the process is not constant, but levels off at the theoretical variance by
the 10th period. The theoretical variance of the AR(2) error model is

You can reduce transient effects is by partitioning the simulated data into a burn-in
portion and a portion for analysis. Do not use the burn-in portion for analysis. Include
enough periods in the burn-in portion to overcome the transient effects.

 Simulate Regression Models with ARMA Errors

4-151

burnIn = 1:10;

notBurnIn = burnIn(end)+1:T;

Y = Y(notBurnIn,:);

X = X(notBurnIn,:);

U = U(notBurnIn,:);

figure

h1 = plot(notBurnIn,Y,'Color',[.85,.85,.85]);

hold on

h2 = plot(notBurnIn,Intercept+X*Beta,'k--','LineWidth',2);

title('{\bf 1000 Simulated Response Paths for Analysis}')

legend([h1(1),h2],'Simulated Path','Mean')

hold off

figure

h1 = plot(notBurnIn,var(U,0,2),'r','LineWidth',2);

hold on

h2 = plot([notBurnIn(1) notBurnIn(end)],...

 [theoVarFix theoVarFix],'k--','LineWidth',2);

title('{\bf Converged Unconditional Disturbance Variance}')

legend([h1,h2],'Simulation Variance','Theoretical Variance')

hold off

4 Time Series Regression Models

4-152

 Simulate Regression Models with ARMA Errors

4-153

Unconditional disturbance simulation variances fluctuate around the theoretical
variance due to Monte Carlo sampling error. Be aware that the exclusion of the burn-in
sample from analysis reduces the effective sample size.

Simulate an MA Error Model

This example shows how to simulate responses from a regression model with MA errors
without specifying a presample.

Specify the regression model with MA(8) errors:

4 Time Series Regression Models

4-154

where is Gaussian with mean 0 and variance 0.5.

Beta = [-2; 1.5];

Intercept = 2;

b1 = 0.4;

b4 = -0.3;

b8 = 0.2;

Variance = 0.5;

Mdl = regARIMA('MA',{b1, b4, b8},'MALags',[1 4 8],...

 'Intercept',Intercept,'Beta',Beta,'Variance',Variance);

Generate two length T = 100 predictor series by random selection from the standard
Gaussian distribution.

T = 100;

rng(4); % For reproducibility

X = randn(T,2);

The software treats the predictors as nonstochastic series.

Generate and plot one sample path of responses from Mdl.

rng(5);

ySim = simulate(Mdl,T,'X',X);

figure

plot(ySim)

title('{\bf Simulated Response Series}')

 Simulate Regression Models with ARMA Errors

4-155

simulate requires Q = 8 presample innovations () to initialize the error series.
Without them, as in this case, simulate sets the necessary presample innovations to 0.

Alternatively, use filter to filter a random innovation series through Mdl.

rng(5);

e = randn(T,1);

yFilter = filter(Mdl,e,'X',X);

figure

plot(yFilter)

title('{\bf Simulated Response Series Using Filtered Innovations}')

4 Time Series Regression Models

4-156

The plots suggest that the simulated responses and the responses generated from the
filtered innovations are equivalent.

Simulate 1000 response paths from Mdl. Assess transient effects by plotting the
unconditional disturbance (U) variances across the simulated paths at each period.

numPaths = 1000;

[Y,~,U] = simulate(Mdl,T,'NumPaths',numPaths,'X',X);

figure

h1 = plot(Y,'Color',[.85,.85,.85]);

title('{\bf 1000 Simulated Response Paths}')

hold on

h2 = plot(1:T,Intercept+X*Beta,'k--','LineWidth',2);

 Simulate Regression Models with ARMA Errors

4-157

legend([h1(1),h2],'Simulated Path','Mean')

hold off

figure

h1 = plot(var(U,0,2),'r','LineWidth',2);

hold on

theoVarFix = (1+b1^2+b4^2+b8^2)*Variance;

h2 = plot([1 T],[theoVarFix theoVarFix],'k--','LineWidth',2);

title('{\bf Unconditional Disturbance Variance}')

legend([h1,h2],'Simulation Variance','Theoretical Variance')

hold off

4 Time Series Regression Models

4-158

The simulated paths follow their theoretical mean, , which is not constant over
time (and might look nonstationary).

The variance of the process is not constant, but levels off at the theoretical variance by
the 15th period. The theoretical variance of the MA(8) error model is

You can reduce transient effects is by partitioning the simulated data into a burn-in
portion and a portion for analysis. Do not use the burn-in portion for analysis. Include
enough periods in the burn-in portion to overcome the transient effects.

burnIn = 1:15;

 Simulate Regression Models with ARMA Errors

4-159

notBurnIn = burnIn(end)+1:T;

Y = Y(notBurnIn,:);

X = X(notBurnIn,:);

U = U(notBurnIn,:);

figure

h1 = plot(notBurnIn,Y,'Color',[.85,.85,.85]);

hold on

h2 = plot(notBurnIn,Intercept+X*Beta,'k--','LineWidth',2);

title('{\bf 1000 Simulated Response Paths for Analysis}')

legend([h1(1),h2],'Simulated Path','Mean')

axis tight

hold off

figure

h1 = plot(notBurnIn,var(U,0,2),'r','LineWidth',2);

hold on

h2 = plot([notBurnIn(1) notBurnIn(end)],...

 [theoVarFix theoVarFix],'k--','LineWidth',2);

title('{\bf Converged Unconditional Disturbance Variance}')

legend([h1,h2],'Simulation Variance','Theoretical Variance')

axis tight

hold off

4 Time Series Regression Models

4-160

 Simulate Regression Models with ARMA Errors

4-161

Unconditional disturbance simulation variances fluctuate around the theoretical
variance due to Monte Carlo sampling error. Be aware that the exclusion of the burn-in
sample from analysis reduces the effective sample size.

Simulate an ARMA Error Model

This example shows how to simulate responses from a regression model with ARMA
errors without specifying a presample.

Specify the regression model with ARMA(2,1) errors:

4 Time Series Regression Models

4-162

where is distributed with 15 degrees of freedom and variance 1.

Beta = [-2; 1.5];

Intercept = 2;

a1 = 0.9;

a2 = -0.1;

b1 = 0.5;

Variance = 1;

Distribution = struct('Name','t','DoF',15);

Mdl = regARIMA('AR',{a1, a2},'MA',b1,...

 'Distribution',Distribution,'Intercept',Intercept,...

 'Beta',Beta,'Variance',Variance);

Generate two length T = 50 predictor series by random selection from the standard
Gaussian distribution.

T = 50;

rng(6); % For reproducibility

X = randn(T,2);

The software treats the predictors as nonstochastic series.

Generate and plot one sample path of responses from Mdl.

rng(7);

ySim = simulate(Mdl,T,'X',X);

figure

plot(ySim)

title('{\bf Simulated Response Series}')

 Simulate Regression Models with ARMA Errors

4-163

simulate requires:

• P = 2 presample unconditional disturbances to initialize the autoregressive
component of the error series.

• Q = 1 presample innovations to initialize the moving average component of the error
series.

Without them, as in this case, simulate sets the necessary presample errors to 0.

Alternatively, use filter to filter a random innovation series through Mdl.

rng(7);

e = randn(T,1);

yFilter = filter(Mdl,e,'X',X);

4 Time Series Regression Models

4-164

figure

plot(yFilter)

title('{\bf Simulated Response Series Using Filtered Innovations}')

The plots suggest that the simulated responses and the responses generated from the
filtered innovations are equivalent.

Simulate 1000 response paths from Mdl. Assess transient effects by plotting the
unconditional disturbance (U) variances across the simulated paths at each period.

numPaths = 1000;

[Y,~,U] = simulate(Mdl,T,'NumPaths',numPaths,'X',X);

 Simulate Regression Models with ARMA Errors

4-165

figure

h1 = plot(Y,'Color',[.85,.85,.85]);

title('{\bf 1000 Simulated Response Paths}')

hold on

h2 = plot(1:T,Intercept+X*Beta,'k--','LineWidth',2);

legend([h1(1),h2],'Simulated Path','Mean')

hold off

figure

h1 = plot(var(U,0,2),'r','LineWidth',2);

hold on

theoVarFix = Variance*(a1*b1*(1+a2)+(1-a2)*(1+a1*b1+b1^2))/...

 ((1+a2)*((1-a2)^2-a1^2));

h2 = plot([1 T],[theoVarFix theoVarFix],'k--','LineWidth',2);

title('{\bf Unconditional Disturbance Variance}')

legend([h1,h2],'Simulation Variance','Theoretical Variance',...

 'Location','Best')

hold off

4 Time Series Regression Models

4-166

 Simulate Regression Models with ARMA Errors

4-167

The simulated paths follow their theoretical mean, , which is not constant over
time (and might look nonstationary).

The variance of the process is not constant, but levels off at the theoretical variance by
the 10th period. The theoretical variance of the ARMA(2,1) error model is:

You can reduce transient effects by partitioning the simulated data into a burn-in portion
and a portion for analysis. Do not use the burn-in portion for analysis. Include enough
periods in the burn-in portion to overcome the transient effects.

4 Time Series Regression Models

4-168

burnIn = 1:10;

notBurnIn = burnIn(end)+1:T;

Y = Y(notBurnIn,:);

X = X(notBurnIn,:);

U = U(notBurnIn,:);

figure

h1 = plot(notBurnIn,Y,'Color',[.85,.85,.85]);

hold on

h2 = plot(notBurnIn,Intercept+X*Beta,'k--','LineWidth',2);

title('{\bf 1000 Simulated Response Paths for Analysis}')

legend([h1(1),h2],'Simulated Path','Mean')

axis tight

hold off

figure

h1 = plot(notBurnIn,var(U,0,2),'r','LineWidth',2);

hold on

h2 = plot([notBurnIn(1) notBurnIn(end)],...

 [theoVarFix theoVarFix],'k--','LineWidth',2);

title('{\bf Converged Unconditional Disturbance Variance}')

legend([h1,h2],'Simulation Variance','Theoretical Variance')

axis tight

hold off

 Simulate Regression Models with ARMA Errors

4-169

4 Time Series Regression Models

4-170

Unconditional disturbance simulation variances fluctuate around the theoretical
variance due to Monte Carlo sampling error. Be aware that the exclusion of the burn-in
sample from analysis reduces the effective sample size.

 Simulate Regression Models with Nonstationary Errors

4-171

Simulate Regression Models with Nonstationary Errors

In this section...

“Simulate a Regression Model with Nonstationary Errors” on page 4-171
“Simulate a Regression Model with Nonstationary Exponential Errors” on page 4-175

Simulate a Regression Model with Nonstationary Errors

This example shows how to simulate responses from a regression model with ARIMA
unconditional disturbances, assuming that the predictors are white noise sequences.

Specify the regression model with ARIMA errors:

where the innovations are Gaussian with variance 1.

T = 150; % Sample size

Mdl = regARIMA('MA',{1.4,0.8},'AR',0.5,'Intercept',3,...

 'Variance',1,'Beta',[2;-1.5],'D',1);

Simulate two Gaussian predictor series with mean 0 and variance 1.

rng(1); % For reproducibility

X = randn(T,2);

Simulate and plot the response series.

y = simulate(Mdl,T,'X',X);

figure;

plot(y);

title 'Simulated Responses';

axis tight;

4 Time Series Regression Models

4-172

Regress y onto X. Plot the residuals, and test them for a unit root.

RegMdl = fitlm(X,y);

figure;

subplot(2,1,1);

plotResiduals(RegMdl,'caseorder');

subplot(2,1,2);

plotResiduals(RegMdl,'lagged');

h = adftest(RegMdl.Residuals.Raw)

h =

 Simulate Regression Models with Nonstationary Errors

4-173

 0

The residual plots indicate that they are autocorrelated and possibly nonstationary (as
constructed). h = 0 indicates that there is insufficient evidence to suggest that the
residual series is not a unit root process.

Treat the nonstationary unconditional disturbances by transforming the data
appropriately. In this case, difference the responses and predictors. Reestimate the
regression model using the transformed responses, and plot the residuals.

dY = diff(y);

4 Time Series Regression Models

4-174

dX = diff(X);

dRegMdl = fitlm(dX,dY);

figure;

subplot(2,1,1);

plotResiduals(dRegMdl,'caseorder','LineStyle','-');

subplot(2,1,2);

plotResiduals(dRegMdl,'lagged');

h = adftest(dRegMdl.Residuals.Raw)

h =

 1

 Simulate Regression Models with Nonstationary Errors

4-175

The residual plots indicate that they are still autocorrelated, but stationary. h = 1
indicates that there is enough evidence to suggest that the residual series is not a unit
root process.

Once the residuals appear stationary, you can determine the appropriate number of
lags for the error model using Box and Jenkins methodology. Then, use regARIMA to
completely model the regression model with ARIMA errors.

Simulate a Regression Model with Nonstationary Exponential Errors

This example shows how to simulate responses from a regression model with
nonstationary, exponential, unconditional disturbances. Assume that the predictors are
white noise sequences.

4 Time Series Regression Models

4-176

Specify the following ARIMA error model:

where the innovations are Gaussian with mean 0 and variance 0.05.

T = 50; % Sample size

MdlU = arima('AR',0.9,'Variance',0.05,'D',1,'Constant',0);

Simulate unconditional disturbances. Exponentiate the simulated errors.

rng(10); % For reproducibility

u = simulate(MdlU,T,'Y0',[0.5:1.5]');

expU = exp(u);

Simulate two Gaussian predictor series with mean 0 and variance 1.

X = randn(T,2);

Generate responses from the regression model with time series errors:

Beta = [2;-1.5];

Intercept = 3;

y = Intercept + X*Beta + expU;

Plot the responses.

figure

plot(y)

title('Simulated Responses')

axis tight

 Simulate Regression Models with Nonstationary Errors

4-177

The response series seems to grow exponentially (as constructed).

Regress y onto X. Plot the residuals.

RegMdl1 = fitlm(X,y);

figure

subplot(2,1,1)

plotResiduals(RegMdl1,'caseorder','LineStyle','-')

subplot(2,1,2)

plotResiduals(RegMdl1,'lagged')

4 Time Series Regression Models

4-178

The residuals seem to grow exponentially, and seem autocorrelated (as constructed).

Treat the nonstationary unconditional disturbances by transforming the data
appropriately. In this case, take the log of the response series. Difference the logged
responses. It is recommended to transform the predictors the same way as the responses
to maintain the original interpretation of their relationship. However, do not transform
the predictors in this case because they contain negative values. Reestimate the
regression model using the transformed responses, and plot the residuals.

dLogY = diff(log(y));

RegMdl2 = fitlm(X(2:end,:),dLogY);

figure

subplot(2,1,1)

 Simulate Regression Models with Nonstationary Errors

4-179

plotResiduals(RegMdl2,'caseorder','LineStyle','-')

subplot(2,1,2)

plotResiduals(RegMdl2,'lagged')

h = adftest(RegMdl2.Residuals.Raw)

h =

 1

4 Time Series Regression Models

4-180

The residual plots indicate that they are still autocorrelated, but stationary. h = 1
indicates that there is enough evidence to suggest that the residual series is not a unit
root process.

Once the residuals appear stationary, you can determine the appropriate number of
lags for the error model using Box and Jenkins methodology. Then, use regARIMA to
completely model the regression model with ARIMA errors.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
regaARIMA

More About
• “Box-Jenkins Methodology” on page 3-2

 Simulate Regression Models with Multiplicative Seasonal Errors

4-181

Simulate Regression Models with Multiplicative Seasonal Errors

In this section...

“Simulate a Regression Model with Stationary Multiplicative Seasonal Errors” on page
4-181
“” on page 4-184

Simulate a Regression Model with Stationary Multiplicative Seasonal
Errors

This example shows how to simulate sample paths from a regression model with
multiplicative seasonal ARIMA errors using simulate. The time series is monthly
international airline passenger numbers from 1949 to 1960.

Load the airline and recessions data sets.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

load Data_Recessions

Transform the airline data by applying the logarithm, and the 1st and 12th differences.

y = Data;

logY = log(y);

DiffPoly = LagOp([1 -1]);

SDiffPoly = LagOp([1 -1],'Lags',[0, 12]);

dLogY = filter(DiffPoly*SDiffPoly,logY);

Construct the predictor (X), which determines whether the country was in a recession
during the sampled period. A 0 in row t means the country was not in a recession in
month t, and a 1 in row t means that it was in a recession in month t.

X = zeros(numel(dates),1); % Preallocation

for j = 1:size(Recessions,1)

 X(dates >= Recessions(j,1) & dates <= Recessions(j,2)) = 1;

end

X = X(14:end); % Remove the first 14 observations for consistency

dates = dates(14:end);

Define index sets that partition the data into estimation and forecast samples.

nSim = 60; % Forecast period

4 Time Series Regression Models

4-182

T = length(dLogY);

estInds = 1:(T-nSim);

foreInds = (T-nSim+1):T;

Estimate the regression model with multiplicative seasonal errors:

Mdl = regARIMA('MALags',1,'SMALags',12);

EstMdl = estimate(Mdl,dLogY(estInds),'X',X(estInds));

 Regression with ARIMA(0,0,1) Error Model with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.00421457 0.00153333 2.74864

 MA{1} -0.477125 0.120874 -3.94728

 SMA{12} -0.741149 0.120416 -6.15492

 Beta1 -0.018912 0.00756648 -2.49945

 Variance 0.00166952 0.000311687 5.35639

Use the estimated coefficients of the model (contained in EstMdl) to simulate 25
realizations of airline passenger counts over the 60-month horizon. Infer the residuals,
and use them as a presample.

[~,u0] = infer(EstMdl,dLogY(estInds),'X',X(estInds));

rng(5);

numPaths = 25;

dLogYSim = simulate(EstMdl,60,'numPaths',numPaths,'U0',u0,'X',X(foreInds));

meanDLogYSim = mean(dLogYSim,2);

figure

h1 = plot(dates(estInds),dLogY(estInds));

title('{\bf Transformed, Simulated Monthly Passenger Totals}')

hold on

plot(dates(foreInds),dLogYSim,'Color',[.85,.85,.85])

h2 = plot(dates(foreInds),meanDLogYSim,'k.-','LineWidth',2);

 Simulate Regression Models with Multiplicative Seasonal Errors

4-183

plot([dates(estInds(end)),dates(foreInds(1))],...

 [repmat(dLogY(estInds(end)),numPaths,1),dLogYSim(1,:)'],...

 'Color',[.85,.85,.85])

plot([dates(estInds(end)),dates(foreInds(1))],...

 [dLogY(estInds(end)),meanDLogYSim(1)],'k.-','LineWidth',2)

plot(dates(foreInds),dLogY(foreInds))

datetick

legend([h1,h2],'Observations','Simulation Mean','Location','NorthWest')

axis tight

hold off

The regression model with SMA errors seems to forecast the series well.

Check the predictive performance of the model by:

4 Time Series Regression Models

4-184

1 Varying the size of the forecast period
2 Estimating the prediction mean square error (PMSE)
3 Choosing the model with the lowest PMSE

Simulate a Regression Model with Nonstationary Multiplicative Seasonal Errors

This example shows how to simulate sample paths from a regression model with
multiplicative seasonal ARIMA errors using simulate. The time series is monthly
international airline passenger numbers from 1949 to 1960.

Load the airline and recessions data sets. Transform the response.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

load Data_Recessions

y = log(Data);

Construct the predictor (X), which determines whether the country was in a recession
during the sampled period. A 0 in row t means the country was not in a recession in
month t, and a 1 in row t means that it was in a recession in month t.

X = zeros(numel(dates),1); % Preallocation

for j = 1:size(Recessions,1)

 X(dates >= Recessions(j,1) & dates <= Recessions(j,2)) = 1;

end

Define index sets that partition the data into estimation and forecast samples.

nSim = 60; % Forecast period

T = length(y);

estInds = 1:(T-nSim);

foreInds = (T-nSim+1):T;

Estimate the regression model with multiplicative seasonal errors:

Set the regression model intercept to 0 since it is not identifiable in an integrated model.

Mdl = regARIMA('D',1,'Seasonality',12,'MALags',1,'SMALags',12,...

 Simulate Regression Models with Multiplicative Seasonal Errors

4-185

 'Intercept',0);

EstMdl = estimate(Mdl,y(estInds),'X',X(estInds));

 Regression with ARIMA(0,1,1) Error Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0 Fixed Fixed

 MA{1} -0.356617 0.103933 -3.43121

 SMA{12} -0.677293 0.112935 -5.99718

 Beta1 0.00150984 0.0205331 0.0735321

 Variance 0.00151984 0.000214114 7.09828

Use the estimated coefficients of the model (contained in EstMdl), to simulate airline
passenger counts over the 60-month horizon. Infer the residuals, and use them as a
presample.

[e0,u0] = infer(EstMdl,y(estInds),'X',X(estInds));

rng(5);

numPaths = 500;

ySim = simulate(EstMdl,nSim,'numPaths',numPaths,'E0',e0,...

 'U0',u0,'X',X(foreInds));

meanYSim = mean(ySim,2);

figure

h1 = plot(dates(estInds),y(estInds));

title('{\bf Simulated Monthly Passenger Totals}')

hold on

plot(dates(foreInds),ySim,'Color',[.85,.85,.85])

h2 = plot(dates(foreInds),meanYSim,'k.-','LineWidth',2);

plot([dates(estInds(end)),dates(foreInds(1))],...

 [repmat(y(estInds(end)),numPaths,1),ySim(1,:)'],...

 'Color',[.85,.85,.85])

plot([dates(estInds(end)),dates(foreInds(1))],...

 [y(estInds(end)),meanYSim(1)],'k.-','LineWidth',2)

plot(dates(foreInds),y(foreInds))

datetick

legend([h1,h2],'Observations','Monte Carlo Forecasts',...

 'Location','NorthWest')

axis tight

hold off

4 Time Series Regression Models

4-186

The simulated forecasts show growth and seasonal periodicity similar to the observed
series. The regression model with SMA errors seems to forecast the series well, albeit
slightly overestimating.

Check the predictive performance of the model by:

1 Varying the size of the forecast period
2 Estimating the prediction mean square error (PMSE)
3 Choosing the model with the lowest PMSE

 Monte Carlo Simulation of Regression Models with ARIMA Errors

4-187

Monte Carlo Simulation of Regression Models with ARIMA Errors

In this section...

“What Is Monte Carlo Simulation?” on page 4-187
“Generate Monte Carlo Sample Paths” on page 4-187
“Monte Carlo Error” on page 4-189

What Is Monte Carlo Simulation?

Monte Carlo simulation is the process of generating independent, random draws from
a specified probabilistic model. When simulating time series models, one draw (or
realization) is an entire sample path of specified length N, y1, y2,...,yN. When you generate
a large number of draws, say M, you generate M sample paths, each of length N.

Note: Some extensions of Monte Carlo simulation rely on generating dependent
random draws, such as Markov Chain Monte Carlo (MCMC). The simulate function in
Econometrics Toolbox generates independent realizations.

Some applications of Monte Carlo simulation are:

• Demonstrating theoretical results
• Forecasting future events
• Estimating the probability of future events

Generate Monte Carlo Sample Paths

The time series portion of the model specifies the dynamic evolution of the unconditional
disturbance process over time through a conditional mean structure. To perform Monte
Carlo simulation of regression models with ARIMA errors:

1 Specify presample innovations or unconditional disturbances (or use default
presample data).

2 Generate an uncorrelated innovation series from a probability distribution.
3 Filter the innovations through the ARIMA error model to obtain the simulated

unconditional disturbances.

4 Time Series Regression Models

4-188

4 Use the regression model, predictor data, and simulated unconditional disturbances
to obtain the responses.

For example, consider simulating N responses from the regression model with
ARMA(2,1) errors:

y

u

X u

u u

t t t

t t t t t

= +

= + + +- - -

b

f f e q e1 1 2 2 1 1,

where εt is Gaussian with mean 0 and variance σ2. Given presample unconditional
disturbances (u0 and u–1) and innovations (ε0), following these steps:

1 Generate N independent innovations from the Gaussian distribution:

{ }.� , � , ..., �e e e1 2 N

2 Filter the innovations recursively to obtain the unconditional disturbances:

a ˆ ˆu u u
1 1 0 2 1 1 0

= + + +-f f e e

b ˆ ˆ ˆ ˆu u u
2 1 0 2 11 2

= + + +f f e e

c ˆ ˆ ˆ ˆ ˆu u u
3 2 1 3 21 2

= + + +f f e e

d ...
e ˆ ˆ ˆ ˆ ˆ .u u u

N N N N N
= + + +- - -f f e e

1 21 2 1

3 Obtain simulated responses using the unconditional disturbances, regression model,
and the predictors:

ˆ ˆ .y X ut t t= +b

Econometrics Toolbox automates this process with simulate. Pass in a fully specified
regression model with ARIMA errors (regARIMA), the number of responses to simulate,
and, optionally, the number of paths and presample data, and simulate simulates the
responses.

Note: Econometrics Toolbox treats the predictors in the regression model as fixed,
nonstochastic series. Therefore, in order to generate Monte Carlo sample paths of the
response, you need to know the values of the predictors.

 Monte Carlo Simulation of Regression Models with ARIMA Errors

4-189

Monte Carlo Error

Using many simulated paths, you can estimate various features of the model. However,
Monte Carlo estimation is based on a finite number of simulations. Therefore, Monte
Carlo estimates are subject to some amount of error. You can reduce the amount of
Monte Carlo error in your simulation study by increasing the number of sample paths,
M, that you generate from your model.

For example, to estimate the probability of a future event:

1 Generate M sample paths from your model.
2 Estimate the probability of the future event using the sample proportion of the event

occurrence across M simulations,

ˆ
#

.p
times event occurs in M draws

M
=

3 Calculate the Monte Carlo standard error for the estimate,

se
p p

M
=

-ˆ (ˆ)
.

1

You can reduce the Monte Carlo error of the probability estimate by increasing the
number of realizations. If you know the desired precision of your estimate, you can solve
for the number of realizations needed to achieve that level of precision.

See Also
regARIMA | simulate

Related Examples
• “Simulate Regression Models with ARMA Errors” on page 4-145
• “Simulate Regression Models with Nonstationary Errors” on page 4-171
• “Simulate Regression Models with Multiplicative Seasonal Errors” on page 4-181

More About
• “Presample Data for regARIMA Model Simulation” on page 4-191
• “Transient Effects in regARIMA Model Simulations” on page 4-192

4 Time Series Regression Models

4-190

• “Regression Models with Time Series Errors” on page 4-6

 Presample Data for regARIMA Model Simulation

4-191

Presample Data for regARIMA Model Simulation

When simulating realizations from a regression model with ARIMA errors, the software
requires presample unconditional disturbances and innovations to initialize the error
process. The regARIMA model property P stores the number of presample unconditional
disturbances that you need to initialize the simulation. The property Q stores the number
of presample innovations that you need to initialize the simulation.

You can specify your own presample data, or let simulate generate presample data. If you
let simulate generate default presample data, then simulate sets the required number
of presample unconditional disturbances and presample innovations to 0.

simulate only accepts presample data for the error process, even if the response and
predictors are time series.

See Also
regARIMA | simulate

Related Examples
• “Simulate Regression Models with ARMA Errors” on page 4-145
• “Simulate Regression Models with Nonstationary Errors” on page 4-171
• “Simulate Regression Models with Multiplicative Seasonal Errors” on page 4-181

More About
• “Monte Carlo Simulation of Regression Models with ARIMA Errors” on page 4-187
• “Transient Effects in regARIMA Model Simulations” on page 4-192
• “Regression Models with Time Series Errors” on page 4-6

4 Time Series Regression Models

4-192

Transient Effects in regARIMA Model Simulations

In this section...

“What Are Transient Effects?” on page 4-192
“Illustration of Transient Effects on Regression” on page 4-192

What Are Transient Effects?

When you use automatically generated presample data, you often see transient effects at
the beginning of the simulation. This is sometimes called a burn-in period. For stationary
error processes, the impulse response function decays to zero over time. This means the
starting point of the error simulation is eventually forgotten. To reduce transient effects,
you can:

• Oversample: generate sample paths that are longer than needed, and discard the
beginning samples that show transient effects.

• Recycle: use a first simulation to generate presample data for a second simulation.

If the model exhibits nonstationary errors, then the error process does not forget its
starting point. By default, all realizations of nonstationary processes begin at zero. For a
nonzero starting point, you need to specify your own presample data.

Illustration of Transient Effects on Regression

• “Transient Effects Are Randomly Spread” on page 4-192
• “Transient Effects Begin the Series” on page 4-196

Transient effects in regression models with ARIMA errors can affect the regression
coefficient estimates. The following examples illustrate the behavior of the regression
line in models that ignore transient effects and models that account for them.

Transient Effects Are Randomly Spread

This example examines regression lines of regression models with ARMA errors when
the transient effects are randomly spread with respect to the joint distribution of the
predictor and response.

 Transient Effects in regARIMA Model Simulations

4-193

Specify the regression model with ARMA(2,1) errors:

where is Gaussian with mean 0 and variance 1. Plot the impulse response function.

Mdl = regARIMA('AR',{0.9,-0.4},'MA',{0.8},'Beta',2,...

 'Variance',1,'Intercept',3);

figure

impulse(Mdl)

4 Time Series Regression Models

4-194

The unconditional disturbances seem to settle after the 10th lag. Therefore, the transient
effects end at the 10th lag.

Simulate a univariate, Gaussian predictor series with mean 0 and variance 1. Simulate
100 paths from Mdl.

rng(5); % For reproducibility

T = 50; % Sample size

numPaths = 100; % Number of paths

X = randn(T,1); % Full predictor series

Y = simulate(Mdl,T,'numPaths',numPaths,'X',X); % Full response series

endTrans = 10;

truncX = X((endTrans+1):end); % Predictor without transient effects

truncY = Y((endTrans+1):end,:); % Response without transient effects

Fit the model to each simulated response path separately for the full and truncated
series.

ToEstMdl = regARIMA(2,0,1); % Empty model for estimation

beta1 = zeros(2,numPaths);

beta2 = beta1;

for i = 1:numPaths

 EstMdl1 = estimate(ToEstMdl,Y(:,i),'X',X,'display','off');

 EstMdl2 = estimate(ToEstMdl,truncY(:,i),'X',truncX,'display','off');

 beta1(:,i) = [EstMdl1.Intercept; EstMdl1.Beta];

 beta2(:,i) = [EstMdl2.Intercept; EstMdl2.Beta];

end

beta1 is a 2-by- numPaths matrix containing the estimated intercepts and slopes for
each simulated data set. beta2 is a 2-by- numPaths matrix containing the estimated
intercepts and slopes for the truncated, simulated data sets.

Compare the simulated regression lines between the full and truncated series. For one of
the paths, plot the simulated data and its corresponding regression lines.

betaBar1 = mean(beta1,2);

betaBar2 = mean(beta2,2);

fprintf('Transient Effects | Sim. Mean of Intercept | Sim. Mean of Slope\n')

fprintf('===\n')

fprintf('Include | %0.6g | %0.6g\n',betaBar1(1),betaBar1(2))

 Transient Effects in regARIMA Model Simulations

4-195

fprintf('Without | %0.6g | %0.6g\n',betaBar2(1),betaBar2(2))

figure

plot(X,Y(:,1),'.')

hold on

plot(X(1:endTrans),Y(1:endTrans),'ro')

plot([min(X) max(X)],beta1(1,1) + beta1(2,1)*[min(X) max(X)],'b')

plot([min(truncX) max(truncX)],...

 beta2(1,1) + beta2(2,1)*[min(truncX) max(truncX)],'r')

legend('Data','Truncated Data','With Transient Effects',...

 'Without Transient Effects','Location','NorthWest')

xlabel('x')

ylabel('y')

text(0,-3,sprintf('\\beta_0 = %0.4g',beta1(1,1)),'Color',[0,0,1])

text(0,-4,sprintf('\\beta_0 = %0.4g',beta2(1,1)),'Color',[1,0,0])

text(2,-3,sprintf('\\beta_1 = %0.4g',beta1(2,1)),'Color',[0,0,1])

text(2,-4,sprintf('\\beta_1 = %0.4g',beta2(2,1)),'Color',[1,0,0])

hold off

Transient Effects | Sim. Mean of Intercept | Sim. Mean of Slope

===

Include | 3.08619 | 2.00098

Without | 3.16408 | 1.99455

4 Time Series Regression Models

4-196

The table in the Command Window displays the simulation averages of the intercept and
slope of the regression model. The results suggest the regression line corresponding to
the analysis including the full data set is parallel to the regression line corresponding to
the truncated data set. In other words, the slope is mostly unaffected by accounting for
transient effects, but the intercept is slightly affected.

Transient Effects Begin the Series

This example examines regression lines of regression models with ARMA errors when
the transient effects occur at the beginning of each series.

Specify the regression model with ARMA(2,1) errors:

 Transient Effects in regARIMA Model Simulations

4-197

where is Gaussian with mean 0 and variance 1. Plot the impulse response function.

Mdl = regARIMA('AR',{0.9,-0.4},'MA',{0.8},'Beta',2,...

 'Variance',1,'Intercept',3);

figure

impulse(Mdl)

The unconditional disturbances seem to settle at the 10th lag. Therefore, the transient
effects end after the 10th lag.

4 Time Series Regression Models

4-198

Simulate a univariate, Gaussian predictor series with mean 0 and variance 1. Simulate
100 paths from Mdl. Truncate the response and predictor data sets to remove the
transient effects.

rng(5); % For reproducibility

T = 50; % Sample size

numPaths = 100; % Number of paths

X = linspace(-3,3,T)' + randn(T,1)*0.1; % Full predictor series

Y = simulate(Mdl,T,'numPaths',numPaths,'X',X); % Full response series

endTrans = 10;

truncX = X((endTrans+1):end); % Predictor without transient effects

truncY = Y((endTrans+1):end,:); % Response without transient effects

Fit the model to each simulated response path separately for the full and truncated
series.

ToEstMdl = regARIMA(2,0,1); % Empty model for estimation

beta1 = zeros(2,numPaths);

beta2 = beta1;

for i = 1:numPaths

 EstMdl1 = estimate(ToEstMdl,Y(:,i),'X',X,'display','off');

 EstMdl2 = estimate(ToEstMdl,truncY(:,i),'X',truncX,'display','off');

 beta1(:,i) = [EstMdl1.Intercept; EstMdl1.Beta];

 beta2(:,i) = [EstMdl2.Intercept; EstMdl2.Beta];

end

beta1 is a 2-by- numPaths matrix containing the estimated intercepts and slopes for
each simulated data set. beta2 is a 2-by- numPaths matrix containing the estimated
intercepts and slopes for the truncated, simulated data sets.

Compare the simulated regression lines between the full and truncated series. For one of
the paths, plot the simulated data and its corresponding regression lines.

betaBar1 = mean(beta1,2);

betaBar2 = mean(beta2,2);

fprintf('Data | Sim. Mean of Intercept | Sim. Mean of Slope\n')

fprintf('===\n')

fprintf('Full | %0.6g | %0.6g\n',betaBar1(1),betaBar1(2))

fprintf('Truncated | %0.6g | %0.6g\n',betaBar2(1),betaBar2(2))

figure

plot(X,Y(:,1),'.')

 Transient Effects in regARIMA Model Simulations

4-199

hold on

plot(X(1:endTrans),Y(1:endTrans),'ro')

plot([min(X) max(X)],beta1(1,1) + beta1(2,1)*[min(X) max(X)],'b')

plot([min(truncX) max(truncX)],...

 beta2(1,1) + beta2(2,1)*[min(truncX) max(truncX)],'r')

xlabel('x')

ylabel('y')

legend('Data','Truncated Data','Full Data Regression',...

 'Truncated Data Regression','Location','NorthWest')

text(0,-3,sprintf('\\beta_0 = %0.4g',beta1(1,1)),'Color',[0,0,1])

text(0,-5,sprintf('\\beta_0 = %0.4g',beta2(1,1)),'Color',[1,0,0])

text(2,-3,sprintf('\\beta_1 = %0.4g',beta1(2,1)),'Color',[0,0,1])

text(2,-5,sprintf('\\beta_1 = %0.4g',beta2(2,1)),'Color',[1,0,0])

hold off

Data | Sim. Mean of Intercept | Sim. Mean of Slope

===

Full | 3.09312 | 2.01796

Truncated | 3.14734 | 1.98798

4 Time Series Regression Models

4-200

The table in the Command Window displays the simulation averages of the intercept and
slope of the regression model. The results suggest that, on average, the regression lines
corresponding to the full data and truncated data have slightly different intercepts and
slopes. In other words, transient effects slightly affect regression estimates.

The plot displays the data and regression lines for one simulated path. The transient
effects seem to affect the results more severely.

See Also
regARIMA | simulate

 Transient Effects in regARIMA Model Simulations

4-201

Related Examples
• “Simulate Regression Models with ARMA Errors” on page 4-145
• “Simulate Regression Models with Nonstationary Errors” on page 4-171
• “Simulate Regression Models with Multiplicative Seasonal Errors” on page 4-181

More About
• “Monte Carlo Simulation of Regression Models with ARIMA Errors” on page 4-187
• “Regression Models with Time Series Errors” on page 4-6

4 Time Series Regression Models

4-202

Forecast a Regression Model with ARIMA Errors

This example shows how to forecast a regression model with ARIMA(3,1,2) errors using
forecast and simulate.

Simulate two Gaussian predictor series with mean 2 and variance 1.

rng(1);

T = 50; % Sample size

X = randn(T,2) + 2;

Specify the regression model with ARIMA(3,1,2) errors:

where is Gaussian with mean 0 and variance 2.

Mdl = regARIMA('Intercept',3,'Beta',[-2;1.5],'AR',{0.9,-0.5,0.2},...

 'D',1','MA',{0.75,-0.15},'Variance',2);

Mdl is a fully specified regression model with ARIMA(3,1,2) errors. Methods such as
simulate and forecast require a fully specified model.

Simulate 30 observations from Mdl.

[y,e,u] = simulate(Mdl,30,'X',X(1:30,:));

y contains the simulated responses. e and u contain the corresponding simulated
innovations and unconditional disturbances, respecitvely. It is best practice to provide
forecast with presample innovations and unconditional disturbances if they are
available.

Compute MMSE forecasts for Mdl 20 periods into the future using forecast. Compute
the corresponding 95% forecast intervals.

[yF,yMSE] = forecast(Mdl,20,'X0',X(1:30,:),'U0',u,...

 Forecast a Regression Model with ARIMA Errors

4-203

 'E0',e,'XF',X(31:T,:));

yFCI = [yF,yF] + 1.96*[-sqrt(yMSE),sqrt(yMSE)];

yFCI is a 20-by-2 matrix containing the 20 forecast intervals. The first column of yFCI
contains the lower bounds for the forecast intervals, and the second column contains the
upper bounds.

Forecast Mdl 20 periods into the future using Monte Carlo simulation. Compute the
corresponding 95% forecast intervals

yMC = simulate(Mdl,20,'numPaths',1000,'X',X(31:T,:),'U0',u,'E0',e);

yMCBar = mean(yMC,2);

yMCCI = prctile(yMC,[2.5,97.5],2);

yMCBar is a 20-by-1 vector that contains the Monte Carlo forecasts over the forecast
horizon. Like yFCI, yMMCI is a 20-by-2 matrix containing the forecast intervals, but
based on the Monte Carlo simulation.

Plot the two forecast sets and their corresponding 95% forecast intervals.

figure

h1 = plot(1:30,y);

title('{\bf Forecasts and 95% Forecast Intervals}')

hold on

h2 = plot(31:50,yF,'r','LineWidth',2);

h3 = plot(31:50,yFCI,'r--','LineWidth',2);

h4 = plot(31:50,yMCBar,'k','LineWidth',2);

h5 = plot(31:50,yMCCI,'k--','LineWidth',2);

plot(30:31,[repmat(y(end),3,1),[yF(1),yFCI(1,:)]'],'b')

legend([h1,h2,h3(1),h4,h5(1)],'Observations','MMSE Forecasts',...

 'MMSE Forecast Intervals','Monte Carlo Forecasts',...

 'Monte Carlo Forecast Intervasls','Location','SouthWest')

xlabel('Time')

ylabel('y')

axis tight

hold off

4 Time Series Regression Models

4-204

The MMSE and Monte Carlo forecasts are virtually equivalent. There are minor
discrepancies between the forecast intervals.

The width of the forecast intervals increases as time increases. This is a consequence of
forecasting with integrated errors.

See Also
estimate | forecast | regARIMA

Related Examples
• “Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors” on page

4-206

 Forecast a Regression Model with ARIMA Errors

4-205

• “Verify Predictive Ability Robustness of a regARIMA Model” on page 4-212

More About
• “MMSE Forecasting Regression Models with ARIMA Errors” on page 4-215
• “Monte Carlo Forecasting of regARIMA Models” on page 4-220

4 Time Series Regression Models

4-206

Forecast a Regression Model with Multiplicative Seasonal ARIMA
Errors

This example shows how to forecast a multiplicative seasonal ARIMA model using
forecast. The response series is monthly international airline passenger numbers from
1949 to 1960.

Load the airline and recessions data sets. Transform the response.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

load Data_Recessions

y = log(Data);

Construct the predictor (X), which determines whether the country was in a recession
during the sampled period. A 0 in row t means the country was not in a recession in
month t, and a 1 in row t means that it was in a recession in month t.

X = zeros(numel(dates),1); % Preallocation

for j = 1:size(Recessions,1)

 X(dates >= Recessions(j,1) & dates <= Recessions(j,2)) = 1;

end

Define index sets that partition the data into estimation and forecast samples.

nSim = 60; % Forecast period

T = length(y);

estInds = 1:(T-nSim);

foreInds = (T-nSim+1):T;

Estimate the regression model with multiplicative seasonal ARIMA}
errors:

Set the regression model intercept to 0 since it is not identifiable in a model with
integrated errors.

Mdl = regARIMA('D',1,'Seasonality',12,'MALags',1,'SMALags',12,...

 Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors

4-207

 'Intercept',0);

EstMdl = estimate(Mdl,y(estInds),'X',X(estInds));

 Regression with ARIMA(0,1,1) Error Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0 Fixed Fixed

 MA{1} -0.356617 0.103933 -3.43121

 SMA{12} -0.677293 0.112935 -5.99718

 Beta1 0.00150984 0.0205331 0.0735321

 Variance 0.00151984 0.000214114 7.09828

Use the estimated coefficients of the model (contained in EstMdl), to generate MMSE
forecasts and corresponding mean square errors over a 60-month horizon. Use the
observed series as presample data. By default, forecast infers presample innovations
and unconditional disturbances using the specified model and observations.

[YF,YMSE] = forecast(EstMdl,nSim,'X0',X(estInds),...

 'Y0',y(estInds),'XF',X(foreInds));

ForecastInt = [YF,YF] + 1.96*[-sqrt(YMSE), sqrt(YMSE)];

figure

h1 = plot(dates,y);

title('{\bf Forecasted Monthly Passenger Totals}')

hold on

h2 = plot(dates(foreInds),YF,'Color','r','LineWidth',2);

h3 = plot(dates(foreInds),ForecastInt,'k--','LineWidth',2);

datetick

legend([h1,h2,h3(1)],'Observations','MMSE Forecasts',...

 '95% MMSE Forecast Intervals','Location','NorthWest')

axis tight

hold off

4 Time Series Regression Models

4-208

The regression model with SMA errors seems to forecast the series well, albeit slightly
overestimating. Since the error process is nonstationary, the forecast intervals widen as
time increases.

Compare the MMSE forecasts to Monte Carlo forecasts by simulating 500 sample paths
from EstMdl over the forcast horizon.

[e0,u0] = infer(EstMdl,y(estInds),'X',X(estInds));

rng(5);

numPaths = 500;

ySim = simulate(EstMdl,nSim,'numPaths',numPaths,...

 'E0',e0,'U0',u0,'X',X(foreInds));

meanYSim = mean(ySim,2);

ForecastIntMC = [prctile(ySim,2.5,2),prctile(ySim,97.5,2)];

 Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors

4-209

figure

h1 = plot(dates(foreInds),y(foreInds));

title('{\bf Forecasted Monthly Passenger Totals}')

hold on

h2 = plot(dates(foreInds),YF,'Color',[0.85,0.85,0.85],...

 'LineWidth',4);

h3 = plot(dates(foreInds),ForecastInt,'--','Color',...

 [0.85,0.85,0.85],'LineWidth',4);

h4 = plot(dates(foreInds),meanYSim,'k','LineWidth',2);

h5 = plot(dates(foreInds),ForecastIntMC,'k--','LineWidth',2);

datetick

legend([h1,h2,h3(1),h4,h5(1)],'Observations',...

 'MMSE Forecasts','95% MMSE Forecast Intervals',...

 'Monte Carlo Forecasts','95% Monte Carlo Forecast Intervals',...

 'Location','NorthWest')

axis tight

hold off

4 Time Series Regression Models

4-210

The MMSE forecasts and Monte Carlo mean forecasts are virtually indistinguishable.
However, there are slight discrepancies between the theoretical 95% forecast intervals
and the simulation-based 95% forecast intervals.

See Also
estimate | forecast | regARIMA | simulate

Related Examples
• “Forecast a Regression Model with ARIMA Errors” on page 4-202
• “Verify Predictive Ability Robustness of a regARIMA Model” on page 4-212

 Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors

4-211

More About
• “MMSE Forecasting Regression Models with ARIMA Errors” on page 4-215
• “Monte Carlo Forecasting of regARIMA Models” on page 4-220

4 Time Series Regression Models

4-212

Verify Predictive Ability Robustness of a regARIMA Model

This example shows how to forecast a regression model with ARIMA errors, and how to
check the model predictability robustness.

Load the Credit Defaults data set, assign the response (IGD) to y and the predictors AGE,
CPF, and SPR to X. For illustration, specify that the response series is a regression model
with AR(1) errors. To avoid distraction from the purpose of this example, assume that all
predictor series are stationary.

load Data_CreditDefaults

y = Data(:,5);

X = Data(:,[1 3:4]);

T = size(X,1); % Sample size

Mdl = regARIMA(1,0,0);

Vary the validation sample size (m), and forecast responses from Mdl recursively. That is,
for each validation sample size:

1 Fit the model to the data (EstMdlY).
2 Forecast responses from the estimated model (yF).
3 Compute the two performance statistics, root mean square error (RMSE) and root

prediction mean square error (RPMSE).

m = 4:10; % Validation sample lengths

rPMSE = m; % Preallocate rPMSE

rMSE = m; % Preallocate rMSE

for k = 1:numel(m);

 yEst = y(1:(T-m(k))); % Response data for estimation

 yVal = y((T-m(k)+1):T); % Validation sample

 EstMdlY = estimate(Mdl,yEst,'X',X,'display','off');

 yHat = EstMdlY.Intercept + X(1:(T-m(k)),:)*EstMdlY.Beta';...

 % Estimation sample predicted values

 [e0,u0] = infer(EstMdlY,yEst,'X',X);

 yF = forecast(EstMdlY,m(k),'Y0',yEst,...

 'X0',X(1:T-m(k),:),'XF',X((T-m(k)+1):T,:));...

 % Validation sample predicted values

 rMSE(k) = sqrt(mean((yEst - yHat).^2));

 rPMSE(k) = sqrt(mean((yF - yVal).^2));

end

 Verify Predictive Ability Robustness of a regARIMA Model

4-213

rMSE and rPMSE are vectors that contain the RMSE and RPMSE, respectively, for each
validation sample.

Display the performance measures.

fprintf('\n m | rMSE | rPMSE\n')

fprintf('====================\n')

for k = 1:length(m)

 fprintf('%2d | %0.4f | %0.4f\n',m(k),rMSE(k),rPMSE(k))

end

 m | rMSE | rPMSE

====================

 4 | 0.0947 | 0.2274

 5 | 0.0808 | 0.1902

 6 | 0.0810 | 0.2036

 7 | 0.0714 | 0.1924

 8 | 0.0809 | 0.1532

 9 | 0.0720 | 0.1557

10 | 0.0899 | 0.1300

The predictive ability of this model is fairly robust because rPMSE changes slightly for
increasing m. However, rMSE is less than rPMSE for all m. This signifies poor predictive
ability.

Search for a better model by specifying, e.g., more AR or MA lags in the error model, and
compare the PMSEs over these models. Choose the model with the lowest PMSE for a
given validation sample size.

See Also
estimate | forecast | regARIMA

Related Examples
• “Verify Predictive Ability Robustness of a regARIMA Model” on page 4-212
• “Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors” on page

4-206

More About
• “MMSE Forecasting Regression Models with ARIMA Errors” on page 4-215

4 Time Series Regression Models

4-214

• “Monte Carlo Forecasting of regARIMA Models” on page 4-220

 MMSE Forecasting Regression Models with ARIMA Errors

4-215

MMSE Forecasting Regression Models with ARIMA Errors

In this section...

“What Are MMSE Forecasts?” on page 4-215
“How forecast Generates MMSE Forecasts” on page 4-216
“Forecast Error” on page 4-218

What Are MMSE Forecasts?

An objective of time series analysis is generating forecasts for responses over a future
time horizon. That is, you can generate predictions for yT + 1,yT + 2,...,yT + h given the
following:

• An observed series y1, y2,...,yT

• A forecast horizon h
• Nonstochastic predictors x1,x2,...,xT,...,xT + h, where xk is an r-vector containing the

measurements of r predictors observed at time k
• A regression model with ARIMA errors

y c X u

L u L

t t t

t t

= + +

=

b

eH N() () ,

where H(L) and N(L) are compound autoregressive and moving average lag operator
polynomials (possibly containing integration), respectively.

Let ŷt+1 denote a forecast for the process at time t + 1, conditional on the history of the
process up to time t (Ht), and assume that the predictors are fixed. The minimum mean
square error (MMSE) forecast is the forecast ŷt+1 that minimizes expected square loss,

E y y Ht t t+ +-()1 1
2ˆ | .

Minimizing this loss function yields the MMSE forecast,

4 Time Series Regression Models

4-216

ˆ (|).y E y Ht t t+ +
=1 1

How forecast Generates MMSE Forecasts

forecast generates MMSE forecasts recursively. When you call forecast, you must
specify a regARIMA model (Mdl) and the forecast horizon. You can also specify presample
observations (Y0), predictors (X0), innovations (E0), and conditional disturbances (U0)
using name-value pair arguments.

To begin forecasting yt starting at time T + 1, use the last few observations of yt and Xt
as presample responses and predictors to initialize the forecast. Alternatively, you can
specify presample unconditional disturbances or innovations.

However, when you specify presample data:

• If you provide presample predictor data (X0), then you must also provide predictor
forecasts (XF). It is best practice to set X0 to the same predictor matrix that estimates
the parameters. If you do not provide presample and future predictors, then
forecast ignores the regression component in the model.

• If the error process in Mdl contains a seasonal or nonseasonal autoregressive
component, or seasonal or nonseasonal integration, then forecast requires a
minimum of P presample unconditional disturbances to initialize the forecast. The
property P of Mdl stores P.

• If the error process in Mdl contains a seasonal or nonseasonal moving average
component, then forecast requires a minimum of Q presample innovations to
initialize the forecast. The property Q of Mdl stores Q.

• If you provide a sufficient amount of presample unconditional disturbances, then
forecast ignores Y0 and X0. If you also do not provide E0, but provide enough
presample unconditional disturbances, then forecast infers the required amount of
presample innovations from the ARIMA error model and U0.

• If you provide a sufficient amount of presample responses and predictors (and do
not provide U0), then forecast uses the regression model to infer the presample
unconditional disturbances.

• If you do not provide presample observations, then forecast sets the required
amount of presample unconditional disturbances and innovations to 0.

• If you provide an insufficient amount of presample observations, then forecast
returns an error.

 MMSE Forecasting Regression Models with ARIMA Errors

4-217

Consider generating forecasts from a regression model with ARMA(3,2) errors:

y

a u

a L u

c X u

L a L a L b L b L

b L

t t t

t t

t

= + +

- -() = + +

=

- ()
b

e1 11 2
2

3
3

1 2
2

or

() ()ee t ,

where a(L) and B(L) are lag operator polynomials. The largest AR lag is 3, the
largest MA lag is 2. This model does not contain any seasonal lags nor integration.
Therefore, P = 3 and Q = 2. To forecast this model, you need three presample responses
and predictors, or three presample unconditional disturbances, and two presample
innovations.

Given presample unconditional disturbances u u u
T T T- -()2 1, , , presample innovations

e e
T T-()1, , and future predictors X X

T T+ +()1 2, , ... , you can forecast the model as follows:

• ˆ

ˆ ˆ .

u a u a u a u b b

y c X u

T T T T T T

T T T

+ - - -

+ + +

= + + + +

= + +

1 1 2 1 3 2 1 2 1

1 1 1

e e

b

• ˆ ˆ

ˆ ˆ .

u a u a u a u b

y c X u

T T T T T

T T T

+ + -

+ + +

= + + +

= + +

2 1 1 2 3 1 2

2 2 2

e

b

• ˆ ˆ ˆ

ˆ ˆ .

u a u a u a u

y c X u

T T T T

T T T

+ + +

+ + +

= + +

= + +

3 1 2 2 1 3

3 3 3
b

...

Note that:

• Future innovations take on their unconditional mean, 0.
• For stationary error processes, such as this one:

• The forecasted unconditional disturbances converge to their unconditional mean,

E u
b L

a L
Et t()

()

()
() .= =e 0

4 Time Series Regression Models

4-218

• c + Xtβ governs the long-term behavior of the forecasted responses.

Forecast Error

The forecast error for an s-step ahead forecast of a regression model with ARIMA errors
is

MSE E y

E c X

y H

u c X u H

T s T s T s

T s T s t s T s T s

= ()

= +

-

+ - - -

+ + + -

+ + + + +

ˆ |

ˆ |

1
2

b b --

+ + + -

+ -

()

= ()

= ()
=

-

1
2

1
2

2
1

2

E

L

L
E

u u H

H

L

T s T s T s

t T s

ˆ |

|

()

()

()

,

N

H
e

y s

where the dividend ψ(L) is an infinite lag operator polynomial, and σ2 is the innovation
variance.

If the error process is stationary, then the coefficients of ψ(L) are absolutely summable.
Therefore, the MSE (mean square error) converges to the unconditional variance of the
process [1].

If the error process is not stationary, then the MSE grows with increasing s.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
forecast | regARIMA

Related Examples
• “Verify Predictive Ability Robustness of a regARIMA Model” on page 4-212
• “Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors” on page

4-206

 MMSE Forecasting Regression Models with ARIMA Errors

4-219

• “Forecast a Regression Model with ARIMA Errors” on page 4-202

More About
• “Monte Carlo Forecasting of regARIMA Models” on page 4-220

4 Time Series Regression Models

4-220

Monte Carlo Forecasting of regARIMA Models

In this section...

“Monte Carlo Forecasts” on page 4-220
“Advantage of Monte Carlo Forecasts” on page 4-220

Monte Carlo Forecasts

You can use Monte Carlo simulation to forecast an error process over a future time
horizon. This is an alternative to minimum mean square error (MMSE) forecasting,
which provides an analytical forecast solution. You can calculate MMSE forecasts using
forecast.

To forecast a process using Monte Carlo simulation:

1 Fit a model to your observed series using estimate, or fully specify a regARIMA
model.

2 Infer residuals (estimated innovations) and unconditional disturbances from the
model using infer and the data. The inferred series are presample observations.

3 Generate many sample paths over the forecast horizon using simulate and the
presample observations.

Advantage of Monte Carlo Forecasts

An advantage of Monte Carlo forecasting is that you obtain a complete distribution
for future events, not just a point estimate and standard error. The simulation mean
approximates the MMSE forecast. Use the 2.5th and 97.5th percentiles of the simulation
realizations as endpoints for approximate 95% forecast intervals.

See Also
estimate | forecast | infer | regARIMA | simulate

Related Examples
• “Verify Predictive Ability Robustness of a regARIMA Model” on page 4-212
• “Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors” on page

4-206

 Monte Carlo Forecasting of regARIMA Models

4-221

• “Forecast a Regression Model with ARIMA Errors” on page 4-202

More About
• “MMSE Forecasting Regression Models with ARIMA Errors” on page 4-215

5

Conditional Mean Models

• “Conditional Mean Models” on page 5-3
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Autoregressive Model” on page 5-18
• “AR Model Specifications” on page 5-21
• “Moving Average Model” on page 5-27
• “MA Model Specifications” on page 5-29
• “Autoregressive Moving Average Model” on page 5-34
• “ARMA Model Specifications” on page 5-37
• “ARIMA Model” on page 5-41
• “ARIMA Model Specifications” on page 5-43
• “Multiplicative ARIMA Model” on page 5-46
• “Multiplicative ARIMA Model Specifications” on page 5-48
• “Specify Multiplicative ARIMA Model” on page 5-52
• “ARIMA Model Including Exogenous Covariates” on page 5-58
• “ARIMAX Model Specifications” on page 5-61
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Impulse Response Function” on page 5-86
• “Plot the Impulse Response Function” on page 5-88
• “Box-Jenkins Differencing vs. ARIMA Estimation” on page 5-94
• “Maximum Likelihood Estimation for Conditional Mean Models” on page 5-98
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “Presample Data for Conditional Mean Model Estimation” on page 5-103
• “Initial Values for Conditional Mean Model Estimation” on page 5-106

5 Conditional Mean Models

5-2

• “Optimization Settings for Conditional Mean Model Estimation” on page 5-108
• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117
• “Forecast IGD Rate Using ARIMAX Model” on page 5-122
• “Estimate Conditional Mean and Variance Models” on page 5-129
• “Choose ARMA Lags Using BIC” on page 5-135
• “Infer Residuals for Diagnostic Checking” on page 5-140
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149
• “Transient Effects in Conditional Mean Model Simulations” on page 5-150
• “Simulate Stationary Processes” on page 5-151
• “Simulate Trend-Stationary and Difference-Stationary Processes” on page 5-163
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Simulate Conditional Mean and Variance Models” on page 5-175
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181
• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• “Convergence of AR Forecasts” on page 5-186
• “Forecast Multiplicative ARIMA Model” on page 5-192
• “Forecast Conditional Mean and Variance Model” on page 5-197

 Conditional Mean Models

5-3

Conditional Mean Models

In this section...

“Unconditional vs. Conditional Mean” on page 5-3
“Static vs. Dynamic Conditional Mean Models” on page 5-3
“Conditional Mean Models for Stationary Processes” on page 5-4

Unconditional vs. Conditional Mean

For a random variable yt, the unconditional mean is simply the expected value, E yt() .

In contrast, the conditional mean of yt is the expected value of yt given a conditioning set
of variables, Ωt. A conditional mean model specifies a functional form for E yt t| .W() .

Static vs. Dynamic Conditional Mean Models

For a static conditional mean model, the conditioning set of variables is measured
contemporaneously with the dependent variable yt. An example of a static conditional
mean model is the ordinary linear regression model. Given x

t
, a row vector of exogenous

covariates measured at time t, and β, a column vector of coefficients, the conditional
mean of yt is expressed as the linear combination

E y x xt t t(|) = ¢ b

(that is, the conditioning set is W
t t

x=).

In time series econometrics, there is often interest in the dynamic behavior of a variable
over time. A dynamic conditional mean model specifies the expected value of yt as a
function of historical information. Let Ht–1 denote the history of the process available at
time t. A dynamic conditional mean model specifies the evolution of the conditional mean,
E y Ht t| .-()1 Examples of historical information are:

• Past observations, y1, y2,...,yt–1

• Vectors of past exogenous variables, x x x
t1 2 1, , ,…
-

5 Conditional Mean Models

5-4

• Past innovations, e e e1 2 1, , ,…
t-

Conditional Mean Models for Stationary Processes

By definition, a covariance stationary stochastic process has an unconditional mean that
is constant with respect to time. That is, if yt is a stationary stochastic process, then
E yt() = m for all times t.

The constant mean assumption of stationarity does not preclude the possibility of a
dynamic conditional expectation process. The serial autocorrelation between lagged
observations exhibited by many time series suggests the expected value of yt depends on
historical information. By Wold’s decomposition [1], you can write the conditional mean
of any stationary process yt as

E y Ht t i t i
i

(|) ,- -
=

•

= + Â1
1

m y e

where e
t i-{ } are past observations of an uncorrelated innovation process with mean zero,

and the coefficients y i are absolutely summable. E yt() = m is the constant unconditional
mean of the stationary process.

Any model of the general linear form given by Equation 5-1 is a valid specification for
the dynamic behavior of a stationary stochastic process. Special cases of stationary
stochastic processes are the autoregressive (AR) model, moving average (MA) model, and
the autoregressive moving average (ARMA) model.

References

[1] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

See Also
arima

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6

 Conditional Mean Models

5-5

• “AR Model Specifications” on page 5-21
• “MA Model Specifications” on page 5-29
• “ARMA Model Specifications” on page 5-37
• “ARIMA Model Specifications” on page 5-43
• “Multiplicative ARIMA Model Specifications” on page 5-48

More About
• “Autoregressive Model” on page 5-18
• “Moving Average Model” on page 5-27
• “Autoregressive Moving Average Model” on page 5-34
• “ARIMA Model” on page 5-41
• “Multiplicative ARIMA Model” on page 5-46

5 Conditional Mean Models

5-6

Specify Conditional Mean Models Using arima
In this section...

“Default ARIMA Model” on page 5-6
“Specify Nonseasonal Models Using Name-Value Pairs” on page 5-8
“Specify Multiplicative Models Using Name-Value Pairs” on page 5-13

Default ARIMA Model

The default ARIMA(p,D,q) model in Econometrics Toolbox is the nonseasonal model of
the form

D D DD
t

D
t p

D
t p t q t q ty c y y= + + + + + + +- - - -f f q e q e e1 1 1 1… … .

You can write this equation in condensed form using lag operator notation:

f q e()() ()L L y c LD
t t1 - = +

In either equation, the default innovation distribution is Gaussian with mean zero and
constant variance.

You can specify a model of this form using the shorthand syntax arima(p,D,q). For the
input arguments p, D, and q, enter the number of nonseasonal AR terms (p), the order of
nonseasonal integration (D), and the number of nonseasonal MA terms (q), respectively.

When you use this shorthand syntax, arima creates an arima model with these default
property values.

Property Name Property Data Type

AR Cell vector of NaNs
Beta Empty vector [] of regression coefficients corresponding

to exogenous covariates
Constant NaN

D Degree of nonseasonal integration, D
Distribution 'Gaussian'

MA Cell vector of NaNs
P Number of AR terms plus degree of integration, p + D

 Specify Conditional Mean Models Using arima

5-7

Property Name Property Data Type

Q Number of MA terms, q
SAR Cell vector of NaNs
SMA Cell vector of NaNs
Variance NaN

To assign nondefault values to any properties, you can modify the created model object
using dot notation.

Notice that the inputs D and q are the values arima assigns to properties D and Q.
However, the input argument p is not necessarily the value arima assigns to the model
property P. P stores the number of presample observations needed to initialize the AR
component of the model. For nonseasonal models, the required number of presample
observations is p + D.

To illustrate, consider specifying the ARIMA(2,1,1) model

()() (,)1 1 11 2
2 1

1- - = + +-f f q eL L L y c Lt t

where the innovation process is Gaussian with (unknown) constant variance.

Mdl = arima(2,1,1)

Mdl =

 ARIMA(2,1,1) Model:

 Distribution: Name = 'Gaussian'

 P: 3

 D: 1

 Q: 1

 Constant: NaN

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: NaN

Notice that the model property P does not have value 2 (the AR degree). With the
integration, a total of p + D (here, 2 + 1 = 3) presample observations are needed to
initialize the AR component of the model.

5 Conditional Mean Models

5-8

The created model, Mdl, has NaNs for all parameters. A NaN value signals that a
parameter needs to be estimated or otherwise specified by the user. All parameters must
be specified to forecast or simulate the model.

To estimate parameters, input the model object (along with data) to estimate. This
returns a new fitted arima model object. The fitted model object has parameter
estimates for each input NaN value.

Calling arima without any input arguments returns an ARIMA(0,0,0) model
specification with default property values:

DefaultMdl = arima

DefaultMdl =

 ARIMA(0,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 0

 Constant: NaN

 AR: {}

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

Specify Nonseasonal Models Using Name-Value Pairs

The best way to specify models to arima is using name-value pair arguments. You do not
need, nor are you able, to specify a value for every model object property. arima assigns
default values to any properties you do not (or cannot) specify.

In condensed, lag operator notation, nonseasonal ARIMA(p,D,q) models are of the form

f q e()() () .L L Ly cD
t t1 - +=

You can extend this model to an ARIMAX(p,D,q) model with the linear inclusion of
exogenous variables. This model has the form

f b q e() () ,L x Ly ct t t= + +* ¢ *

 Specify Conditional Mean Models Using arima

5-9

where c* = c/(1–L)D and θ*(L) = θ(L)/(1–L)D.

Tip If you specify a nonzero D, then Econometrics Toolbox differences the response series
yt before the predictors enter the model. You should preprocess the exogenous covariates
xt by testing for stationarity and differencing if any are unit root nonstationary. If any
nonstationary exogenous covariate enters the model, then the false negative rate for
significance tests of β can increase.

For the distribution of the innovations, εt, there are two choices:

• Independent and identically distributed (iid) Gaussian or Student’s t with a constant
variance, s

e

2 .

• Dependent Gaussian or Student’s t with a conditional variance process, s
t

2 . Specify
the conditional variance model using a garch, egarch, or gjr model.

The arima default for the innovations is an iid Gaussian process with constant (scalar)
variance.

In order to estimate, forecast, or simulate a model, you must specify the parametric
form of the model (e.g., which lags correspond to nonzero coefficients, the innovation
distribution) and any known parameter values. You can set any unknown parameters
equal to NaN, and then input the model to estimate (along with data) to get estimated
parameter values.

arima (and estimate) returns a model corresponding to the model specification. You
can modify models to change or update the specification. Input models (with no NaN
values) to forecast or simulate for forecasting and simulation, respectively. Here are
some example specifications using name-value arguments.

Model Specification

• y c yt t t= + +-f e
1 1

• e s
et t

z=

• zt Gaussian

arima('AR',NaN) or arima(1,0,0)

• yt t t t= + +
- -

e q e q e
1 1 2 2

arima('Constant',0,'MA',{NaN,NaN},...

5 Conditional Mean Models

5-10

Model Specification

• e s
et t

z=

• zt Student’s t with unknown degrees of
freedom

'Distribution','t')

• (.)() . (.)1 0 8 1 0 2 1 0 6- - = + +L L y Lt te

• e
t t

z= 0 1.

• zt Student’s t with eight degrees of freedom

arima('Constant',0.2,'AR',0.8,'MA',0.6,...

'Variance',0.1,'Distribution',...

struct('Name','t','DoF',8))

•
(.)()1 0 5 1

5

2

1+ - =
-È

Î
Í

˘

˚
˙ +¢L L y xt t tD e

• e
t

N~ (,)0 1

arima('AR',-0.5,'D',1,'Beta',[-5 2])

You can specify the following name-value arguments to create nonseasonal arima
models.

Name-Value Arguments for Nonseasonal ARIMA Models

Name Corresponding
Model Term(s) in
Equation 5-2

When to Specify

AR Nonseasonal
AR coefficients,
f f1, ,… p

To set equality constraints for the AR coefficients. For
example, to specify the AR coefficients in the model

y y yt t t t= - +
- -

0 8 0 21 2. . ,e

specify 'AR',{0.8,-0.2}
You only need to specify the nonzero elements of AR.
If the nonzero coefficients are at nonconsecutive lags,
specify the corresponding lags using ARLags.
Any coefficients you specify must correspond to a
stable AR operator polynomial.

ARLags Lags
corresponding
to nonzero,

ARLags is not a model property.
Use this argument as a shortcut for specifying
AR when the nonzero AR coefficients correspond
to nonconsecutive lags. For example, to specify

 Specify Conditional Mean Models Using arima

5-11

Name Corresponding
Model Term(s) in
Equation 5-2

When to Specify

nonseasonal AR
coefficients

nonzero AR coefficients at lags 1 and 12, e.g.,
y y yt t t t= + +- -f f e1 1 12 12 ,

specify 'ARLags',[1,12].
Use AR and ARLags together to specify known
nonzero AR coefficients at nonconsecutive lags. For
example, if in the given AR(12) model f1

0 6= . and
f12 0 3= - . , specify 'AR',{0.6,-0.3},'ARLags',
[1,12].

Beta Values of the
coefficients of
the exogenous
covariates

Use this argument to specify the values of the
coefficients of the exogenous variables. For
example, use 'Beta',[0.5 7 -2] to specify

b = -[]¢0 5 7 2. .

By default, Beta is an empty vector.
Constant Constant term, c To set equality constraints for c. For example, for a

model with no constant term, specify 'Constant',0.
By default, Constant has value NaN.

D Degree of
nonseasonal
differencing, D

To specify a degree of nonseasonal differencing
greater than zero. For example, to specify one degree
of differencing, specify 'D',1.
By default, D has value 0 (meaning no nonseasonal
integration).

Distribution Distribution of the
innovation process

Use this argument to specify a Student’s t innovation
distribution. By default, the innovation distribution is
Gaussian.
For example, to specify a t distribution with unknown
degrees of freedom, specify 'Distribution','t'.
To specify a t innovation distribution with known
degrees of freedom, assign Distribution a data
structure with fields Name and DoF. For example, for

5 Conditional Mean Models

5-12

Name Corresponding
Model Term(s) in
Equation 5-2

When to Specify

a t distribution with nine degrees of freedom, specify
'Distribution',struct('Name','t','DoF',9).

MA Nonseasonal
MA coefficients,
q q1, ,… q

To set equality constraints for the MA coefficients.
For example, to specify the MA coefficients in the
model

yt t t t= + +
- -

e e e0 5 0 21 2. . ,

specify 'MA',{0.5,0.2}.
You only need to specify the nonzero elements of MA.
If the nonzero coefficients are at nonconsecutive lags,
specify the corresponding lags using MALags.
Any coefficients you specify must correspond to an
invertible MA polynomial.

MALags Lags
corresponding
to nonzero,
nonseasonal MA
coefficients

MALags is not a model property.
Use this argument as a shortcut for specifying MA
when the nonzero MA coefficients correspond to
nonconsecutive lags. For example, to specify nonzero
MA coefficients at lags 1 and 4, e.g.,

yt t t t= + +
- -

e q e q e1 1 4 4,

specify 'MALags',[1,4].
Use MA and MALags together to specify known
nonzero MA coefficients at nonconsecutive lags. For
example, if in the given MA(4) model q1

0 5= . and
q4 0 2= . , specify 'MA',{0.4,0.2},'MALags',
[1,4].

Variance • Scalar
variance of
the innovation
process, s

e

2

• To set equality constraints for s
e

2 . For example,
for a model with known variance 0.1, specify
'Variance',0.1. By default, Variance has
value NaN.

 Specify Conditional Mean Models Using arima

5-13

Name Corresponding
Model Term(s) in
Equation 5-2

When to Specify

• Conditional
variance
process, s

t

2

• To specify a conditional variance model, s
t

2 . Set
'Variance' equal to a conditional variance
model object, e.g., a garch model object.

Note: You cannot assign values to the properties P and Q. For nonseasonal models,

• arima sets P equal to p + D

• arima sets Q equal to q

Specify Multiplicative Models Using Name-Value Pairs

For a time series with periodicity s, define the degree ps seasonal AR operator

polynomial, F F F() ()L L L
p p

ps

s= - - -1 1
1
… , and the degree qs seasonal MA operator

polynomial, Q Q Q() ()L L L
q

q
q

s

s= + + +1 1
1
… . Similarly, define the degree p nonseasonal

AR operator polynomial, f f f() ()L L Lp
p

= - - -1 1 … , and the degree q nonseasonal MA
operator polynomial,

q q q() ().L L Lq
q

= + + +1 1 …

A multiplicative ARIMA model with degree D nonseasonal integration and degree s
seasonality is given by

f q e() ()() (() () .)L L L L y c L LD
t t

sF Q1 1- - = +

The innovation series can be an independent or dependent Gaussian or Student’s t
process. The arima default for the innovation distribution is an iid Gaussian process
with constant (scalar) variance.

In addition to the arguments for specifying nonseasonal models (described in Name-
Value Arguments for Nonseasonal ARIMA Models), you can specify these name-value

5 Conditional Mean Models

5-14

arguments to create a multiplicative arima model. You can extend an ARIMAX model
similarly to include seasonal effects.

Name-Value Arguments for Seasonal ARIMA Models

Argument Corresponding Model
Term(s) in Equation 5-5

When to Specify

SAR Seasonal AR coefficients,
F F1, ,… p

s

To set equality constraints for the seasonal AR
coefficients. When specifying AR coefficients,
use the sign opposite to what appears in
Equation 5-5 (that is, use the sign of the
coefficient as it would appear on the right side of
the equation).
Use SARLags to specify the lags of the nonzero
seasonal AR coefficients. Specify the lags
associated with the seasonal polynomials in the
periodicity of the observed data (e.g., 4, 8,... for
quarterly data, or 12, 24,... for monthly data),
and not as multiples of the seasonality (e.g., 1,
2,...).
For example, to specify the model

(.)(.) ,1 0 8 1 0 2 12
- - =L L yt te

specify 'AR',0.8,'SAR',0.2,'SARLags',12
.
Any coefficient values you enter must
correspond to a stable seasonal AR polynomial.

SARLags Lags corresponding
to nonzero seasonal
AR coefficients, in
the periodicity of the
observed series

SARLags is not a model property.
Use this argument when specifying SAR to
indicate the lags of the nonzero seasonal AR
coefficients.
For example, to specify the model

()() ,1 1 12
12

- - =f eL L yt tF

specify 'ARLags',1,'SARLags',12.

 Specify Conditional Mean Models Using arima

5-15

Argument Corresponding Model
Term(s) in Equation 5-5

When to Specify

SMA Seasonal MA
coefficients, Q Q1, ,… q

s

To set equality constraints for the seasonal MA
coefficients.
Use SMALags to specify the lags of the nonzero
seasonal MA coefficients. Specify the lags
associated with the seasonal polynomials in the
periodicity of the observed data (e.g., 4, 8,... for
quarterly data, or 12, 24,... for monthly data),
and not as multiples of the seasonality (e.g., 1,
2,...).
For example, to specify the model

y L Lt t= + +(.)(.) ,1 0 6 1 0 2 12
e

specify 'MA',0.6,'SMA',0.2,'SMALags',12.
Any coefficient values you enter must
correspond to an invertible seasonal MA
polynomial.

SMALags Lags corresponding to
the nonzero seasonal
MA coefficients, in
the periodicity of the
observed series

SMALags is not a model property.
Use this argument when specifying SMA to
indicate the lags of the nonzero seasonal MA
coefficients.
For example, to specify the model

y L Lt t= + +()() ,1 11 4
4

q eQ

specify 'MALags',1,'SMALags',4.
Seasonality Seasonal periodicity, s To specify the degree of seasonal integration s

in the seasonal differencing polynomial Δs = 1
– Ls. For example, to specify the periodicity for
seasonal integration of monthly data, specify
'Seasonality',12.
If you specify nonzero Seasonality, then
the degree of the whole seasonal differencing
polynomial is one. By default, Seasonality has

5 Conditional Mean Models

5-16

Argument Corresponding Model
Term(s) in Equation 5-5

When to Specify

value 0 (meaning periodicity and no seasonal
integration).

Note: You cannot assign values to the properties P and Q. For multiplicative ARIMA
models,

• arima sets P equal to p + D + ps + s

• arima sets Q equal to q + qs

See Also
arima | estimate | forecast | simulate

Related Examples
• “AR Model Specifications” on page 5-21
• “MA Model Specifications” on page 5-29
• “ARMA Model Specifications” on page 5-37
• “ARIMA Model Specifications” on page 5-43
• “ARIMAX Model Specifications” on page 5-61
• “Multiplicative ARIMA Model Specifications” on page 5-48
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117

More About
• “Autoregressive Model” on page 5-18
• “Moving Average Model” on page 5-27
• “Autoregressive Moving Average Model” on page 5-34
• “ARIMA Model” on page 5-41
• “ARIMAX(p,D,q) Model” on page 5-58

 Specify Conditional Mean Models Using arima

5-17

• “ARIMA Model Including Exogenous Covariates” on page 5-58
• “Multiplicative ARIMA Model” on page 5-46

5 Conditional Mean Models

5-18

Autoregressive Model

In this section...

“AR(p) Model” on page 5-18
“Stationarity of the AR Model” on page 5-18

AR(p) Model

Many observed time series exhibit serial autocorrelation; that is, linear association
between lagged observations. This suggests past observations might predict current
observations. The autoregressive (AR) process models the conditional mean of yt as a
function of past observations, y y yt t t p- - -1 2, , ,… . An AR process that depends on p past
observations is called an AR model of degree p, denoted by AR(p).

The form of the AR(p) model in Econometrics Toolbox is

y c y yt t p t p t= + + + +- -f f e1 1 … ,

where e
t is an uncorrelated innovation process with mean zero.

In lag operator polynomial notation, L y yi
t t i=

-
. Define the degree p AR lag operator

polynomial f f f() ()L L Lp
p

= - - -1 1 … . You can write the AR(p) model as

f e() .L y ct t= +

The signs of the coefficients in the AR lag operator polynomial, f()L , are opposite to
the right side of Equation 5-6. When specifying and interpreting AR coefficients in
Econometrics Toolbox, use the form in Equation 5-6.

Stationarity of the AR Model

Consider the AR(p) model in lag operator notation,

f e() .L y ct t= +

 Autoregressive Model

5-19

From this expression, you can see that

y L Lt t t= + = +
-m f e m y e1() () ,

where

m
f f

=
- - -()

c

p1 1 …

is the unconditional mean of the process, and y ()L is an infinite-degree lag operator

polynomial, ()1 1 2
2

+ + +y yL L … .

Note: The Constant property of an arima model object corresponds to c, and not the
unconditional mean μ.

By Wold’s decomposition [1], Equation 5-8 corresponds to a stationary stochastic process
provided the coefficients y i are absolutely summable. This is the case when the AR
polynomial, f()L , is stable, meaning all its roots lie outside the unit circle.

Econometrics Toolbox enforces stability of the AR polynomial. When you specify an AR
model using arima, you get an error if you enter coefficients that do not correspond
to a stable polynomial. Similarly, estimate imposes stationarity constraints during
estimation.

References

[1] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

See Also
arima | estimate

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6

5 Conditional Mean Models

5-20

• “AR Model Specifications” on page 5-21
• “Plot the Impulse Response Function” on page 5-88

More About
• “Conditional Mean Models” on page 5-3
• “Autoregressive Moving Average Model” on page 5-34

 AR Model Specifications

5-21

AR Model Specifications

In this section...

“Default AR Model” on page 5-21
“AR Model with No Constant Term” on page 5-22
“AR Model with Nonconsecutive Lags” on page 5-23
“ARMA Model with Known Parameter Values” on page 5-24
“AR Model with a t Innovation Distribution” on page 5-25

Default AR Model

This example shows how to use the shorthand arima(p,D,q) syntax to specify the
default AR() model,

By default, all parameters in the created model object have unknown values, and the
innovation distribution is Gaussian with constant variance.

Specify the default AR(2) model:

model = arima(2,0,0)

model =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

5 Conditional Mean Models

5-22

The output shows that the created model object, model, has NaN values for all model
parameters: the constant term, the AR coefficients, and the variance. You can modify the
created model object using dot notation, or input it (along with data) to estimate.

AR Model with No Constant Term

This example shows how to specify an AR(p) model with constant term equal to zero. Use
name-value syntax to specify a model that differs from the default model.

Specify an AR(2) model with no constant term,

where the innovation distribution is Gaussian with constant variance.

model = arima('ARLags',1:2,'Constant',0)

model =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The ARLags name-value argument specifies the lags corresponding to nonzero AR
coefficients. The property Constant in the created model object is equal to 0, as
specified. The model object has default values for all other properties, including NaN
values as placeholders for the unknown parameters: the AR coefficients and scalar
variance.

 AR Model Specifications

5-23

You can modify the created model object using dot notation, or input it (along with data)
to estimate.

AR Model with Nonconsecutive Lags

This example shows how to specify an AR(p) model with nonzero coefficients at
nonconsecutive lags.

Specify an AR(4) model with nonzero AR coefficients at lags 1 and 4 (and no constant
term),

where the innovation distribution is Gaussian with constant variance.

model = arima('ARLags',[1,4],'Constant',0)

model =

 ARIMA(4,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 4

 D: 0

 Q: 0

 Constant: 0

 AR: {NaN NaN} at Lags [1 4]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The output shows the nonzero AR coefficients at lags 1 and 4, as specified. The property
P is equal to 4, the number of presample observations needed to initialize the AR model.
The unconstrained parameters are equal to NaN.

Display the value of AR:

model.AR

5 Conditional Mean Models

5-24

ans =

 [NaN] [0] [0] [NaN]

The AR cell array returns four elements. The first and last elements (corresponding to
lags 1 and 4) have value NaN, indicating these coefficients are nonzero and need to be
estimated or otherwise specified by the user. arima sets the coefficients at interim lags
equal to zero to maintain consistency with MATLAB® cell array indexing.

ARMA Model with Known Parameter Values

This example shows how to specify an ARMA(p, q) model with known parameter values.
You can use such a fully specified model as an input to simulate or forecast.

Specify the ARMA(1,1) model

where the innovation distribution is Student's t with 8 degrees of freedom, and constant
variance 0.15.

tdist = struct('Name','t','DoF',8);

model = arima('Constant',0.3,'AR',0.7,'MA',0.4,...

 'Distribution',tdist,'Variance',0.15)

model =

 ARIMA(1,0,1) Model:

 Distribution: Name = 't', DoF = 8

 P: 1

 D: 0

 Q: 1

 Constant: 0.3

 AR: {0.7} at Lags [1]

 SAR: {}

 MA: {0.4} at Lags [1]

 SMA: {}

 Variance: 0.15

 AR Model Specifications

5-25

Because all parameter values are specified, the created model has no NaN values. The
functions simulate and forecast don't accept input models with NaN values.

AR Model with a t Innovation Distribution

This example shows how to specify an AR() model with a Student's t innovation
distribution.

Specify an AR(2) model with no constant term,

where the innovations follow a Student's t distribution with unknown degrees of freedom.

model = arima('Constant',0,'ARLags',1:2,'Distribution','t')

model =

 ARIMA(2,0,0) Model:

 Distribution: Name = 't', DoF = NaN

 P: 2

 D: 0

 Q: 0

 Constant: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The value of Distribution is a struct array with field Name equal to 't' and field
DoF equal to NaN. The NaN value indicates the degrees of freedom are unknown, and need
to be estimated using estimate or otherwise specified by the user.

See Also
arima | estimate | forecast | simulate | struct

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6

5 Conditional Mean Models

5-26

• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72

More About
• “Autoregressive Model” on page 5-18

 Moving Average Model

5-27

Moving Average Model

In this section...

“MA(q) Model” on page 5-27
“Invertibility of the MA Model” on page 5-27

MA(q) Model

The moving average (MA) model captures serial autocorrelation in a time series yt by
expressing the conditional mean of yt as a function of past innovations, e e et t t q- - -1 2, , ,… .
An MA model that depends on q past innovations is called an MA model of degree q,
denoted by MA(q).

The form of the MA(q) model in Econometrics Toolbox is

y ct t t q t q= + + + +- -e q e q e1 1 … ,

where e
t is an uncorrelated innovation process with mean zero. For an MA process, the

unconditional mean of yt is μ = c.

In lag operator polynomial notation, L y yi
t t i=

-
. Define the degree q MA lag operator

polynomial q q q() ().L L Lq
q

= + + +1 1 … You can write the MA(q) model as

y Lt t= +m q e() .

Invertibility of the MA Model

By Wold’s decomposition [1], an MA(q) process is always stationary because q ()L is a
finite-degree polynomial.

For a given process, however, there is no unique MA polynomial—there is always a
noninvertible and invertible solution [2]. For uniqueness, it is conventional to impose
invertibility constraints on the MA polynomial. Practically speaking, choosing the
invertible solution implies the process is causal. An invertible MA process can be

5 Conditional Mean Models

5-28

expressed as an infinite-degree AR process, meaning only past events (not future events)
predict current events. The MA operator polynomial q ()L is invertible if all its roots lie
outside the unit circle.

Econometrics Toolbox enforces invertibility of the MA polynomial. When you specify an
MA model using arima, you get an error if you enter coefficients that do not correspond
to an invertible polynomial. Similarly, estimate imposes invertibility constraints during
estimation.

References

[1] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

[2] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | estimate

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “MA Model Specifications” on page 5-29
• “Plot the Impulse Response Function” on page 5-88

More About
• “Conditional Mean Models” on page 5-3
• “Autoregressive Moving Average Model” on page 5-34

 MA Model Specifications

5-29

MA Model Specifications

In this section...

“Default MA Model” on page 5-29
“MA Model with No Constant Term” on page 5-30
“MA Model with Nonconsecutive Lags” on page 5-31
“MA Model with Known Parameter Values” on page 5-32
“MA Model with a t Innovation Distribution” on page 5-32

Default MA Model

This example shows how to use the shorthand arima(p,D,q) syntax to specify the
default MA

By default, all parameters in the created model object have unknown values, and the
innovation distribution is Gaussian with constant variance.

Specify the default MA(3) model:

model = arima(0,0,3)

model =

 ARIMA(0,0,3) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 3

 Constant: NaN

 AR: {}

 SAR: {}

 MA: {NaN NaN NaN} at Lags [1 2 3]

 SMA: {}

 Variance: NaN

5 Conditional Mean Models

5-30

The output shows that the created model object, model, has NaN values for all model
parameters: the constant term, the MA coefficients, and the variance. You can modify the
created model object using dot notation, or input it (along with data) to estimate.

MA Model with No Constant Term

This example shows how to specify an MA(q) model with constant term equal to zero. Use
name-value syntax to specify a model that differs from the default model.

Specify an MA(2) model with no constant term,

where the innovation distribution is Gaussian with constant variance.

model = arima('MALags',1:2,'Constant',0)

model =

 ARIMA(0,0,2) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 2

 Constant: 0

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The MALags name-value argument specifies the lags corresponding to nonzero MA
coefficients. The property Constant in the created model object is equal to 0, as
specified. The model object has default values for all other properties, including NaN
values as placeholders for the unknown parameters: the MA coefficients and scalar
variance.

 MA Model Specifications

5-31

You can modify the created model variable, or input it (along with data) to estimate.

MA Model with Nonconsecutive Lags

This example shows how to specify an MA(q) model with nonzero coefficients at
nonconsecutive lags.

Specify an MA(4) model with nonzero MA coefficients at lags 1 and 4 (an no constant
term),

where the innovation distribution is Gaussian with constant variance.

model = arima('MALags',[1,4],'Constant',0)

model =

 ARIMA(0,0,4) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 4

 Constant: 0

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 4]

 SMA: {}

 Variance: NaN

The output shows the nonzero AR coefficients at lags 1 and 4, as specified. The property
Q is equal to 4, the number of presample innovations needed to initialize the MA model.
The unconstrained parameters are equal to NaN.

Display the value of MA:

model.MA

ans =

 [NaN] [0] [0] [NaN]

5 Conditional Mean Models

5-32

The MA cell array returns four elements. The first and last elements (corresponding to
lags 1 and 4) have value NaN, indicating these coefficients are nonzero and need to be
estimated or otherwise specified by the user. arima sets the coefficients at interim lags
equal to zero to maintain consistency with MATLAB® cell array indexing.

MA Model with Known Parameter Values

This example shows how to specify an MA(q) model with known parameter values. You
can use such a fully specified model as an input to simulate or forecast.

Specify the MA(4) model

where the innovation distribution is Gaussian with constant variance 0.15.

model = arima('Constant',0.1,'MA',{0.7,0.2},...

 'MALags',[1,4],'Variance',0.15)

model =

 ARIMA(0,0,4) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 4

 Constant: 0.1

 AR: {}

 SAR: {}

 MA: {0.7 0.2} at Lags [1 4]

 SMA: {}

 Variance: 0.15

Because all parameter values are specified, the created model object has no NaN values.
The functions simulate and forecast don't accept input models with NaN values.

MA Model with a t Innovation Distribution

This example shows how to specify an MA(q) model with a Student's t innovation
distribution.

 MA Model Specifications

5-33

Specify an MA(2) model with no constant term,

where the innovation process follows a Student's t distribution with eight degrees of
freedom.

tdist = struct('Name','t','DoF',8);

model = arima('Constant',0,'MALags',1:2,'Distribution',tdist)

model =

 ARIMA(0,0,2) Model:

 Distribution: Name = 't', DoF = 8

 P: 0

 D: 0

 Q: 2

 Constant: 0

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The value of Distribution is a struct array with field Name equal to 't' and field
DoF equal to 8. When you specify the degrees of freedom, they aren't estimated if you
input the model to estimate.

See Also
arima | estimate | forecast | simulate | struct

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72

More About
• “Moving Average Model” on page 5-27

5 Conditional Mean Models

5-34

Autoregressive Moving Average Model

In this section...

“ARMA(p,q) Model” on page 5-34
“Stationarity and Invertibility of the ARMA Model” on page 5-35

ARMA(p,q) Model

For some observed time series, a very high-order AR or MA model is needed to model the
underlying process well. In this case, a combined autoregressive moving average (ARMA)
model can sometimes be a more parsimonious choice.

An ARMA model expresses the conditional mean of yt as a function of both past
observations, y yt t p- -1, ,… , and past innovations, e et t q- -1, , .… The number of past
observations that yt depends on, p, is the AR degree. The number of past innovations that
yt depends on, q, is the MA degree. In general, these models are denoted by ARMA(p,q).

The form of the ARMA(p,q) model in Econometrics Toolbox is

y c y yt t p t p t t q t q= + + + + + + +- - - -f f e q e q e1 1 1 1… … ,

where e
t is an uncorrelated innovation process with mean zero.

In lag operator polynomial notation, L y yi
t t i=

-
. Define the degree p AR lag operator

polynomial f f f() ()L L Lp
p

= - - -1 1 … . Define the degree q MA lag operator polynomial

q q q() ()L L Lq
q

= + + +1 1 … . You can write the ARMA(p,q) model as

f q e() () .L y c Lt t= +

The signs of the coefficients in the AR lag operator polynomial, f()L , are opposite to
the right side of Equation 5-10. When specifying and interpreting AR coefficients in
Econometrics Toolbox, use the form in Equation 5-10.

 Autoregressive Moving Average Model

5-35

Stationarity and Invertibility of the ARMA Model

Consider the ARMA(p,q) model in lag operator notation,

f q e() () .L y c Lt t= +

From this expression, you can see that

y
L

L
Lt t t= + = +m

q

f
e m y e

()

()
() ,

where

m
f f

=
- - -()

c

p1 1 …

is the unconditional mean of the process, and y ()L is a rational, infinite-degree lag

operator polynomial, ()1 1 2
2

+ + +y yL L … .

Note: The Constant property of an arima model object corresponds to c, and not the
unconditional mean μ.

By Wold’s decomposition [1], Equation 5-12 corresponds to a stationary stochastic process
provided the coefficients y i are absolutely summable. This is the case when the AR
polynomial, f()L , is stable, meaning all its roots lie outside the unit circle. Additionally,
the process is causal provided the MA polynomial is invertible, meaning all its roots lie
outside the unit circle.

Econometrics Toolbox enforces stability and invertibility of ARMA processes. When
you specify an ARMA model using arima, you get an error if you enter coefficients that
do not correspond to a stable AR polynomial or invertible MA polynomial. Similarly,
estimate imposes stationarity and invertibility constraints during estimation.

5 Conditional Mean Models

5-36

References

[1] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

See Also
arima | estimate

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “ARMA Model Specifications” on page 5-37
• “Plot the Impulse Response Function” on page 5-88

More About
• “Conditional Mean Models” on page 5-3
• “Autoregressive Model” on page 5-18
• “Moving Average Model” on page 5-27
• “ARIMA Model” on page 5-41

 ARMA Model Specifications

5-37

ARMA Model Specifications

In this section...

“Default ARMA Model” on page 5-37
“ARMA Model with No Constant Term” on page 5-38
“ARMA Model with Known Parameter Values” on page 5-39

Default ARMA Model

This example shows how to use the shorthand arima(p,D,q) syntax to specify the
default ARMA(p, q) model,

By default, all parameters in the created model object have unknown values, and the
innovation distribution is Gaussian with constant variance.

Specify the default ARMA(1,1) model:

model = arima(1,0,1)

model =

 ARIMA(1,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 1

 D: 0

 Q: 1

 Constant: NaN

 AR: {NaN} at Lags [1]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: NaN

The output shows that the created model object, model, has NaN values for all model
parameters: the constant term, the AR and MA coefficients, and the variance. You

5 Conditional Mean Models

5-38

can modify the created model object using dot notation, or input it (along with data) to
estimate.

ARMA Model with No Constant Term

This example shows how to specify an ARMA(p, q) model with constant term equal to
zero. Use name-value syntax to specify a model that differs from the default model.

Specify an ARMA(2,1) model with no constant term,

where the innovation distribution is Gaussian with constant variance.

model = arima('ARLags',1:2,'MALags',1,'Constant',0)

model =

 ARIMA(2,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 1

 Constant: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: NaN

The ArLags and MaLags name-value pair arguments specify the lags corresponding to
nonzero AR and MA coefficients, respectively. The property Constant in the created
model object is equal to 0, as specified. The model has default values for all other
properties, including NaN values as placeholders for the unknown parameters: the AR
and MA coefficients, and scalar variance.

 ARMA Model Specifications

5-39

You can modify the created model using dot notation, or input it (along with data) to
estimate.

ARMA Model with Known Parameter Values

This example shows how to specify an ARMA(p, q) model with known parameter values.
You can use such a fully specified model as an input to simulate or forecast.

Specify the ARMA(1,1) model

where the innovation distribution is Student's t with 8 degrees of freedom, and constant
variance 0.15.

tdist = struct('Name','t','DoF',8);

model = arima('Constant',0.3,'AR',0.7,'MA',0.4,...

 'Distribution',tdist,'Variance',0.15)

model =

 ARIMA(1,0,1) Model:

 Distribution: Name = 't', DoF = 8

 P: 1

 D: 0

 Q: 1

 Constant: 0.3

 AR: {0.7} at Lags [1]

 SAR: {}

 MA: {0.4} at Lags [1]

 SMA: {}

 Variance: 0.15

Because all parameter values are specified, the created model has no NaN values. The
functions simulate and forecast don't accept input models with NaN values.

See Also
arima | estimate | forecast | simulate | struct

5 Conditional Mean Models

5-40

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72

More About
• “Autoregressive Moving Average Model” on page 5-34

 ARIMA Model

5-41

ARIMA Model

The autoregressive integrated moving average (ARIMA) process generates nonstationary
series that are integrated of order D, denoted I(D). A nonstationary I(D) process is one
that can be made stationary by taking D differences. Such processes are often called
difference-stationary or unit root processes.

A series that you can model as a stationary ARMA(p,q) process after being differenced D
times is denoted by ARIMA(p,D,q). The form of the ARIMA(p,D,q) model in Econometrics
Toolbox is

D D DD
t

D
t p

D
t p t t q t qy c y y= + + + + + + +- - - -f f e q e q e1 1 1 1… … ,

where D

D
ty denotes a Dth differenced time series, and e

t is an uncorrelated innovation
process with mean zero.

In lag operator notation, L y yi
t t i=

-
. You can write the ARIMA(p,D,q) model as

f f q e*
() ()() () .L y L L y c Lt

D
t t= - = +1

Here, f*
()L is an unstable AR operator polynomial with exactly D unit roots. You can

factor this polynomial as f()() ,L L
D1 - wheref f f() ()L L Lp

p
= - - -1 1 … is a stable degree

p AR lag operator polynomial (with all roots lying outside the unit circle). Similarly,
q q q() ()L L Lq

q
= + + +1 1 … is an invertible degree q MA lag operator polynomial (with all

roots lying outside the unit circle).

The signs of the coefficients in the AR lag operator polynomial, f()L , are opposite to
the right side of Equation 5-13. When specifying and interpreting AR coefficients in
Econometrics Toolbox, use the form in Equation 5-13.

Note: In the original Box-Jenkins methodology, you difference an integrated series until
it is stationary before modeling. Then, you model the differenced series as a stationary
ARMA(p,q) process [1]. Econometrics Toolbox fits and forecasts ARIMA(p,D,q) processes

5 Conditional Mean Models

5-42

directly, so you do not need to difference data before modeling (or backtransform
forecasts).

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima

Related Examples
• “Nonseasonal Differencing” on page 2-18
• “Specify Conditional Mean Models Using arima” on page 5-6
• “ARIMA Model Specifications” on page 5-43

More About
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7
• “Autoregressive Moving Average Model” on page 5-34
• “Multiplicative ARIMA Model” on page 5-46

 ARIMA Model Specifications

5-43

ARIMA Model Specifications

In this section...

“Default ARIMA Model” on page 5-43
“ARIMA Model with Known Parameter Values” on page 5-44

Default ARIMA Model

This example shows how to use the shorthand arima(p,D,q) syntax to specify the
default ARIMA(p, D, q) model,

where is a differenced time series. You can write this model in condensed form
using lag operator notation:

By default, all parameters in the created model object have unknown values, and the
innovation distribution is Gaussian with constant variance.

Specify the default ARIMA(1,1,1) model:

model = arima(1,1,1)

model =

 ARIMA(1,1,1) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 1

 Q: 1

 Constant: NaN

 AR: {NaN} at Lags [1]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

5 Conditional Mean Models

5-44

 Variance: NaN

The output shows that the created model object, model, has NaN values for all model
parameters: the constant term, the AR and MA coefficients, and the variance. You can
modify the created model using dot notation, or input it (along with data) to estimate.

The property P has value 2 (p + D). This is the number of presample observations needed
to initialize the AR model.

ARIMA Model with Known Parameter Values

This example shows how to specify an ARIMA(p, D, q) model with known parameter
values. You can use such a fully specified model as an input to simulate or forecast.

Specify the ARIMA(2,1,1) model

where the innovation distribution is Student's t with 10 degrees of freedom, and constant
variance 0.15.

tdist = struct('Name','t','DoF',10);

model = arima('Constant',0.4,'AR',{0.8,-0.3},'MA',0.5,...

 'D',1,'Distribution',tdist,'Variance',0.15)

model =

 ARIMA(2,1,1) Model:

 Distribution: Name = 't', DoF = 10

 P: 3

 D: 1

 Q: 1

 Constant: 0.4

 AR: {0.8 -0.3} at Lags [1 2]

 SAR: {}

 MA: {0.5} at Lags [1]

 SMA: {}

 Variance: 0.15

The name-value pair argument D specifies the degree of nonseasonal integration (D).

 ARIMA Model Specifications

5-45

Because all parameter values are specified, the created model object has no NaN values.
The functions simulate and forecast don't accept input models with NaN values.

See Also
arima | estimate | forecast | simulate

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72

More About
• “ARIMA Model” on page 5-41
• “Lag Operator Notation” on page 1-22

5 Conditional Mean Models

5-46

Multiplicative ARIMA Model

Many time series collected periodically (e.g., quarterly or monthly) exhibit a seasonal
trend, meaning there is a relationship between observations made during the same
period in successive years. In addition to this seasonal relationship, there can also be a
relationship between observations made during successive periods. The multiplicative
ARIMA model is an extension of the ARIMA model that addresses seasonality and
potential seasonal unit roots [1].

In lag operator polynomial notation, L y yi
t t i=

-
. For a series with periodicity s, the

multiplicative ARIMA(p,D,q)×(ps,Ds,qs)s is given by

f q e() ()() (() () .)L L L L y c L LD
t t

s DsF Q1 1- - = +

Here, the stable, degree p AR operator polynomial f f f() ()L L Lp
p

= - - -1 1 … , and F()L

is a stable, degree ps AR operator of the same form. Similarly, the invertible, degree q MA

operator polynomial q q qq q
qL L L() ()= + + +1 1 … , and Q()L is an invertible, degree qs MA

operator of the same form.

When you specify a multiplicative ARIMA model using arima,

• Set the nonseasonal and seasonal AR coefficients with the opposite signs from their
respective AR operator polynomials. That is, specify the coefficients as they would
appear on the right side of Equation 5-15.

• Set the lags associated with the seasonal polynomials in the periodicity of the
observed data (e.g., 4, 8,... for quarterly data, or 12, 24,... for monthly data), and not
as multiples of the seasonality (e.g., 1, 2,...). This convention does not conform to
standard Box and Jenkins notation, but is a more flexible approach for incorporating
multiplicative seasonality.

The nonseasonal differencing operator, ()1- L
D accounts for nonstationarity in

observations made in successive periods. The seasonal differencing operator, ()1- L
s D

s ,
accounts for nonstationarity in observations made in the same period in successive years.
Econometrics Toolbox supports only the degrees of seasonal integration Ds = 0 or 1. When
you specify s ≥ 0, Econometrics Toolbox sets Ds = 1. Ds = 0 otherwise.

 Multiplicative ARIMA Model

5-47

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima

Related Examples
• “Nonseasonal and Seasonal Differencing” on page 2-23
• “Multiplicative ARIMA Model Specifications” on page 5-48
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117

More About
• “Autoregressive Moving Average Model” on page 5-34
• “ARIMA Model” on page 5-41

5 Conditional Mean Models

5-48

Multiplicative ARIMA Model Specifications

In this section...

“Seasonal ARIMA Model with No Constant Term” on page 5-48
“Seasonal ARIMA Model with Known Parameter Values” on page 5-49

Seasonal ARIMA Model with No Constant Term

This example shows how to use arima to specify a multiplicative seasonal ARIMA model
(for monthly data) with no constant term.

Specify a multiplicative seasonal ARIMA model with no constant term,

where the innovation distribution is Gaussian with constant variance. Here,
is the first degree nonseasonal differencing operator and is the first degree
seasonal differencing operator with periodicity 12.

model = arima('Constant',0,'ARLags',1,'SARLags',12,'D',1,...

 'Seasonality',12,'MALags',1,'SMALags',12)

model =

 ARIMA(1,1,1) Model Seasonally Integrated with Seasonal AR(12) and MA(12):

 --

 Distribution: Name = 'Gaussian'

 P: 26

 D: 1

 Q: 13

 Constant: 0

 AR: {NaN} at Lags [1]

 SAR: {NaN} at Lags [12]

 MA: {NaN} at Lags [1]

 SMA: {NaN} at Lags [12]

 Seasonality: 12

 Variance: NaN

The name-value pair argument ARLags specifies the lag corresponding to the
nonseasonal AR coefficient, . SARLags specifies the lag corresponding to the seasonal

 Multiplicative ARIMA Model Specifications

5-49

AR coefficient, here at lag 12. The nonseasonal and seasonal MA coefficients are specified
similarly. D specifies the degree of nonseasonal integration. Seasonality specifies the
periodicity of the time series, for example Seasonality = 12 indicates monthly data.
Since Seasonality is greater than 0, the degree of seasonal integration is one.

Whenever you include seasonal AR or MA polynomials (signaled by specifying SAR or
SMA) in the model specification, arima incorporates them multiplicatively. arima sets
the property P equal to p + D + + s (here, 1 + 1 + 12 + 12 = 26). Similarly, arima sets
the property Q equal to q + (here, 1 + 12 = 13).

Display the value of SAR:

model.SAR

ans =

 Columns 1 through 11

 [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

 Column 12

 [NaN]

The SAR cell array returns 12 elements, as specified by SARLags. arima sets the
coefficients at interim lags equal to zero to maintain consistency with MATLAB® cell
array indexing. Therefore, the only nonzero coefficient corresponds to lag 12.

All of the other elements in model have value NaN, indicating that these coefficients need
to be estimated or otherwise specified by the user.

Seasonal ARIMA Model with Known Parameter Values

This example shows how to specify a multiplicative seasonal ARIMA model (for quarterly
data) with known parameter values. You can use such a fully specified model as an input
to simulate or forecast.

Specify the multiplicative seasonal ARIMA model

5 Conditional Mean Models

5-50

where the innovation distribution is Gaussian with constant variance 0.15. Here,
 is the nonseasonal differencing operator and is the first degree seasonal

differencing operator with periodicity 4.

model = arima('Constant',0,'AR',{0.5},'SAR',-0.7,'SARLags',...

 4,'D',1,'Seasonality',4,'MA',0.3,'SMA',-0.2,...

 'SMALags',4,'Variance',0.15)

model =

 ARIMA(1,1,1) Model Seasonally Integrated with Seasonal AR(4) and MA(4):

 --

 Distribution: Name = 'Gaussian'

 P: 10

 D: 1

 Q: 5

 Constant: 0

 AR: {0.5} at Lags [1]

 SAR: {-0.7} at Lags [4]

 MA: {0.3} at Lags [1]

 SMA: {-0.2} at Lags [4]

 Seasonality: 4

 Variance: 0.15

The output specifies the nonseasonal and seasonal AR coefficients with opposite signs
compared to the lag polynomials. This is consistent with the difference equation form of
the model. The output specifies the lags of the seasonal AR and MA coefficients using
SARLags and SMALags, respectively. D specifies the degree of nonseasonal integration.
Seasonality = 4 specifies quarterly data with one degree of seasonal integration.

All of the parameters in the model have a value. Therefore, the model does not contain
any NaN values. The functions simulate and forecast do not accept input models with
NaN values.

See Also
arima | estimate | forecast | simulate

Related Examples
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Modify Properties of Conditional Mean Model Objects” on page 5-65

 Multiplicative ARIMA Model Specifications

5-51

• “Specify Conditional Mean Model Innovation Distribution” on page 5-72
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117

More About
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Multiplicative ARIMA Model” on page 5-46

5 Conditional Mean Models

5-52

Specify Multiplicative ARIMA Model

This example shows how to specify a seasonal ARIMA model using arima. The time
series is monthly international airline passenger numbers from 1949 to 1960.

Load the airline passenger data.

Load the airline data set, and then plot the natural log of the monthly passenger totals.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

y = log(Data);

T = length(y);

figure

plot(dates,y)

xlim([1,T])

datetick('x','mmmyy')

axis tight

title('Log Airline Passengers')

ylabel('(thousands)')

 Specify Multiplicative ARIMA Model

5-53

The data look nonstationary, with a linear trend and seasonal periodicity.

Plot the seasonally integrated series.

Calculate the differenced series, , where is the original log-
transformed data. Plot the differenced series.

A1 = LagOp({1,-1},'Lags',[0,1]);

A12 = LagOp({1,-1},'Lags',[0,12]);

dY = filter(A1*A12,y);

figure

plot(dY)

5 Conditional Mean Models

5-54

title('Differenced Log Airline Passengers')

The differenced series appears stationary.

Plot the sample autocorrelation function (ACF).

figure

autocorr(dY,50)

 Specify Multiplicative ARIMA Model

5-55

The sample ACF of the differenced series shows significant autocorrelation at lags that
are multiples of 12. There is also potentially significant autocorrelation at smaller lags.

Specify a seasonal ARIMA model.

Box, Jenkins, and Reinsel suggest the multiplicative seasonal model,

for this data set (Box et al., 1994).

Specify this model.

5 Conditional Mean Models

5-56

Mdl = arima('Constant',0,'D',1,'Seasonality',12,...

 'MALags',1,'SMALags',12)

Mdl =

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Distribution: Name = 'Gaussian'

 P: 13

 D: 1

 Q: 13

 Constant: 0

 AR: {}

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {NaN} at Lags [12]

 Seasonality: 12

 Variance: NaN

The property P is equal to 13, corresponding to the sum of the nonseasonal and seasonal
differencing degrees (1 + 12). The property Q is also equal to 13, corresponding to the sum
of the degrees of the nonseasonal and seasonal MA polynomials (1 + 12). Parameters that
need to be estimated have value NaN.

References:

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima | LagOp | autocorr | filter

Related Examples
• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Forecast Multiplicative ARIMA Model” on page 5-192
• “Check Fit of Multiplicative ARIMA Model” on page 3-81
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117

 Specify Multiplicative ARIMA Model

5-57

More About
• “Multiplicative ARIMA Model” on page 5-46

5 Conditional Mean Models

5-58

ARIMA Model Including Exogenous Covariates

In this section...

“ARIMAX(p,D,q) Model” on page 5-58
“Conventions and Extensions of the ARIMAX Model” on page 5-58

ARIMAX(p,D,q) Model

The autoregressive moving average model including exogenous covariates, ARMAX(p,q),
extends the “Autoregressive Moving Average Model” on page 5-34 model by including the
linear effect that one or more exogenous series has on the “Stationary Processes” on page
1-21 response series yt. The general form of the ARMAX(p,q) model is

y y xt i

i

p

t i k

k

r

tk t j

j

q

t j= + + +
=

-
= =

-Â Â Âf b e q e
1 1 1

,

and it has the following condensed form in lag operator notation:

f b q e() () .L y c x Lt t t= + +¢

In Equation 5-17, the vector x
t

¢ holds the values of the r exogenous, time-varying
predictors at time t, with coefficients denoted β.

You can use this model to check if a set of exogenous variables has an effect on a linear
time series. For example, suppose you want to measure how the previous week’s average
price of oil, xt, affects this week’s United States exchange rate yt. The exchange rate and
the price of oil are time series, so an ARMAX model can be appropriate to study their
relationships.

Conventions and Extensions of the ARIMAX Model

• ARMAX models have the same stationarity requirements as “Autoregressive
Moving Average Model” on page 5-34. Specifically, the response series is stable
if the roots of the homogeneous “Characteristic Equation” on page 1-23 of
f f f f() ...L L L L Lp p p

p
p

= - - - - =
- -

1
1

2
2

0 lie outside of the unit circle according to
Wold’s Decomposition [1].

 ARIMA Model Including Exogenous Covariates

5-59

If the response series yt is not stable, then you can difference it to form a stationary
“ARIMA Model” on page 5-41. Do this by specifying the degrees of integration D.
Econometrics Toolbox enforces stability of the AR polynomial. When you specify an
AR model using arima, the software displays an error if you enter coefficients that
do not correspond to a stable polynomial. Similarly, estimate imposes stationarity
constraints during estimation.

• The software differences the response series yt before including the exogenous
covariates if you specify the degree of integration D. In other words, the exogenous
covariates enter a model with a stationary response. Therefore, the ARIMAX(p,D,q)
model is

f b q e() () ,L y c x Lt t t= + +* ¢ *

where c* = c/(1 – L)D and θ*(L) = θ(L)/(1 – L)D. Subsequently, the interpretation
of β has changed to the expected effect a unit increase in the predictor has on the
difference between current and lagged values of the response (conditional on those
lagged values).

• You should assess whether the predictor series xt are stationary. Difference all
predictor series that are not stationary with diff during the data preprocessing
stage. If xt is nonstationary, then a test for the significance of β can produce a false
negative. The practical interpretation of β changes if you difference the predictor
series.

• The software uses “Maximum Likelihood Estimation for Conditional Mean Models”
on page 5-98 such as ARIMAX models. You can specify either a Gaussian or
Student’s t for the distribution of the innovations.

• You can include seasonal components in an ARIMAX model (see “Multiplicative
ARIMA Model” on page 5-46) which creates a SARIMAX(p,D,q)(ps,Ds,qs)s model.
Assuming that the response series yt is stationary, the model has the form

f b q e() () () () ,L L y c x L Lt t tF Q= + +¢

where Φ(L) and Θ(L) are the seasonal lag polynomials. If yt is not stationary, then you
can specify degrees of nonseasonal or seasonal integration using arima. If you specify
Seasonality ≥ 0, then the software applies degree one seasonal differencing (Ds =
1) to the response. Otherwise, Ds = 0. The software includes the exogenous covariates
after it differences the response.

5 Conditional Mean Models

5-60

• The software treats the exogenous covariates as fixed during estimation and
inference.

References

[1] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

See Also
arima

Related Examples
• “Specify ARMAX Model Using Dot Notation” on page 5-62
• “Specify ARIMAX Model Using Name-Value Pairs” on page 5-61

More About
• “Autoregressive Moving Average Model” on page 5-34
• “Specify Conditional Mean Models Using arima” on page 5-6

 ARIMAX Model Specifications

5-61

ARIMAX Model Specifications

In this section...

“Specify ARIMAX Model Using Name-Value Pairs” on page 5-61
“Specify ARMAX Model Using Dot Notation” on page 5-62

Specify ARIMAX Model Using Name-Value Pairs

This example shows how to specify an ARIMAX model using arima.

Specify the ARIMAX(1,1,0) model that includes three predictors:

model = arima('AR',0.1,'D',1,'Beta',[3 -2 5])

model =

 ARIMAX(1,1,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 1

 Q: 0

 Constant: NaN

 AR: {0.1} at Lags [1]

 SAR: {}

 MA: {}

 SMA: {}

 Beta: [3 -2 5]

 Variance: NaN

The output shows that the ARIMAX model, model, has the following qualities:

• Property P in the output is the sum of the autoregressive lags and the degree of
integration, i.e., P = p + D = 2.

• Beta contains three coefficients corresponding to the effect that the predictors have
on the response.

5 Conditional Mean Models

5-62

• The rest of the properties are 0, NaN, or empty cells.

Be aware that if you specify nonzero D or Seasonality, then Econometrics Toolbox™
differences the response series before the predictors enter the model. Therefore, the
predictors enter a stationary model with respect to the response series . You should
preprocess the predictors by testing for stationarity and differencing if any are unit
root nonstationary. If any nonstationary predictor enters the model, then the false
negative rate for significance tests of can increase.

Specify ARMAX Model Using Dot Notation

This example shows how to specify a stationary ARMAX model using arima.

Specify the ARMAX(2,1) model

by including one stationary exogenous covariate in arima.

 model = arima('AR',[0.2 -0.3],'MA',0.1,'Constant',6,'Beta',3)

model =

 ARIMAX(2,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 1

 Constant: 6

 AR: {0.2 -0.3} at Lags [1 2]

 SAR: {}

 MA: {0.1} at Lags [1]

 SMA: {}

 Beta: [3]

 Variance: NaN

The output shows the model that you created, model, has NaN values or an empty cell
({}) for the Variance, SAR, and SMA properties. You can modify it using dot notation.
For example, you can introduce another exogenous, stationary covariate, and specify that
the variance of the innovations as 0.1:

 ARIMAX Model Specifications

5-63

Modify model:

model.Beta=[3 -2];

model.Variance=0.1

model =

 ARIMAX(2,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 1

 Constant: 6

 AR: {0.2 -0.3} at Lags [1 2]

 SAR: {}

 MA: {0.1} at Lags [1]

 SMA: {}

 Beta: [3 -2]

 Variance: 0.1

See Also
arima | estimate | forecast | simulate | struct

Related Examples
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Specify Nonseasonal Models Using Name-Value Pairs” on page 5-8
• “Specify Multiplicative ARIMA Model” on page 5-52

More About
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Autoregressive Moving Average Model” on page 5-34
• “ARIMA Model” on page 5-41

5 Conditional Mean Models

5-64

• “ARIMA Model Including Exogenous Covariates” on page 5-58

 Modify Properties of Conditional Mean Model Objects

5-65

Modify Properties of Conditional Mean Model Objects

In this section...

“Dot Notation” on page 5-65
“Nonmodifiable Properties” on page 5-69

Dot Notation

A model created by arima has values assigned to all model properties. To change any of
these property values, you do not need to reconstruct the whole model. You can modify
property values of an existing model using dot notation. That is, type the model name,
then the property name, separated by '.' (a period).

For example, start with this model specification:

Mdl = arima(2,0,0)

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

Modify the model to remove the constant term:

Mdl.Constant = 0

Mdl =

 ARIMA(2,0,0) Model:

5 Conditional Mean Models

5-66

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The updated constant term now appears in the model output.

Be aware that every model property has a data type. Any modifications you make to a
property value must be consistent with the data type of the property. For example, AR,
MA, SAR, and SMA are all cell vectors. This mean you must index them using cell array
syntax.

For example, start with the following model:

Mdl = arima(2,0,0)

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

To modify the property value of AR, assign AR a cell array. Here, assign known AR
coefficient values:

Mdl.AR = {0.8,-0.4}

 Modify Properties of Conditional Mean Model Objects

5-67

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: NaN

 AR: {0.8 -0.4} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The updated model now has AR coefficients with the specified equality constraints.

Similarly, the data type of Distribution is a data structure. The default data structure
has only one field, Name, with value 'Gaussian'.

Distribution = Mdl.Distribution

Distribution =

 Name: 'Gaussian'

To modify the innovation distribution, assign Distribution a new name or data
structure. The data structure can have up to two fields, Name and DoF. The second field
corresponds to the degrees of freedom for a Student's t distribution, and is only required
if Name has the value 't'.

To specify a Student's t distribution with unknown degrees of freedom, enter:

Mdl.Distribution = 't'

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 't', DoF = NaN

 P: 2

 D: 0

5 Conditional Mean Models

5-68

 Q: 0

 Constant: NaN

 AR: {0.8 -0.4} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The updated model has a Student's t distribution with NaN degrees of freedom. To specify
a t distribution with eight degrees of freedom, say:

Mdl.Distribution = struct('Name','t','DoF',8)

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 't', DoF = 8

 P: 2

 D: 0

 Q: 0

 Constant: NaN

 AR: {0.8 -0.4} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The degrees of freedom property of the model is updated. Note that the DoF field of
Distribution is not directly assignable. For example, Mdl.Distribution.DoF = 8 is
not a valid assignment. However, you can get the individual fields:

Mdl.Distribution.DoF

ans =

 8

You can modify Mdl to include, for example, two coefficients and
corresponding to two predictor series. Since Beta has not been specified yet, you have not
seen it in the output. To include it, enter:

 Modify Properties of Conditional Mean Model Objects

5-69

Mdl.Beta=[0.2 4]

Mdl =

 ARIMAX(2,0,0) Model:

 Distribution: Name = 't', DoF = 8

 P: 2

 D: 0

 Q: 0

 Constant: NaN

 AR: {0.8 -0.4} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Beta: [0.2 4]

 Variance: NaN

Nonmodifiable Properties

Not all model properties are modifiable. You cannot change these properties in an
existing model:

• P. This property updates automatically when any of p (degree of the nonseasonal
AR operator), (degree of the seasonal AR operator), D (degree of nonseasonal
differencing), or s (degree of seasonal differencing) changes.

• Q. This property updates automatically when either q (degree of the nonseasonal MA
operator), or (degree of the seasonal MA operator) changes.

Not all name-value pair arguments you can use for model creation are properties of the
created model. Specifically, you can specify the arguments ARLags, MALags, SARLags,
and SMALags during model creation. These are not, however, properties of arima models.
This means you cannot retrieve or modify them in an existing model.

The nonseasonal and seasonal AR and MA lags update automatically if you add any
elements to (or remove from) the coefficient cell arrays AR, MA, SAR, or SMA.

For example, specify an AR(2) model:

Mdl = arima(2,0,0)

5 Conditional Mean Models

5-70

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The model output shows nonzero AR coefficients at lags 1 and 2.

Add a new AR term at lag 12:

Mdl.AR{12} = NaN

Mdl =

 ARIMA(12,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 12

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN NaN NaN} at Lags [1 2 12]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

The three nonzero coefficients at lags 1, 2, and 12 now display in the model output.
However, the cell array assigned to AR returns twelve elements:

Mdl.AR

ans =

 Modify Properties of Conditional Mean Model Objects

5-71

 Columns 1 through 10

 [NaN] [NaN] [0] [0] [0] [0] [0] [0] [0] [0]

 Columns 11 through 12

 [0] [NaN]

AR has zero coefficients at all the interim lags to maintain consistency with traditional
MATLAB® cell array indexing.

See Also
arima | struct

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72

More About
• “Conditional Mean Models” on page 5-3

5 Conditional Mean Models

5-72

Specify Conditional Mean Model Innovation Distribution

In this section...

“About the Innovation Process” on page 5-72
“Choices for the Variance Model” on page 5-73
“Choices for the Innovation Distribution” on page 5-73
“Specify the Innovation Distribution” on page 5-74
“Modify the Innovation Distribution” on page 5-76

About the Innovation Process

You can express all stationary stochastic processes in the general linear form [1]

yt t i t i
i

= + + -
=

•

Âm e y e .

1

The innovation process, e
t
, is an uncorrelated—but not necessarily independent—mean

zero process with a known distribution.

In Econometrics Toolbox, the general form for the innovation process is e s
t t t

z= . Here, zt

is an independent and identically distributed (iid) series with mean 0 and variance 1, and
s

t

2 is the variance of the innovation process at time t. Thus, e
t
 is an uncorrelated series

with mean 0 and variance s
t

2 .

arima model objects have two properties for storing information about the innovation
process:

•
Variance stores the form of s

t

2

• Distribution stores the parametric form of the distribution of zt

 Specify Conditional Mean Model Innovation Distribution

5-73

Choices for the Variance Model

• If s s
et

2 2
= for all times t, then e

t
 is an independent process with constant variance,

s
e

2 .

The default value for Variance is NaN, meaning constant variance with unknown
value. You can alternatively assign Variance any positive scalar value, or estimate it
using estimate.

• A time series can exhibit volatility clustering, meaning a tendency for large changes
to follow large changes, and small changes to follow small changes. You can model
this behavior with a conditional variance model—a dynamic model describing the
evolution of the process variance, s

t

2 , conditional on past innovations and variances.

Set Variance equal to one of the three conditional variance model objects available in
Econometrics Toolbox (garch, egarch, or gjr). This creates a composite conditional
mean and variance model variable.

Choices for the Innovation Distribution

The available distributions for zt are:

• Standardized Gaussian
• Standardized Student’s t with ν > 2 degrees of freedom,

z T
t

=
-n

n
n

2
,

where T
n

 follows a Student’s t distribution with ν > 2 degrees of freedom.

The t distribution is useful for modeling time series with more extreme values than
expected under a Gaussian distribution. Series with larger values than expected under
normality are said to have excess kurtosis.

Tip It is good practice to assess the distributional properties of model residuals to
determine if a Gaussian innovation distribution (the default distribution) is appropriate
for your data.

5 Conditional Mean Models

5-74

Specify the Innovation Distribution

The property Distribution in a model stores the distribution name (and degrees of
freedom for the t distribution). The data type of Distribution is a struct array. For
a Gaussian innovation distribution, the data structure has only one field: Name. For a
Student's t distribution, the data structure must have two fields:

• Name, with value 't'
• DoF, with a scalar value larger than two (NaN is the default value)

If the innovation distribution is Gaussian, you do not need to assign a value to
Distribution. arima creates the required data structure.

To illustrate, consider specifying an MA(2) model with an iid Gaussian innovation
process:

Mdl = arima(0,0,2)

Mdl =

 ARIMA(0,0,2) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 2

 Constant: NaN

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The model output shows that Distribution is a struct array with one field, Name,
with the value 'Gaussian'.

When specifying a Student's t innovation distribution, you can specify the distribution
with either unknown or known degrees of freedom. If the degrees of freedom are
unknown, you can simply assign Distribution the value 't'. By default, the property
Distribution has a data structure with field Name equal to 't', and field DoF equal to
NaN. When you input the model to estimate, the degrees of freedom are estimated along
with any other unknown model parameters.

 Specify Conditional Mean Model Innovation Distribution

5-75

For example, specify an MA(2) model with an iid Student's t innovation distribution, with
unknown degrees of freedom:

Mdl = arima('MALags',1:2,'Distribution','t')

Mdl =

 ARIMA(0,0,2) Model:

 Distribution: Name = 't', DoF = NaN

 P: 0

 D: 0

 Q: 2

 Constant: NaN

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The output shows that Distribution is a data structure with two fields. Field Name has
the value 't', and field DoF has the value NaN.

If the degrees of freedom are known, and you want to set an equality constraint, assign
a struct array to Distribution with fields Name and DoF. In this case, if the model is
input to estimate, the degrees of freedom won't be estimated (the equality constraint is
upheld).

Specify an MA(2) model with an iid Student's t innovation process with eight degrees of
freedom:

Mdl = arima('MALags',1:2,'Distribution',struct('Name','t','DoF',8))

Mdl =

 ARIMA(0,0,2) Model:

 Distribution: Name = 't', DoF = 8

 P: 0

 D: 0

 Q: 2

 Constant: NaN

5 Conditional Mean Models

5-76

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The output shows the specified innovation distribution.

Modify the Innovation Distribution

After a model exists in the Workspace, you can modify its Distribution property using
dot notation. You cannot modify the fields of the Distribution data structure directly.
For example, Mdl.Distribution.DoF = 8 is not a valid assignment. However, you can
get the individual fields.

Start with an MA(2) model:

Mdl = arima(0,0,2);

To change the distribution of the innovation process in an existing model to a Student's t
distribution with unknown degrees of freedom, type:

Mdl.Distribution = 't'

Mdl =

 ARIMA(0,0,2) Model:

 Distribution: Name = 't', DoF = NaN

 P: 0

 D: 0

 Q: 2

 Constant: NaN

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

To change the distribution to a t distribution with known degrees of freedom, use a data
structure:

Mdl.Distribution = struct('Name','t','DoF',8)

 Specify Conditional Mean Model Innovation Distribution

5-77

Mdl =

 ARIMA(0,0,2) Model:

 Distribution: Name = 't', DoF = 8

 P: 0

 D: 0

 Q: 2

 Constant: NaN

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

You can get the individual Distribution fields:

DistributionDoF = Mdl.Distribution.DoF

DistributionDoF =

 8

To change the innovation distribution from a Student's t back to a Gaussian distribution,
type:

Mdl.Distribution = 'Gaussian'

Mdl =

 ARIMA(0,0,2) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 2

 Constant: NaN

 AR: {}

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

5 Conditional Mean Models

5-78

 Variance: NaN

The Name field is updated to 'Gaussian', and there is no longer a DoF field.

References

[1] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist and Wiksell, 1938.

See Also
arima | egarch | garch | gjr | struct

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Specify Conditional Mean and Variance Models” on page 5-79

More About
• “Conditional Mean Models” on page 5-3
• Using garch Objects
• Using egarch Objects
• Using gjr Objects

 Specify Conditional Mean and Variance Models

5-79

Specify Conditional Mean and Variance Models

This example shows how to specify a composite conditional mean and variance model
using arima.

Load the Data

Load the NASDAQ data included with the toolbox. Convert the daily close composite
index series to a percentage return series.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

r = 100*price2ret(nasdaq);

T = length(r);

figure

plot(r)

xlim([0 T])

title('NASDAQ Daily Returns')

5 Conditional Mean Models

5-80

The returns appear to fluctuate around a constant level, but exhibit volatility clustering.
Large changes in the returns tend to cluster together, and small changes tend to cluster
together. That is, the series exhibits conditional heteroscedasticity.

The returns are of relatively high frequency. Therefore, the daily changes can be small.
For numerical stability, it is good practice to scale such data.

Check for Autocorrelation

Plot the sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) for the return series.

figure

subplot(2,1,1)

 Specify Conditional Mean and Variance Models

5-81

autocorr(r)

subplot(2,1,2)

parcorr(r)

The autocorrelation functions suggests there is significant autocorrelation at lag one.

Test the Significance of Autocorrelations

Conduct a Ljung-Box Q-test at lag 5.

[h,p] = lbqtest(r,'Lags',5)

5 Conditional Mean Models

5-82

h =

 1

p =

 0.0120

The null hypothesis that all autocorrelations are 0 up to lag 5 is rejected (h = 1).

Check for Conditional Heteroscedasticity.

Plot the sample ACF and PACF of the squared return series.

figure

subplot(2,1,1)

autocorr(r.^2)

subplot(2,1,2)

parcorr(r.^2)

 Specify Conditional Mean and Variance Models

5-83

The autocorrelation functions show significant serial dependence, which suggests that
the series is conditionally heteroscedastic.

Test for Significant ARCH Effects

Conduct an Engle's ARCH test. Test the null hypothesis of no conditional
heteroscedasticity against the alternative hypothesis of an ARCH model with two lags
(which is locally equivalent to a GARCH(1,1) model).

[h,p] = archtest(r-mean(r),'lags',2)

h =

5 Conditional Mean Models

5-84

 1

p =

 0

The null hypothesis is rejected in favor of the alternative hypothesis (h = 1).

Specify a Conditional Mean and Variance Model.

Specify an AR(1) model for the conditional mean of the NASDAQ returns, and a
GARCH(1,1) model for the conditional variance. This is a model of the form

where ,

and is an independent and identically distributed standardized Gaussian process.

Mdl = arima('ARLags',1,'Variance',garch(1,1))

Mdl =

 ARIMA(1,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 1

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN} at Lags [1]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: [GARCH(1,1) Model]

 Specify Conditional Mean and Variance Models

5-85

The model output shows that a garch model is stored in the Variance property of the
arima model, Mdl.

See Also
archtest | arima | autocorr | garch | lbqtest | parcorr

Related Examples
• “Estimate Conditional Mean and Variance Models” on page 5-129
• “Simulate Conditional Mean and Variance Models” on page 5-175
• “Forecast Conditional Mean and Variance Model” on page 5-197

More About
• “Multiplicative ARIMA Model” on page 5-46
• Using garch Objects

5 Conditional Mean Models

5-86

Impulse Response Function

The general linear model for a time series yt is

y Lt t i t i t
i

= + + = +-
=

•

Âm e y e m y e() ,

1

where y ()L denotes the infinite-degree lag operator polynomial ()1 1 2
2

+ + +y yL L … .

The coefficients y i are sometimes called dynamic multipliers [1]. You can interpret the
coefficient y j as the change in yt+j due to a one-unit change in εt,

∂

∂
=

+yt j

t
j

e
y .

Provided the series y
i{ } is absolutely summable, Equation 5-19 corresponds to a

stationary stochastic process [2]. For a stationary stochastic process, the impact on the
process due to a change in εt is not permanent, and the effect of the impulse decays to
zero. If the series y

i{ } is explosive, the process yt is nonstationary. In this case, a one-
unit change in εt permanently affects the process.

The series y
i{ } describes the change in future values yt+i due to a one-unit impulse in the

innovation εt, with no other changes to future innovations e e
t t+ +1 2, ,… . As a result, y

i{ }

is often called the impulse response function.

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Wold, H. A Study in the Analysis of Stationary Time Series. Uppsala, Sweden:
Almqvist & Wiksell, 1938.

 Impulse Response Function

5-87

See Also
armairf | impulse

Related Examples
• “Plot the Impulse Response Function” on page 5-88

More About
• “Conditional Mean Models” on page 5-3

5 Conditional Mean Models

5-88

Plot the Impulse Response Function

In this section...

“Moving Average Model” on page 5-88
“Autoregressive Model” on page 5-89
“ARMA Model” on page 5-91

Moving Average Model

This example shows how to calculate and plot the impulse response function for a moving
average (MA) model. The MA(q) model is given by

where is a q-degree MA operator polynomial,

The impulse response function for an MA model is the sequence of MA coefficients,

Step 1. Specify the MA model.

Specify a zero-mean MA(3) model with coefficients , , and

modelMA = arima('Constant',0,'MA',{0.8,0.5,-0.1});

Step 2. Plot the impulse response function.

impulse(modelMA)

 Plot the Impulse Response Function

5-89

For an MA model, the impulse response function cuts off after q periods. For this
example, the last nonzero coefficient is at lag q = 3.

Autoregressive Model

This example shows how to compute and plot the impulse response function for an
autoregressive (AR) model. The AR(p) model is given by

where is a -degree AR operator polynomial, .

5 Conditional Mean Models

5-90

An AR process is stationary provided that the AR operator polynomial is stable, meaning
all its roots lie outside the unit circle. In this case, the infinite-degree inverse polynomial,

, has absolutely summable coefficients, and the impulse response function
decays to zero.

Step 1. Specify the AR model.

Specify an AR(2) model with coefficients and .

modelAR = arima('AR',{0.5,-0.75});

Step 2. Plot the impulse response function.

Plot the impulse response function for 30 periods.

impulse(modelAR,30)

 Plot the Impulse Response Function

5-91

The impulse function decays in a sinusoidal pattern.

ARMA Model

This example shows how to plot the impulse response function for an autoregressive
moving average (ARMA) model. The ARMA(p, q) model is given by

where is a q-degree MA operator polynomial, , and is a
p-degree AR operator polynomial, .

5 Conditional Mean Models

5-92

An ARMA process is stationary provided that the AR operator polynomial is stable,
meaning all its roots lie outside the unit circle. In this case, the infinite-degree inverse
polynomial, , has absolutely summable coefficients, and the impulse
response function decays to zero.

Step 1. Specify an ARMA model.

Specify an ARMA(2,1) model with coefficients = 0.6, , and .

modelARMA = arima('AR',{0.6,-0.3},'MA',0.4);

Step 2. Plot the impulse response function.

Plot the impulse response function for 10 periods.

impulse(modelARMA,10)

 Plot the Impulse Response Function

5-93

See Also
arima | cell2mat | impulse | isStable | LagOp | toCellArray

More About
• “Impulse Response Function” on page 5-86
• “Moving Average Model” on page 5-27
• “Autoregressive Model” on page 5-18
• “Autoregressive Moving Average Model” on page 5-34

5 Conditional Mean Models

5-94

Box-Jenkins Differencing vs. ARIMA Estimation

This example shows how to estimate an ARIMA model with nonseasonal integration
using estimate. The series is not differenced before estimation. The results are
compared to a Box-Jenkins modeling strategy, where the data are first differenced, and
then modeled as a stationary ARMA model (Box et al., 1994).

The time series is the log quarterly Australian Consumer Price Index (CPI) measured
from 1972 through 1991.

Load the Data

Load and plot the Australian CPI data.

load Data_JAustralian

y = DataTable.PAU;

T = length(y);

figure

plot(y);

h = gca; % Define a handle for the current axes

h.XLim = [0,T]; % Set x-axis limits

h.XTickLabel = datestr(dates(1:10:T),17); % Label x-axis tick marks

title('Log Quarterly Australian CPI')

 Box-Jenkins Differencing vs. ARIMA Estimation

5-95

The series is nonstationary, with a clear upward trend. This suggests differencing the
data before using a stationary model (as suggested by the Box-Jenkins methodology), or
fitting a nonstationary ARIMA model directly.

Estimate an ARIMA Model

Specify an ARIMA(2,1,0) model, and estimate.

Mdl = arima(2,1,0);

EstMdl = estimate(Mdl,y);

 ARIMA(2,1,0) Model:

5 Conditional Mean Models

5-96

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0100723 0.00328015 3.07069

 AR{1} 0.212059 0.0954278 2.22219

 AR{2} 0.337282 0.103781 3.24994

 Variance 9.23017e-05 1.11119e-05 8.30659

The estimated model is

where is normally distributed with standard deviation 0.01.

The signs of the estimated AR coefficients correspond to the AR coefficients on the right
side of the model equation. In lag operator polynomial notation, the fitted model is

with the opposite sign on the AR coefficients.

Difference the Data Before Estimating

Take the first difference of the data. Estimate an AR(2) model using the differenced data.

dY = diff(y);

MdlAR = arima(2,0,0);

EstMdlAR = estimate(MdlAR,dY);

 ARIMA(2,0,0) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0104289 0.00380427 2.74137

 AR{1} 0.201194 0.101463 1.98293

 AR{2} 0.32299 0.118035 2.7364

 Variance 9.42421e-05 1.16259e-05 8.10622

 Box-Jenkins Differencing vs. ARIMA Estimation

5-97

The parameter point estimates are very similar to those in EstMdl. The standard errors,
however, are larger when the data is differenced before estimation.

Forecasts made using the estimated AR model (EstMdlAR) will be on the differenced
scale. Forecasts made using the estimated ARIMA model (EstMdl) will be on the same
scale as the original data.

References:

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima | estimate

Related Examples
• “Box-Jenkins Model Selection” on page 3-4
• “Infer Residuals for Diagnostic Checking” on page 5-140

More About
• “Box-Jenkins Methodology” on page 3-2
• “ARIMA Model” on page 5-41

5 Conditional Mean Models

5-98

Maximum Likelihood Estimation for Conditional Mean Models

Innovation Distribution

For conditional mean models in Econometrics Toolbox, the form of the innovation process
is e s

t t t
z= , where zt can be standardized Gaussian or Student’s t with n > 2 degrees

of freedom. Specify your distribution choice in the arima model object Distribution
property.

The innovation variance, s t

2
, can be a positive scalar constant, or characterized by

a conditional variance model. Specify the form of the conditional variance using the
Variance property. If you specify a conditional variance model, the parameters of that
model are estimated with the conditional mean model parameters simultaneously.

Given a stationary model,

y Lt t= +m y e() ,

applying an inverse filter yields a solution for the innovation e
t

e y mt tL y= -
-1

()().

For example, for an AR(p) process,

e ft tc L y= - + () ,

where f f f() ()L L Lp
p

= - - -1 1 L is the degree p AR operator polynomial.

estimate uses maximum likelihood to estimate the parameters of an arima model.
estimate returns fitted values for any parameters in the input model object equal to
NaN. estimate honors any equality constraints in the input model object, and does not
return estimates for parameters with equality constraints.

 Maximum Likelihood Estimation for Conditional Mean Models

5-99

Loglikelihood Functions

Given the history of a process, innovations are conditionally independent. Let Ht denote
the history of a process available at time t, t = 1,...,N. The likelihood function for the
innovation series is given by

f H f HN N
t

N

t t(, , , |) (|),e e e e1 2 1
1

1… -

=

-= ’

where f is a standardized Gaussian or t density function.

The exact form of the loglikelihood objective function depends on the parametric form of
the innovation distribution.

• If zt has a standard Gaussian distribution, then the loglikelihood function is

LLF
N

t

t

N
t

tt

N

= - - -

= =

Â Â
2

2
1

2

1

2

2

1

2

2
1

log() log .p s
e

s

• If zt has a standardized Student’s t distribution with n > 2 degrees of freedom, then
the loglikelihood function is

LLF N
t

t

=

+Ê
Ë
Á

ˆ
¯
˜

- Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-
=

log

()

log

G

G

n

p n n
s

1

2

2
2

1

2

2

1

NN
t

tt

N

Â Â-
+

+
-

È

Î
Í
Í

˘

˚
˙
˙=

n e

s n

1

2
1

2

2

2
1

log
()

.

estimate performs covariance matrix estimation for maximum likelihood estimates
using the outer product of gradients (OPG) method.

See Also
arima | estimate

Related Examples
• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Estimate Conditional Mean and Variance Models” on page 5-129

5 Conditional Mean Models

5-100

More About
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “Presample Data for Conditional Mean Model Estimation” on page 5-103
• “Initial Values for Conditional Mean Model Estimation” on page 5-106
• “Optimization Settings for Conditional Mean Model Estimation” on page 5-108
• “Maximum Likelihood Estimation for Conditional Variance Models” on page

6-62

 Conditional Mean Model Estimation with Equality Constraints

5-101

Conditional Mean Model Estimation with Equality Constraints

For conditional mean model estimation, estimate requires an arima model and a
vector of univariate time series data. The model specifies the parametric form of the
conditional mean model that estimate estimates. estimate returns fitted values
for any parameters in the input model with NaN values. If you pass a T×r exogenous
covariate matrix in the X argument, then estimate returns r regression estimates . If
you specify non-NaN values for any parameters, estimate views these values as equality
constraints and honors them during estimation.

For example, suppose you are estimating a model without a constant term. Specify
'Constant',0 in the model you pass into estimate. estimate views this non-NaN
value as an equality constraint, and does not estimate the constant term. estimate also
honors all specified equality constraints while estimating parameters without equality
constraints. You can set a subset of regression coefficients to a constant and estimate
the rest. For example, suppose your model is called model. If your model has three
exogenous covariates, and you want to estimate two of them and set the other to one to 5,
then specify model.Beta = [NaN 5 NaN].

estimate optionally returns the variance-covariance matrix for estimated parameters.
The parameter order in this matrix is:

• Constant
• Nonzero AR coefficients at positive lags (AR)
• Nonzero seasonal AR coefficients at positive lags (SAR)
• Nonzero MA coefficients at positive lags (MA)
• Nonzero seasonal MA coefficients at positive lags (SMA)
• Regression coefficients (when you specify X)
• Variance parameters (scalar for constant-variance models, vector of additional

parameters otherwise)
• Degrees of freedom (t innovation distribution only)

If any parameter known to the optimizer has an equality constraint, then the
corresponding row and column of the variance-covariance matrix has all 0s.

In addition to user-specified equality constraints, estimate sets any AR or MA
coefficient with an estimate less than 1e-12 in magnitude equal to 0.

5 Conditional Mean Models

5-102

See Also
arima | estimate

More About
• “Maximum Likelihood Estimation for Conditional Mean Models” on page 5-98
• “Presample Data for Conditional Mean Model Estimation” on page 5-103
• “Initial Values for Conditional Mean Model Estimation” on page 5-106
• “Optimization Settings for Conditional Mean Model Estimation” on page 5-108

 Presample Data for Conditional Mean Model Estimation

5-103

Presample Data for Conditional Mean Model Estimation

Presample data comes from time points before the beginning of the observation period.
In Econometrics Toolbox, you can specify your own presample data or use generated
presample data.

In a conditional mean model, the distribution of εt is conditional on historical

information. Historical information includes past responses, y y yt1 2 1, , ,…
- , past

innovations, e e e1 2 1, , ,…
t-

, and, if you include them in the model, past and present
exogenous covariates, x x x x

t t1 2 1, , , ,…

-
.

The number of past responses and innovations that a current innovation depends on is
determined by the degree of the AR or MA operators, and any differencing. For example,
in an AR(2) model, each innovation depends on the two previous responses,

e f ft t t ty c y y= - - -- -1 1 2 2
.

In ARIMAX models, the current innovation also depends on the current value of the
exogenous covariate (unlike distributed lag models). For example, in an ARX(2) model
with one exogenous covariate, each innovation depends on the previous two responses
and the current value of the covariate,

e f ft t t t ty c y y x= - - - +- -1 1 2 2
.

5 Conditional Mean Models

5-104

In general, the likelihood contribution of the first few innovations is conditional on
historical information that might not be observable. How do you estimate the parameters
without all the data? In the ARX(2) example, e

2 explicitly depends on y1, y0, and x2,

and e
1 explicitly depends on y0, y

-1, and x
1 . Implicitly, e

2 depends on x
1 and x0, and

e
1 depends on x

0 and x
-1

. However, you cannot observe y0, y
-1, x0, and x

-1
.

The amount of presample data that you need to initialize a model depends on the degree
of the model. The property P of an arima model specifies the number of presample
responses and exogenous data that you need to initialize the AR portion of a conditional
mean model. For example, P = 2 in an ARX(2) model. Therefore, you need two responses
and two data points from each exogenous covariate series to initialize the model.

One option is to use the first P data from the response and exogenous covariate series
as your presample, and then fit your model to the remaining data. This results in some
loss of sample size. If you plan to compare multiple potential models, be aware that you
can only use likelihood-based measures of fit (including the likelihood ratio test and
information criteria) to compare models fit to the same data (of the same sample size). If
you specify your own presample data, then you must use the largest required number of
presample responses across all models that you want to compare.

The property Q of an arima model specifies the number of presample innovations
needed to initialize the MA portion of a conditional mean model. You can get presample
innovations by dividing your data into two parts. Fit a model to the first part, and
infer the innovations. Then, use the inferred innovations as presample innovations for
estimating the second part of the data.

For a model with both an autoregressive and moving average component, you can specify
both presample responses and innovations, one or the other, or neither.

By default, estimate generates automatic presample response and innovation data. The
software:

• Generates presample responses by backward forecasting.
• Sets presample innovations to zero.
• Does not generate presample exogenous data. One option is to backward forecast each

exogenous series to generate a presample during data preprocessing.

See Also
arima | estimate

 Presample Data for Conditional Mean Model Estimation

5-105

Related Examples
• “Estimate Multiplicative ARIMA Model” on page 5-113

More About
• “Maximum Likelihood Estimation for Conditional Mean Models” on page 5-98
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “Initial Values for Conditional Mean Model Estimation” on page 5-106
• “Optimization Settings for Conditional Mean Model Estimation” on page 5-108

5 Conditional Mean Models

5-106

Initial Values for Conditional Mean Model Estimation

The estimate method for arima models uses fmincon from Optimization Toolbox to
perform maximum likelihood estimation. This optimization function requires initial (or,
starting) values to begin the optimization process.

If you want to specify your own initial values, then use name-value arguments. For
example, specify initial values for nonseasonal AR coefficients using the name-value
argument AR0.

Alternatively, you can let estimate choose default initial values. Default initial values
are generated using standard time series techniques. If you partially specify initial
values (that is, specify initial values for some parameters), estimate honors the initial
values that you set, and generates default initial values for the remaining parameters.

When you generate initial values, estimate enforces stability and invertibility for all
AR and MA lag operator polynomials. When you specify initial values for the AR and
MA coefficients, it is possible that estimate cannot find initial values for the remaining
coefficients that satisfy stability and invertibility. In this case, estimate keeps the user-
specified initial values, and sets the remaining initial coefficient values to 0.

This table summarizes the techniques estimate uses to generate default initial values.
The software uses the methods in this table and the main data set to generate initial
values. If you specify seasonal or nonseasonal integration in the model, then estimate
differences the response series before initial values are generated. Here, AR coefficients
and MA coefficients include both nonseasonal and seasonal AR and MA coefficients.

 Technique to Generate Initial Values

 Parameter Regression
Coefficients Present

Regression Coefficient
Not Present

AR coefficients Ordinary least
squares (OLS) OLS

Constant OLS constant OLS constant
Regression
coefficients OLS N/A

MA Terms
Not in
Model

Constant
variance

Population variance
of OLS residuals

Population variance
of OLS residuals

 Initial Values for Conditional Mean Model Estimation

5-107

 Technique to Generate Initial Values

 Parameter Regression
Coefficients Present

Regression Coefficient
Not Present

AR coefficients OLS
Solve Yule-Walker

equations, as described
in Box, Jenkins,
and Reinsel [1].

Constant OLS constant
Mean of AR-filtered
series (using initial

AR coefficients)
Regression
coefficients OLS N/A

Constant
variance

Population variance
of OLS residuals

Variance of inferred
innovation process (using

initial MA coefficients)

MA Terms
in Model

MA coefficients Solve modified Yule-Walker equations, as
described in Box, Jenkins, and Reinsel [1].

For details about how estimate initializes conditional variance model parameters, see
“Initial Values for Conditional Variance Model Estimation” on page 6-69.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima | estimate | fmincon

More About
• “Maximum Likelihood Estimation for Conditional Mean Models” on page 5-98
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “Presample Data for Conditional Mean Model Estimation” on page 5-103
• “Optimization Settings for Conditional Mean Model Estimation” on page 5-108
• “Initial Values for Conditional Variance Model Estimation” on page 6-69

5 Conditional Mean Models

5-108

Optimization Settings for Conditional Mean Model Estimation

In this section...

“Optimization Options” on page 5-108
“Conditional Mean Model Constraints” on page 5-112

Optimization Options

estimate maximizes the loglikelihood function using fmincon from Optimization
Toolbox. fmincon has many optimization options, such as choice of optimization
algorithm and constraint violation tolerance. Choose optimization options using
optimoptions.

estimate uses the fmincon optimization options by default, with these exceptions. For
details, see fmincon and optimoptions in Optimization Toolbox.

optimoptions Properties Description estimate Settings

Algorithm Algorithm for minimizing
the negative loglikelihood
function

'sqp'

Display Level of display for
optimization progress

'off'

Diagnostics Display for diagnostic
information about the
function to be minimized

'off'

TolCon Termination tolerance on
constraint violations

1e-7

If you want to use optimization options that differ from the default, then set your own
using optimoptions.

For example, suppose that you want estimate to display optimization diagnostics.
The best practice is to set the name-value pair argument 'Display','diagnostics'
in estimate. Alternatively, you can direct the optimizer to display optimization
diagnostics.

 Optimization Settings for Conditional Mean Model Estimation

5-109

Define an AR(1) model Mdl and simulate data from it.

Mdl = arima('AR',0.5,'Constant',0,'Variance',1);

rng(1); % For reproducibility

y = simulate(Mdl,25);

By default, fmincon does not display the optimization diagnostics. Use optimoptions
to set it to display the optimization diagnostics, and set the other fmincon properties to
the default settings of estimate listed in the previous table.

options = optimoptions(@fmincon,'Diagnostics','on',...

 'Algorithm','sqp','Display','off','TolCon',1e-7)

% @fmincon is the function handle for fmincon

options =

 fmincon options:

 Options used by current Algorithm ('sqp'):

 (Other available algorithms: 'active-set', 'interior-point', 'trust-region-reflective')

 Set by user:

 Algorithm: 'sqp'

 Diagnostics: 'on'

 Display: 'off'

 TolCon: 1.0000e-07

 Default:

 DerivativeCheck: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 GradConstr: 'off'

 GradObj: 'off'

 MaxFunEvals: '100*numberOfVariables'

 MaxIter: 400

 ObjectiveLimit: -1.0000e+20

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolFun: 1.0000e-06

 TolX: 1.0000e-06

5 Conditional Mean Models

5-110

 TypicalX: 'ones(numberOfVariables,1)'

 UseParallel: 0

 Options not used by current Algorithm ('sqp')

 Default:

 AlwaysHonorConstraints: 'bounds'

 HessFcn: []

 HessMult: []

 HessPattern: 'sparse(ones(numberOfVariables))'

 Hessian: 'not applicable'

 InitBarrierParam: 0.1000

 InitTrustRegionRadius: 'sqrt(numberOfVariables)'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 MaxProjCGIter: '2*(numberOfVariables-numberOfEqualities)'

 MaxSQPIter: '10*max(numberOfVariables,numberOfInequalities+…'

 PrecondBandWidth: 0

 RelLineSrchBnd: []

 RelLineSrchBndDuration: 1

 SubproblemAlgorithm: 'ldl-factorization'

 TolConSQP: 1.0000e-06

 TolPCG: 0.1000

 TolProjCG: 0.0100

 TolProjCGAbs: 1.0000e-10

The options that you set appear under the Set by user: heading. The properties under
the Default: heading are other options that you can set.

Fit Mdl to y using the new optimization options.

ToEstMdl = arima(1,0,0);

EstMdl = estimate(ToEstMdl,y,'Options',options);

__

 Diagnostic Information

Number of variables: 3

Functions

Objective: @(X)nLogLike(X,YData,XData,E,V,Mdl,AR.Lags,MA.Lags,maxPQ,T,isDistributionT,options,userSpecifiedY0,userSpecifiedE0,userSpecifiedV0,trapValue)

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

Nonlinear constraints: @(x)internal.econ.arimaNonLinearConstraints(x,LagsAR,LagsSAR,LagsMA,LagsSMA,tolerance)

 Optimization Settings for Conditional Mean Model Estimation

5-111

Nonlinear constraints gradient: finite-differencing

Constraints

Number of nonlinear inequality constraints: 1

Number of nonlinear equality constraints: 0

Number of linear inequality constraints: 0

Number of linear equality constraints: 0

Number of lower bound constraints: 3

Number of upper bound constraints: 3

Algorithm selected

 sqp

__

 End diagnostic information

 ARIMA(1,0,0) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.0648568 0.234565 -0.276498

 AR{1} 0.463859 0.157813 2.9393

 Variance 1.23081 0.472745 2.60354

Note:

• estimate numerically maximizes the loglikelihood function potentially using
equality, inequality, and lower and upper bound constraints. If you set Algorithm to
anything other than sqp, then check that the algorithm supports similar constraints,
such as interior-point. For example, fmincon sets Algorithm to trust-
region-reflective by default. trust-region-reflective does not support
inequality constraints. Therefore, if you do not change the default Algorithm
property value of fmincon, then estimate displays a warning. During estimation,
fmincon temporarily sets Algorithm to active-set by default to satisfy the
constraints.

• estimate sets a constraint level of TolCon so constraints are not violated. Be aware
that an estimate with an active constraint has unreliable standard errors since

5 Conditional Mean Models

5-112

variance-covariance estimation assumes the likelihood function is locally quadratic
around the maximum likelihood estimate.

Conditional Mean Model Constraints

The software enforces these constraints while estimating an ARIMA model:

• Stability of nonseasonal and seasonal AR operator polynomials
• Invertibility of nonseasonal and seasonal MA operator polynomials
• Innovation variance strictly greater than zero
• Degrees of freedom strictly greater than two for a t innovation distribution

See Also
arima | estimate | fmincon | optimoptions

More About
• “Maximum Likelihood Estimation for Conditional Mean Models” on page 5-98
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “Presample Data for Conditional Mean Model Estimation” on page 5-103
• “Initial Values for Conditional Mean Model Estimation” on page 5-106

 Estimate Multiplicative ARIMA Model

5-113

Estimate Multiplicative ARIMA Model

This example shows how to estimate a multiplicative seasonal ARIMA model using
estimate. The time series is monthly international airline passenger numbers from
1949 to 1960.

Load the Data and Specify the model.

Load the airline data set.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

y = log(Data);

T = length(y);

Mdl = arima('Constant',0,'D',1,'Seasonality',12,...

 'MALags',1,'SMALags',12);

Estimate the Model Using Presample Data.

Use the first 13 observations as presample data, and the remaining 131 observations for
estimation.

y0 = y(1:13);

[EstMdl,EstParamCov] = estimate(Mdl,y(14:end),'Y0',y0)

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 MA{1} -0.377161 0.0734258 -5.13662

 SMA{12} -0.572379 0.0939327 -6.0935

 Variance 0.00138874 0.000152417 9.1115

EstMdl =

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Distribution: Name = 'Gaussian'

5 Conditional Mean Models

5-114

 P: 13

 D: 1

 Q: 13

 Constant: 0

 AR: {}

 SAR: {}

 MA: {-0.377161} at Lags [1]

 SMA: {-0.572379} at Lags [12]

 Seasonality: 12

 Variance: 0.00138874

EstParamCov =

 0 0 0 0

 0 0.0054 -0.0015 -0.0000

 0 -0.0015 0.0088 0.0000

 0 -0.0000 0.0000 0.0000

The fitted model is

with innovation variance 0.0014.

Notice that the model constant is not estimated, but remains fixed at zero. There is no
corresponding standard error or t statistic for the constant term. The row (and column) in
the variance-covariance matrix corresponding to the constant term has all zeros.

Infer the Residuals.

Infer the residuals from the fitted model.

res = infer(EstMdl,y(14:end),'Y0',y0);

figure

plot(14:T,res)

xlim([0,T])

title('Residuals')

axis tight

 Estimate Multiplicative ARIMA Model

5-115

When you use the first 13 observations as presample data, residuals are available from
time 14 onward.

References:

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima | estimate | infer

5 Conditional Mean Models

5-116

Related Examples
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Forecast Multiplicative ARIMA Model” on page 5-192
• “Check Fit of Multiplicative ARIMA Model” on page 3-81

More About
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “Presample Data for Conditional Mean Model Estimation” on page 5-103

 Model Seasonal Lag Effects Using Indicator Variables

5-117

Model Seasonal Lag Effects Using Indicator Variables

This example shows how to estimate a seasonal ARIMA model:

• Model the seasonal effects using a multiplicative seasonal model.
• Use indicator variables as a regression component for the seasonal effects, called

seasonal dummies.

Subsequently, their forecasts show that the methods produce similar results. The time
series is monthly international airline passenger numbers from 1949 to 1960.

Step 1. Load the data.

Load the data set Data_Airline, and plot the natural log of the monthly passenger
totals counts.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

dat = log(Data); % Transform to logarithmic scale

T = size(dat,1);

y = dat(1:103); % estimation sample

y is the part of dat used for estimation, and the rest of dat is the holdout sample to
compare the two models' forecasts.

Step 2. Define and fit the model specifying seasonal lags.

Create an model

where is an independent and identically distributed normally distributed series with
mean 0 and variance . Use estimate to fit model1 to y.

model1 = arima('MALags', 1, 'D', 1, 'SMALags', 12,...

'Seasonality',12, 'Constant', 0);

fit1 = estimate(model1,y);

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

5 Conditional Mean Models

5-118

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 MA{1} -0.357317 0.088031 -4.05899

 SMA{12} -0.614685 0.0962493 -6.38639

 Variance 0.00130504 0.000152696 8.54666

The fitted model is

where is an iid normally distributed series with mean 0 and variance 0.0013.

Step 3. Define and fit the model using seasonal dummies.

Create an ARIMAX(0,1,1) model with period 12 seasonal differencing and

a regression component,

 is a series of T column vectors having length 12 that indicate in which
month observation was measured. A 1 in row i of indicates that the observation was
measured in month i, the rest of the elements are 0s.

Note that if you include an additive constant in the model, then the T rows of the design

matrix X are composed of the row vectors . Therefore, X is rank deficient, and
one regression coefficient is not identifiable. A constant is left out of this example to avoid
distraction from the main purpose. Format the in-sample X matrix

X = dummyvar(repmat((1:12)', 12, 1));

% Format the presample X matrix

X0 = [zeros(1,11) 1 ; dummyvar((1:12)')];

model2 = arima('MALags', 1, 'D', 1, 'Seasonality',...

 12, 'Constant', 0);

fit2 = estimate(model2,y, 'X', [X0 ; X]);

 ARIMAX(0,1,1) Model Seasonally Integrated:

 Conditional Probability Distribution: Gaussian

 Standard t

 Model Seasonal Lag Effects Using Indicator Variables

5-119

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 MA{1} -0.407106 0.0843875 -4.82425

 Beta1 -0.00257697 0.0251683 -0.10239

 Beta2 -0.0057769 0.0318848 -0.18118

 Beta3 -0.00220339 0.0305268 -0.0721787

 Beta4 0.000947372 0.0198667 0.0476864

 Beta5 -0.0012146 0.0179806 -0.0675506

 Beta6 0.00486998 0.018374 0.265047

 Beta7 -0.00879439 0.0152852 -0.575354

 Beta8 0.00483464 0.0124836 0.387279

 Beta9 0.00143697 0.0182453 0.0787582

 Beta10 0.00927403 0.0147513 0.628693

 Beta11 0.00736654 0.0105 0.701577

 Beta12 0.000988407 0.0142945 0.0691458

 Variance 0.00177152 0.000246566 7.18475

The fitted model is

where is an iid normally distributed series with mean 0 and variance 0.0017 and is
a column vector with the values Beta1 - Beta12. Note that the estimates MA{1} and
Variance between model1 and model2 are not equal.

Step 4. Forecast using both models.

Use forecast to forecast both models 41 periods into the future from July 1957. Plot the
holdout sample using these forecasts.

yF1 = forecast(fit1,41,'Y0',y);

yF2 = forecast(fit2,41,'Y0',y,'X0',X(1:103,:),...

 'XF',X(104:end,:));

l1 = plot(100:T,dat(100:end),'k','LineWidth',3);

hold on

l2 = plot(104:144,yF1,'-r','LineWidth',2);

l3 = plot(104:144,yF2,'-b','LineWidth',2);

hold off

title('Passenger Data: Actual vs. Forecasts')

xlabel('Month')

ylabel('Logarithm of Monthly Passenger Data')

legend({'Actual Data','Polynomial Forecast',...

5 Conditional Mean Models

5-120

 'Regression Forecast'},'Location','NorthWest')

Though they overpredict the holdout observations, the forecasts of both models are
almost equivalent. One main difference between the models is that model1 is more
parsimonious than model2.

References:

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima | dummyvar | estimate | forecast

 Model Seasonal Lag Effects Using Indicator Variables

5-121

Related Examples
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Forecast Multiplicative ARIMA Model” on page 5-192
• “Check Fit of Multiplicative ARIMA Model” on page 3-81
• “Forecast IGD Rate Using ARIMAX Model” on page 5-122

More About
• “Multiplicative ARIMA Model” on page 5-46
• “ARIMA Model Including Exogenous Covariates” on page 5-58
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “MMSE Forecasting of Conditional Mean Models” on page 5-182

5 Conditional Mean Models

5-122

Forecast IGD Rate Using ARIMAX Model
This example shows how to forecast an ARIMAX model two ways.

Step 1. Load the data.

Load the Credit Defaults data set, assign the response IGD to Y and the predictors AGE,
CPF, and SPR to the matrix X, and obtain the sample size T. To avoid distraction from
the purpose of this example, assume that all predictors are stationary.

load Data_CreditDefaults

X = Data(:,[1 3:4]);

T = size(X,1);

Y = Data(:,5);

Step 2. Process response and predictor data.

Divide the response and predictor data into estimation and holdout series. Assume that
each predictor series is AR(1), and fit each one to that model. Forecast the predictor
series over a 10-year horizon.

Yest = Y(2:(T-10)) % Response data for estimation;

Xest = X(1:(T-10),:) % Predictor data for estimation;

modelX = arima(1,0,0); % Model for the predictors

X1fit = estimate(modelX,Xest(:,1),'print',false);

X2fit = estimate(modelX,Xest(:,2),'print',false);

X3fit = estimate(modelX,Xest(:,3),'print',false);

X1fore = forecast(X1fit,10,'Y0',Xest(:,1));

X2fore = forecast(X2fit,10,'Y0',Xest(:,2));

X3fore = forecast(X3fit,10,'Y0',Xest(:,3));

XF = [X1fore X2fore X3fore];

Yest =

 0.1496

 0

 0

 0.1429

 0.1382

 0.2005

 0

 0

 Forecast IGD Rate Using ARIMAX Model

5-123

 0.0522

 0.0466

Xest =

 3.6184 -0.0571 1.9700

 6.2827 3.4798 2.3100

 8.3958 3.5782 2.9000

 5.4114 -0.8488 2.4100

 13.1429 3.2469 1.5000

 7.8093 -4.1607 1.9200

 7.5535 -6.3518 2.3200

 7.7062 6.6135 2.2800

 5.4306 9.7126 2.0700

 5.3236 6.5485 1.9400

 9.2351 2.6272 1.2700

XF holds the forecasts for the three predictor series.

Step 3. Estimate response model and infer residuals.

Assume that the response series is ARX(1), and fit it to that model including the
predictor series. Infer the residuals Eest from the fitted response model Yfit.

modelY = arima(1,0,0);

Yfit = estimate(modelY,Yest,'X',Xest,...

'print',false,'Y0',Y(1));

Eest = infer(Yfit,Yest,'Y0',Y(1),'X',Xest);

Step 5. MMSE forecast responses.

Forecast responses using the MMSE method at a 10-year horizon. Calculate prediction
intervals for the forecasts assuming that they are normally distributed.

[Yfore,YMSE] = forecast(Yfit,10,'Y0',Y(1:(T-10)),...

 'X0',Xest,'XF',XF);

cil = Yfore - 1.96*sqrt(YMSE);

ciu = Yfore + 1.96*sqrt(YMSE);

Step 6. Plot MMSE forecasted responses.

Plot the response series using their MMSE forecasts and prediction intervals.

figure

5 Conditional Mean Models

5-124

l1 = plot(dates,Y,'ko-','LineWidth',2);

xlabel('Year')

ylabel('IGD (%)')

hold on

l2 = plot(dates((T-9):T),cil,'r:','LineWidth',2);

plot(dates((T-9):T),ciu,'r:','LineWidth',2)

l3 = plot(dates((T-9):T),Yfore,'k:','LineWidth',2);

plot(dates([T-10 T-9]),[Y(T-10) Yfore(1)],'k:')

plot(dates([T-10 T-9]),[Y(T-10) cil(1)],'r:')

plot(dates([T-10 T-9]),[Y(T-10) ciu(1)],'r:')

legend([l1 l2 l3],'Observed Time Series','95% Interval',...

 'Forecast','Location','NorthWest')

title('Default Rate of Investment Grade Corporate Bonds:,MMSE Forecasts')

axis tight

hold off

 Forecast IGD Rate Using ARIMAX Model

5-125

The forecasts seem reasonable, but there are outlying observations in 2000 and 2001.

Step 7. Monte Carlo forecast responses.

Forecast responses using the Monte Carlo method at a 10-year horizon by simulating
100 paths using the model Yfit. Set the estimation responses to Y0 and the inferred
residuals to E0 as preforecast data. Set the forecasted predictors (XF) to X. Calculate
simulation statistics.

nsim = 100;

rng(1);

Ymcfore = simulate(Yfit,10,'NumPaths',nsim,'Y0',...

 Y(1:(T-10)),'E0',Eest,'X',XF);

Ymcforebar = mean(Ymcfore,2);

5 Conditional Mean Models

5-126

mc_cil = quantile(Ymcfore',0.025);

mc_ciu = quantile(Ymcfore',0.975);

Step 8. Plot Monte Carlo forecasted responses.

Plot the response series with their MMSE forecasts and prediction intervals.

figure

xlabel('Year')

ylabel('IGD (%)')

hold on

l4 = plot(dates((T-9):T),Ymcfore(:,1),'Color',[0.7 0.7 0.7]);

plot(dates((T-9):T),Ymcfore,'Color',[0.7 0.7 0.7]);

l2 = plot(dates((T-9):T),mc_cil,'r:','LineWidth',3);

plot(dates((T-9):T),mc_ciu,'r:','LineWidth',3)

l3 = plot(dates((T-9):T),Ymcforebar,'c:','LineWidth',3);

plot(dates([T-10 T-9]),[repmat(Y(T-10),1,nsim);...

 Ymcfore(1,:)],'Color',[0.7 0.7 0.7])

plot(dates([T-10 T-9]),[Y(T-10) Ymcforebar(1)],'c:',...

 'LineWidth',3)

plot(dates([T-10 T-9]),[Y(T-10) mc_cil(1)],'r:','LineWidth',3)

plot(dates([T-10 T-9]),[Y(T-10) mc_ciu(1)],'r:','LineWidth',3)

l1 = plot(dates,Y,'ko-','LineWidth',2);

legend([l1 l2 l3 l4],'Observed Series','95% MC Interval',...

 'MC Mean Forecast','Simulated Forecasts','Location',...

 'NorthWest')

title('Default Rate of Investment Grade Corporate Bonds: Monte Carlo Forecasts')

axis tight

hold off

 Forecast IGD Rate Using ARIMAX Model

5-127

The Monte Carlo forecasts and prediction intervals resemble those from the MMSE
forecasting.

References:

Helwege, J., and P. Kleiman. "Understanding Aggregate Default Rates of High Yield
Bonds." Current Issues in Economics and Finance. Vol. 2, Number. 6, 1996, pp. 1-6.

Loeffler, G., and P. N. Posch. Credit Risk Modeling Using Excel and VBA. West Sussex,
England: Wiley Finance, 2007.

See Also
arima | estimate | forecast | infer | simulate

5 Conditional Mean Models

5-128

Related Examples
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117
• “Check Fit of Multiplicative ARIMA Model” on page 3-81
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117

More About
• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

 Estimate Conditional Mean and Variance Models

5-129

Estimate Conditional Mean and Variance Models

This example shows how to estimate a composite conditional mean and variance model
using estimate.

Load the Data and Specify the Model.

Load the NASDAQ data included with the toolbox. Convert the daily close composite
index series to a return series. For numerical stability, convert the returns to percentage
returns. Specify an AR(1) and GARCH(1,1) composite model. This is a model of the form

where ,

and is an independent and identically distributed standardized Gaussian process.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

r = 100*price2ret(nasdaq);

T = length(r);

Mdl = arima('ARLags',1,'Variance',garch(1,1))

Mdl =

 ARIMA(1,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 1

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN} at Lags [1]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: [GARCH(1,1) Model]

5 Conditional Mean Models

5-130

Estimate the Model Parameters Without Using Presample Data.

Fit the model, Mdl, to the return series, r, using estimate. Use the presample
observations that estimate automatically generates.

EstMdl = estimate(Mdl,r);

 ARIMA(1,0,0) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.072632 0.0180473 4.02454

 AR{1} 0.138157 0.0198931 6.945

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0223769 0.00332007 6.73988

 GARCH{1} 0.87312 0.00910186 95.9276

 ARCH{1} 0.118649 0.00871697 13.6112

The estimation display shows the five estimated parameters and their corresponding
standard errors (the AR(1) conditional mean model has two parameters, and the
GARCH(1,1) conditional variance model has three parameters).

The fitted model (EstMdl) is

where and

 Estimate Conditional Mean and Variance Models

5-131

All t statistics are greater than two, suggesting all parameters are statistically
significant.

Infer the Conditional Variances and Residuals.

Infer and plot the conditional variances and standardized residuals. Also output the
loglikelihood objective function value.

[res,v,logL] = infer(EstMdl,r);

figure

subplot(2,1,1)

plot(v)

xlim([0,T])

title('Conditional Variance')

subplot(2,1,2)

plot(res./sqrt(v))

xlim([0,T])

title('Standardized Residuals')

5 Conditional Mean Models

5-132

The conditional variances increase after observation 2000. This corresponds to the
increased volatility seen in the original return series.

The standardized residuals have more large values (larger than 2 or 3 in absolute
value) than expected under a standard normal distribution. This suggests a Student's t
distribution might be more appropriate for the innovation distribution.

Fit a Model With a t-Innovation Distribution.

Modify the model so that it has a Student's t-innovation distribution. Fit the modified
model to the NASDAQ return series. Specify an initial value for the variance model
constant term.

MdlT = Mdl;

 Estimate Conditional Mean and Variance Models

5-133

MdlT.Distribution = 't';

EstMdlT = estimate(MdlT,r,'Variance0',{'Constant0',0.001});

 ARIMA(1,0,0) Model:

 Conditional Probability Distribution: t

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.093488 0.0166938 5.60018

 AR{1} 0.139107 0.0188565 7.37713

 DoF 7.47747 0.882611 8.47199

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: t

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0112456 0.00363047 3.09756

 GARCH{1} 0.907662 0.0105156 86.3156

 ARCH{1} 0.0898971 0.0108354 8.29661

 DoF 7.47747 0.882611 8.47199

The coefficient estimates change slightly when the t distribution is used for the
innovations. The second model fit (EstMdlT) has one additional parameter estimate, the
t distribution degrees of freedom. The estimated degrees of freedom are relatively small
(about 8), indicating significant departure from normality.

Compare the Model Fits.

Compare the two model fits (Gaussian and t-innovation distribution) using the Akaike
information criterion (AIC) and Bayesian information criterion (BIC). First, obtain the
loglikelihood objective function value for the second fit.

[resT,vT,logLT] = infer(EstMdlT,r);

[aic,bic] = aicbic([logL,logLT],[5,6],T)

aic =

5 Conditional Mean Models

5-134

 1.0e+03 *

 9.4929 9.3807

bic =

 1.0e+03 *

 9.5230 9.4168

The second model has six parameters compared to five in the first model (because of
the t distribution degrees of freedom). Despite this, both information criteria favor the
model with the Student's t distribution. The AIC and BIC values are smaller for the t
innovation distribution.

See Also
aicbic | arima | estimate | infer

Related Examples
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72

More About
• “Initial Values for Conditional Mean Model Estimation” on page 5-106
• “Information Criteria” on page 3-63

 Choose ARMA Lags Using BIC

5-135

Choose ARMA Lags Using BIC

This example shows how to use the Bayesian information criterion (BIC) to select the
degrees p and q of an ARMA model. Estimate several models with different p and q
values. For each estimated model, output the loglikelihood objective function value. Input
the loglikelihood value to aicbic to calculate the BIC measure of fit (which penalizes for
complexity).

Step 1. Simulate an ARMA time series.

Simulate an ARMA(2,1) time series with 100 observations.

modSim = arima('Constant',0.2,'AR',{0.75,-0.4},...

 'MA',0.7,'Variance',0.1);

rng('default')

Y = simulate(modSim,100);

figure

plot(Y)

xlim([0,100])

title('Simulated ARMA(2,1) Series')

5 Conditional Mean Models

5-136

Step 2: Plot the sample ACF and PACF.

Plot the sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) for the simulated data.

figure

subplot(2,1,1)

autocorr(Y)

subplot(2,1,2)

parcorr(Y)

 Choose ARMA Lags Using BIC

5-137

Both the sample ACF and PACF decay relatively slowly. This is consistent with an
ARMA model. The ARMA lags cannot be selected solely by looking at the ACF and PACF,
but it seems no more than four AR or MA terms are needed.

Step 3. Fit ARMA(p,q) models.

To identify the best lags, fit several models with different lag choices. Here, fit all
combinations of p = 1,...,4 and q = 1,...,4 (a total of 16 models). Store the loglikelihood
objective function and number of coefficients for each fitted model.

LOGL = zeros(4,4); %Initialize

PQ = zeros(4,4);

for p = 1:4

 for q = 1:4

5 Conditional Mean Models

5-138

 mod = arima(p,0,q);

 [fit,~,logL] = estimate(mod,Y,'print',false);

 LOGL(p,q) = logL;

 PQ(p,q) = p+q;

 end

end

Step 4: Calculate the BIC.

Calculate the BIC for each fitted model. The number of parameters in a model is p + q +
1 (for the AR and MA coefficients, and constant term). The number of observations in the
data set is 100.

LOGL = reshape(LOGL,16,1);

PQ = reshape(PQ,16,1);

[~,bic] = aicbic(LOGL,PQ+1,100);

reshape(bic,4,4)

ans =

 108.6241 105.9489 109.4164 113.8443

 99.1639 101.5886 105.5203 109.4348

 102.9094 106.0305 107.6489 99.6794

 107.4045 100.7072 102.5746 102.0209

In the output BIC matrix, the rows correspond to the AR degree (p) and the columns
correspond to the MA degree (q). The smallest value is best.

The smallest BIC value is 99.1639 in the (2,1) position. This corresponds to an
ARMA(2,1) model, matching the model that generated the data.

See Also
aicbic | arima | autocorr | estimate | parcorr | simulate

Related Examples
• “Detect Autocorrelation” on page 3-18
• “Estimate Conditional Mean and Variance Models” on page 5-129

More About
• “Autoregressive Moving Average Model” on page 5-34

 Choose ARMA Lags Using BIC

5-139

• “Information Criteria” on page 3-63

5 Conditional Mean Models

5-140

Infer Residuals for Diagnostic Checking

This example shows how to infer residuals from a fitted ARIMA model. Diagnostic checks
are performed on the residuals to assess model fit.

The time series is the log quarterly Australian Consumer Price Index (CPI) measured
from 1972 to 1991.

Load the Data.

Load the Australian CPI data. Take first differences, then plot the series.

load Data_JAustralian

y = DataTable.PAU;

T = length(y);

dY = diff(y);

figure

plot(2:T,dY)

xlim([0,T])

title('Differenced Australian CPI')

 Infer Residuals for Diagnostic Checking

5-141

The differenced series looks relatively stationary.

Plot the Sample ACF and PACF.

Plot the sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) to look for autocorrelation in the differenced series.

figure

subplot(2,1,1)

autocorr(dY)

subplot(2,1,2)

parcorr(dY)

5 Conditional Mean Models

5-142

The sample ACF decays more slowly than the sample PACF. The latter cuts off after lag
2. This, along with the first-degree differencing, suggests an ARIMA(2,1,0) model.

Estimate an ARIMA(2,1,0) Model.

Specify, and then estimate, an ARIMA(2,1,0) model. Infer the residuals for diagnostic
checking.

Mdl = arima(2,1,0);

EstMdl = estimate(Mdl,y);

[res,~,logL] = infer(EstMdl,y);

 ARIMA(2,1,0) Model:

 Infer Residuals for Diagnostic Checking

5-143

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0100723 0.00328015 3.07069

 AR{1} 0.212059 0.0954278 2.22219

 AR{2} 0.337282 0.103781 3.24994

 Variance 9.23017e-05 1.11119e-05 8.30659

Notice that the model is fit to the original series, and not the differenced series. The
model to be fit, Mdl, has property D equal to 1. This accounts for the one degree of
differencing.

This specification assumes a Gaussian innovation distribution. infer returns the value
of the loglikelihood objective function (logL) along with the residuals (res).

Perform Residual Diagnostic Checks.

Standardize the inferred residuals, and check for normality and any unexplained
autocorrelation.

stdr = res/sqrt(EstMdl.Variance);

figure

subplot(2,2,1)

plot(stdr)

title('Standardized Residuals')

subplot(2,2,2)

histogram(stdr,10)

title('Standardized Residuals')

subplot(2,2,3)

autocorr(stdr)

subplot(2,2,4)

parcorr(stdr)

5 Conditional Mean Models

5-144

The residuals appear uncorrelated and approximately normally distributed. There is
some indication that there is an excess of large residuals.

Modify the Innovation Distribution.

To explore possible excess kurtosis in the innovation process, fit an ARIMA(2,1,0) model
with a Student's t distribution to the original series. Return the value of the loglikelihood
objective function so you can use the Bayesian information criterion (BIC) to compare the
fit of the two models.

MdlT = Mdl;

MdlT.Distribution = 't';

[EstMdlT,~,logLT] = estimate(MdlT,y);

[~,bic] = aicbic([logLT,logL],[5,4],T)

 Infer Residuals for Diagnostic Checking

5-145

 ARIMA(2,1,0) Model:

 Conditional Probability Distribution: t

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.00997449 0.00161524 6.17524

 AR{1} 0.326887 0.0755033 4.32943

 AR{2} 0.187194 0.0746907 2.50625

 Variance 0.000247205 0.000746201 0.331284

 DoF 2.25938 0.955621 2.3643

bic =

 -492.5317 -479.4691

The models with the t-innovation distribution (MdlT and EstMdlT) have one extra
parameter (the degrees of freedom of the t distribution).

According to the BIC, the ARIMA(2,1,0) model with a Student's t innovation distribution
is the better choice because it has a smaller (more negative) BIC value.

See Also
aicbic | arima | estimate | infer

Related Examples
• “Box-Jenkins Differencing vs. ARIMA Estimation” on page 5-94
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72

More About
• “Information Criteria” on page 3-63
• “Goodness of Fit” on page 3-88
• “Residual Diagnostics” on page 3-90

5 Conditional Mean Models

5-146

Monte Carlo Simulation of Conditional Mean Models

In this section...

“What Is Monte Carlo Simulation?” on page 5-146
“Generate Monte Carlo Sample Paths” on page 5-146
“Monte Carlo Error” on page 5-147

What Is Monte Carlo Simulation?

Monte Carlo simulation is the process of generating independent, random draws from
a specified probabilistic model. When simulating time series models, one draw (or
realization) is an entire sample path of specified length N, y1, y2,...,yN. When you generate
a large number of draws, say M, you generate M sample paths, each of length N.

Note: Some extensions of Monte Carlo simulation rely on generating dependent
random draws, such as Markov Chain Monte Carlo (MCMC). The simulate function in
Econometrics Toolbox generates independent realizations.

Some applications of Monte Carlo simulation are:

• Demonstrating theoretical results
• Forecasting future events
• Estimating the probability of future events

Generate Monte Carlo Sample Paths

Conditional mean models specify the dynamic evolution of a process over time through
the conditional mean structure. To perform Monte Carlo simulation of conditional mean
models:

1 Specify presample data (or use default presample data).
2 Generate an uncorrelated innovation series from the innovation distribution that you

specified.
3 Generate responses by recursively applying the specified AR and MA polynomial

operators. The AR polynomial operator can include differencing.

 Monte Carlo Simulation of Conditional Mean Models

5-147

For example, consider an AR(2) process,

y c y yt t t t= + + +- -f f e
1 1 2 2

.

Given presample responses y0 and y–1, and simulated innovations e e1, , ,…

N realizations
of the process are recursively generated:

• y c y y
1 1 0 2 1 1

= + + +-f f e

• y c y y
2 1 1 2 0 2

= + + +f f e

• y c y y
3 1 2 2 1 3

= + + +f f e

M

• y c y yN N N N= + + +- -f f e
1 1 2 2

For an MA(12) process, e.g.,

y ct t t t= + + +
- -

e q e q e1 1 12 12,

you need 12 presample innovations to initialize the simulation. By default, simulate
sets presample innovations equal to zero. The remaining N innovations are randomly
sampled from the innovation process.

Monte Carlo Error

Using many simulated paths, you can estimate various features of the model. However,
Monte Carlo estimation is based on a finite number of simulations. Therefore, Monte
Carlo estimates are subject to some amount of error. You can reduce the amount of
Monte Carlo error in your simulation study by increasing the number of sample paths,
M, that you generate from your model.

For example, to estimate the probability of a future event:

1 Generate M sample paths from your model.
2 Estimate the probability of the future event using the sample proportion of the event

occurrence across M simulations,

5 Conditional Mean Models

5-148

ˆ
#

.p
times event occurs in M draws

M
=

3 Calculate the Monte Carlo standard error for the estimate,

se
p p

M
=

-ˆ (ˆ)
.

1

You can reduce the Monte Carlo error of the probability estimate by increasing the
number of realizations. If you know the desired precision of your estimate, you can solve
for the number of realizations needed to achieve that level of precision.

See Also
arima | simulate

Related Examples
• “Simulate Stationary Processes” on page 5-151
• “Simulate Trend-Stationary and Difference-Stationary Processes” on page 5-163
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Simulate Conditional Mean and Variance Models” on page 5-175
• “Forecast IGD Rate Using ARIMAX Model” on page 5-122

More About
• “Presample Data for Conditional Mean Model Simulation” on page 5-149
• “Transient Effects in Conditional Mean Model Simulations” on page 5-150
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

 Presample Data for Conditional Mean Model Simulation

5-149

Presample Data for Conditional Mean Model Simulation

When simulating realizations from ARIMA processes, you need presample responses
and presample innovations to initialize the conditional mean model. The number of
presample responses you need to initialize a simulation are stored in the arima model
property P. The number of presample innovations you need to initialize a simulation
are stored in the property Q. You can specify your own presample data or let simulate
generate presample data.

If you let simulate generate default presample data, then:

• For stationary processes, simulate sets presample responses to the unconditional
mean of the process.

• For nonstationary processes, simulate sets presample responses to 0.
• Presample innovations are set to 0.

If you specify a matrix of exogenous covariates, then simulate sets the presample
responses to 0.

See Also
arima | simulate

Related Examples
• “Simulate Stationary Processes” on page 5-151
• “Simulate Trend-Stationary and Difference-Stationary Processes” on page 5-163
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Simulate Conditional Mean and Variance Models” on page 5-175

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Transient Effects in Conditional Mean Model Simulations” on page 5-150
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

5 Conditional Mean Models

5-150

Transient Effects in Conditional Mean Model Simulations

When you use automatically generated presample data, you often see some transient
effects at the beginning of the simulation. This is sometimes called a burn-in period. For
stationary processes, the impulse response function decays to zero over time. This means
the starting point of the simulation is eventually forgotten. To reduce transient effects,
you can:

• Oversample: generate sample paths longer than needed, and discard the beginning
samples that show transient effects.

• Recycle: use a first simulation to generate presample data for a second simulation.

For nonstationary processes, the starting point is never forgotten. By default, all
realizations of nonstationary processes begin at zero. For a nonzero starting point, you
need to specify your own presample data.

Related Examples
• “Simulate Stationary Processes” on page 5-151
• “Simulate Trend-Stationary and Difference-Stationary Processes” on page 5-163

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

 Simulate Stationary Processes

5-151

Simulate Stationary Processes

In this section...

“Simulate an AR Process” on page 5-151
“Simulate an MA Process” on page 5-156

Simulate an AR Process

This example shows how to simulate sample paths from a stationary AR(2) process
without specifying presample observations.

Step 1. Specify a model.

Specify the AR(2) model

where the innovation process is Gaussian with variance 0.1.

model = arima('Constant',0.5,'AR',{0.7,0.25},'Variance',.1);

Step 2. Generate one sample path.

Generate one sample path (with 50 observations) from the specified model, and plot.

rng('default')

Y = simulate(model,50);

figure

plot(Y)

xlim([0,50])

title('Simulated AR(2) Process')

5 Conditional Mean Models

5-152

Because presample data was not specified, simulate sets the two required presample
observations equal to the unconditional mean of the process,

Step 3. Generate many sample paths.

Generate 1000 sample paths, each with 50 observations.

rng('default')

Y = simulate(model,50,'NumPaths',1000);

figure

 Simulate Stationary Processes

5-153

subplot(2,1,1)

plot(Y,'Color',[.85,.85,.85])

title('Simulated AR(2) Process')

hold on

h=plot(mean(Y,2),'k','LineWidth',2);

legend(h,'Simulation Mean','Location','NorthWest')

hold off

subplot(2,1,2)

plot(var(Y,0,2),'r','LineWidth',2)

title('Process Variance')

hold on

plot(1:50,.83*ones(50,1),'k--','LineWidth',1.5)

legend('Simulation','Theoretical',...

 'Location','SouthEast')

hold off

5 Conditional Mean Models

5-154

The simulation mean is constant over time. This is consistent with the definition of a
stationary process. The process variance is not constant over time, however. There are
transient effects at the beginning of the simulation due to the absence of presample data.

The simulated variance approaches the theoretical variance,

by around the 50th observation.

 Simulate Stationary Processes

5-155

Step 4. Oversample the process.

To reduce transient effects, one option is to oversample the process. For example, to
sample 50 observations, you can generate paths with more than 50 observations, and
discard all but the last 50 observations as burn-in. Here, simulate paths of length 150,
and discard the first 100 observations.

rng('default')

Y = simulate(model,150,'NumPaths',1000);

Y = Y(101:end,:);

figure

subplot(2,1,1)

plot(Y,'Color',[.85,.85,.85])

title('Simulated AR(2) Process')

hold on

h=plot(mean(Y,2),'k','LineWidth',2);

legend(h,'Simulation Mean','Location','NorthWest')

hold off

subplot(2,1,2)

plot(var(Y,0,2),'r','LineWidth',2)

xlim([0,50])

title('Process Variance')

hold on

plot(1:50,.83*ones(50,1),'k--','LineWidth',1.5)

legend('Simulation','Theoretical',...

 'Location','SouthEast')

hold off

5 Conditional Mean Models

5-156

The realizations now look like draws from a stationary stochastic process. The simulation
variance fluctuates (due to Monte Carlo error) around the theoretical variance.

Simulate an MA Process

This example shows how to simulate sample paths from a stationary MA(12) process
without specifying presample observations.

Step 1. Specify a model.

Specify the MA(12) model

 Simulate Stationary Processes

5-157

where the innovation distribution is Gaussian with variance 0.2.

model = arima('Constant',0.5,'MA',{0.8,0.2},...

 'MALags',[1,12],'Variance',0.2);

Step 2. Generate sample paths.

Generate 200 sample paths, each with 60 observations.

rng('default')

Y = simulate(model,60,'NumPaths',200);

figure

plot(Y,'Color',[.85,.85,.85])

hold on

h = plot(mean(Y,2),'k','LineWidth',2)

legend(h,'Simulation Mean','Location','NorthWest')

title('MA(12) Process')

hold off

h =

 Line with properties:

 Color: [0 0 0]

 LineStyle: '-'

 LineWidth: 2

 Marker: 'none'

 MarkerSize: 6

 MarkerFaceColor: 'none'

 XData: [1x60 double]

 YData: [1x60 double]

 ZData: [1x0 double]

 Use GET to show all properties

5 Conditional Mean Models

5-158

For an MA process, the constant term is the unconditional mean. The simulation mean is
around 0.5, as expected.

Step 3. Plot the simulation variance.

The unconditional variance for the model is

Because the model is stationary, the unconditional variance should be constant across all
times. Plot the simulation variance, and compare it to the theoretical variance.

figure

 Simulate Stationary Processes

5-159

plot(var(Y,0,2),'Color',[.75,.75,.75],'LineWidth',1.5)

xlim([0,60])

title('Unconditional Variance')

hold on

plot(1:60,.336*ones(60,1),'k--','LineWidth',2)

legend('Simulation','Theoretical',...

 'Location','SouthEast')

hold off

There appears to be a short burn-in period at the beginning of the simulation. During
this time, the simulation variance is lower than expected. Afterwards, the simulation
variance fluctuates around the theoretical variance.

5 Conditional Mean Models

5-160

Step 4. Generate more sample paths.

Simulate 10,000 paths from the model, each with length 1000. Look at the simulation
variance.

rng('default')

YM = simulate(model,1000,'NumPaths',10000);

figure

plot(var(YM,0,2),'Color',[.75,.75,.75],'LineWidth',1.5)

ylim([0.3,0.36])

title('Unconditional Variance')

hold on

plot(1:1000,.336*ones(1000,1),'k--','LineWidth',2)

legend('Simulation','Theoretical',...

 'Location','SouthEast')

hold off

 Simulate Stationary Processes

5-161

The Monte Carlo error is reduced when more realizations are generated. There is
much less variability in the simulation variance, which tightly fluctuates around the
theoretical variance.

See Also
arima | simulate

Related Examples
• “Simulate Trend-Stationary and Difference-Stationary Processes” on page 5-163
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Simulate Conditional Mean and Variance Models” on page 5-175

5 Conditional Mean Models

5-162

More About
• “Autoregressive Model” on page 5-18
• “Moving Average Model” on page 5-27
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Transient Effects in Conditional Mean Model Simulations” on page 5-150

 Simulate Trend-Stationary and Difference-Stationary Processes

5-163

Simulate Trend-Stationary and Difference-Stationary Processes

This example shows how to simulate trend-stationary and difference-stationary
processes. The simulation results illustrate the distinction between these two
nonstationary process models.

Step 1. Generate realizations from a trend-stationary process.

Specify the trend-stationary process

where the innovation process is Gaussian with variance 8. After specifying the model,
simulate 50 sample paths of length 200. Use 100 burn-in simulations.

t = [1:200]';

trend = 0.5*t;

model = arima('Constant',0,'MA',{1.4,0.8},'Variance',8);

rng('default')

u = simulate(model,300,'NumPaths',50);

Yt = repmat(trend,1,50) + u(101:300,:);

figure

plot(Yt,'Color',[.85,.85,.85])

hold on

h1=plot(t,trend,'r','LineWidth',5);

xlim([0,200])

title('Trend-Stationary Process')

h2=plot(mean(Yt,2),'k--','LineWidth',2);

legend([h1,h2],'Trend','Simulation Mean',...

 'Location','NorthWest')

hold off

5 Conditional Mean Models

5-164

The sample paths fluctuate around the theoretical trend line with constant variance. The
simulation mean is close to the true trend line.

Step 2. Generate realizations from a difference-stationary process.

Specify the difference-stationary model

where the innovation distribution is Gaussian with variance 8. After specifying the
model, simulate 50 sample paths of length 200. No burn-in is needed because all sample
paths should begin at zero. This is the simulate default starting point for nonstationary
processes with no presample data.

 Simulate Trend-Stationary and Difference-Stationary Processes

5-165

model = arima('Constant',0.5,'D',1,'MA',{1.4,0.8},...

 'Variance',8);

rng('default')

Yd = simulate(model,200,'NumPaths',50);

figure

plot(Yd,'Color',[.85,.85,.85])

hold on

h1=plot(t,trend,'r','LineWidth',5);

xlim([0,200])

title('Difference-Stationary Process')

h2=plot(mean(Yd,2),'k--','LineWidth',2);

legend([h1,h2],'Trend','Simulation Mean',...

 'Location','NorthWest')

hold off

5 Conditional Mean Models

5-166

The simulation average is close to the trend line with slope 0.5. The variance of the
sample paths grows over time.

Step 3. Difference the sample paths.

A difference-stationary process is stationary when differenced appropriately. Take the
first differences of the sample paths from the difference-stationary process, and plot the
differenced series. One observation is lost as a result of the differencing.

diffY = diff(Yd,1,1);

figure

plot(2:200,diffY,'Color',[.85,.85,.85])

xlim([0,200])

title('Differenced Series')

hold on

h = plot(2:200,mean(diffY,2),'k--','LineWidth',2);

legend(h,'Simulation Mean','Location','NorthWest')

hold off

 Simulate Trend-Stationary and Difference-Stationary Processes

5-167

The differenced series looks stationary, with the simulation mean fluctuating around
zero.

See Also
arima | simulate

Related Examples
• “Simulate Stationary Processes” on page 5-151

More About
• “Trend-Stationary vs. Difference-Stationary Processes” on page 2-7

5 Conditional Mean Models

5-168

• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149

 Simulate Multiplicative ARIMA Models

5-169

Simulate Multiplicative ARIMA Models

This example shows how to simulate sample paths from a multiplicative seasonal
ARIMA model using simulate. The time series is monthly international airline
passenger numbers from 1949 to 1960.

Load the Data and Estimate a Model.

Load the data set Data_Airline.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

y = log(Data);

T = length(y);

Mdl = arima('Constant',0,'D',1,'Seasonality',12,...

 'MALags',1,'SMALags',12);

EstMdl = estimate(Mdl,y);

res = infer(EstMdl,y);

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 MA{1} -0.377162 0.0667944 -5.64661

 SMA{12} -0.572378 0.0854395 -6.69923

 Variance 0.00126337 0.00012395 10.1926

Simulate Airline Passenger Counts.

Use the fitted model to simulate 25 realizations of airline passenger counts over a 60-
month (5-year) horizon. Use the observed series and inferred residuals as presample
data.

rng 'default'

Ysim = simulate(EstMdl,60,'NumPaths',25,'Y0',y,'E0',res);

mn = mean(Ysim,2);

figure

5 Conditional Mean Models

5-170

plot(y,'k')

hold on

plot(T+1:T+60,Ysim,'Color',[.85,.85,.85]);

h = plot(T+1:T+60,mn,'k--','LineWidth',2)

xlim([0,T+60])

title('Simulated Airline Passenger Counts')

legend(h,'Simulation Mean','Location','NorthWest')

hold off

h =

 Line with properties:

 Color: [0 0 0]

 LineStyle: '--'

 LineWidth: 2

 Marker: 'none'

 MarkerSize: 6

 MarkerFaceColor: 'none'

 XData: [1x60 double]

 YData: [1x60 double]

 ZData: [1x0 double]

 Use GET to show all properties

 Simulate Multiplicative ARIMA Models

5-171

The simulated forecasts show growth and seasonal periodicity similar to the observed
series.

Estimate the Probability of a Future Event.

Use simulations to estimate the probability that log airline passenger counts will meet
or exceed the value 7 sometime during the next 5 years. Calculate the Monte Carlo error
associated with the estimated probability.

rng default

Ysim = simulate(EstMdl,60,'NumPaths',1000,'Y0',y,'E0',res);

g7 = sum(Ysim >= 7) > 0;

phat = mean(g7)

5 Conditional Mean Models

5-172

err = sqrt(phat*(1-phat)/1000)

phat =

 0.3910

err =

 0.0154

There is approximately a 39% chance that the (log) number of airline passengers will
meet or exceed 7 in the next 5 years. The Monte Carlo standard error of the estimate is
about 0.02.

Plot the Distribution of Passengers at a Future Time.

Use the simulations to plot the distribution of (log) airline passenger counts 60 months
into the future.

figure

histogram(Ysim(60,:),10)

title('Distribution of Passenger Counts in 60 months')

 Simulate Multiplicative ARIMA Models

5-173

See Also
arima | estimate | infer | simulate

Related Examples
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Forecast Multiplicative ARIMA Model” on page 5-192
• “Check Fit of Multiplicative ARIMA Model” on page 3-81

5 Conditional Mean Models

5-174

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

 Simulate Conditional Mean and Variance Models

5-175

Simulate Conditional Mean and Variance Models

This example shows how to simulate responses and conditional variances from a
composite conditional mean and variance model.

Load the Data and Fit a Model

Load the NASDAQ data included with the toolbox. Fit a conditional mean and variance
model to the daily returns. Scale the returns to percentage returns for numerical stability

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

r = 100*price2ret(nasdaq);

T = length(r);

Mdl = arima('ARLags',1,'Variance',garch(1,1),...

 'Distribution','t');

EstMdl = estimate(Mdl,r,'Variance0',{'Constant0',0.001});

[e0,v0] = infer(EstMdl,r);

 ARIMA(1,0,0) Model:

 Conditional Probability Distribution: t

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.093488 0.0166938 5.60018

 AR{1} 0.139107 0.0188565 7.37713

 DoF 7.47747 0.882611 8.47199

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: t

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0112456 0.00363047 3.09756

 GARCH{1} 0.907662 0.0105156 86.3156

 ARCH{1} 0.0898971 0.0108354 8.29661

 DoF 7.47747 0.882611 8.47199

5 Conditional Mean Models

5-176

Simulate Returns, Innovations, and Conditional Variances

Use simulate to generate 100 sample paths for the returns, innovations, and
conditional variances for a 1000-period future horizon. Use the observed returns and
inferred residuals and conditional variances as presample data.

rng 'default';

[y,e,v] = simulate(EstMdl,1000,'NumPaths',100,...

 'Y0',r,'E0',e0,'V0',v0);

figure

plot(r)

hold on

plot(T+1:T+1000,y)

xlim([0,T+1000])

title('Simulated Returns')

hold off

 Simulate Conditional Mean and Variance Models

5-177

The simulation shows increased volatility over the forecast horizon.

Plot Conditional Variances

Plot the inferred and simulated conditional variances.

figure

plot(v0)

hold on

plot(T+1:T+1000,v)

xlim([0,T+1000])

title('Simulated Conditional Variances')

hold off

5 Conditional Mean Models

5-178

The increased volatility in the simulated returns is due to larger conditional variances
over the forecast horizon.

Plot Standardized Innovations

Standardize the innovations using the square root of the conditional variance process.
Plot the standardized innovations over the forecast horizon.

figure

plot(e./sqrt(v))

xlim([0,1000])

title('Simulated Standardized Innovations')

 Simulate Conditional Mean and Variance Models

5-179

The fitted model assumes the standardized innovations follow a standardized Student's
t distribution. Thus, the simulated innovations have more larger values than would be
expected from a Gaussian innovation distribution.

See Also
arima | estimate | infer | simulate

Related Examples
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Estimate Conditional Mean and Variance Models” on page 5-129
• “Forecast Conditional Mean and Variance Model” on page 5-197

5 Conditional Mean Models

5-180

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

 Monte Carlo Forecasting of Conditional Mean Models

5-181

Monte Carlo Forecasting of Conditional Mean Models

Monte Carlo Forecasts

You can use Monte Carlo simulation to forecast a process over a future time horizon. This
is an alternative to minimum mean square error (MMSE) forecasting, which provides an
analytical forecast solution. You can calculate MMSE forecasts using forecast.

To forecast a process using Monte Carlo simulations:

• Fit a model to your observed series using estimate.
• Use the observed series and any inferred residuals and conditional variances

(calculated using infer) for presample data.
• Generate many sample paths over the desired forecast horizon using simulate.

Advantage of Monte Carlo Forecasting

An advantage of Monte Carlo forecasting is that you obtain a complete distribution
for future events, not just a point estimate and standard error. The simulation mean
approximates the MMSE forecast. Use the 2.5th and 97.5th percentiles of the simulation
realizations as endpoints for approximate 95% forecast intervals.

See Also
arima | estimate | forecast | simulate

Related Examples
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Simulate Conditional Mean and Variance Models” on page 5-175

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149
• “MMSE Forecasting of Conditional Mean Models” on page 5-182

5 Conditional Mean Models

5-182

MMSE Forecasting of Conditional Mean Models

In this section...

“What are MMSE Forecasts?” on page 5-182
“How forecast Generates MMSE Forecasts” on page 5-182
“Forecast Error” on page 5-184

What are MMSE Forecasts?

A common objective of time series modeling is generating forecasts for a process over a
future time horizon. That is, given an observed series y1, y2,...,yN and a forecast horizon h,
generate predictions for y y yN N N h+ + +1 2, , , .…

Let ŷt+1
 denote a forecast for the process at time t + 1, conditional on the history of

the process up to time t, Ht, and the exogenous covariate series up to time t + 1, Xt + 1,
if a regression component is included in the model. The minimum mean square error
(MMSE) forecast is the forecast ŷt+1

 that minimizes expected square loss,

E y y H Xt t t t+ + +-()1 1
2

1ˆ | , .

Minimizing this loss function yields the MMSE forecast,

ˆ (| ,).y E y H Xt t t t+ + +
=1 1 1

How forecast Generates MMSE Forecasts

The forecast method generates MMSE forecasts recursively. When you call forecast,
you can specify presample observations (Y0), innovations (E0), conditional variances
(V0), and exogenous covariate data (X0) using name-value arguments. If you include
presample exogenous covariate data, then you must also specify exogenous covariate
forecasts (XF).

To begin forecasting from the end of an observed series, say Y, use the last few
observations of Y as presample responses Y0 to initialize the forecast. There are several
points to keep in mind when you specify presample data:

 MMSE Forecasting of Conditional Mean Models

5-183

• The minimum number of responses needed to initialize forecasting is stored in
the property P of an arima model. If you provide too few presample observations,
forecast returns an error.

• If you do not provide any presample responses, then forecast assigns default values:

• For models that are stationary and do not contain a regression component, all
presample observations are set to the unconditional mean of the process.

• For nonstationary models or models with a regression component, all presample
observations are set to zero.

• If you forecast a model with an MA component, then forecast requires presample
innovations. The number of innovations needed is stored in the property Q of an
arima model. If you also have a conditional variance model, you must additionally
account for any presample innovations it requires. If you specify presample
innovations, but not enough, forecast returns an error.

• If you forecast a model with a regression component, then forecast requires
presample exogenous covariate data. The number of presample exogenous covariate
data needed is at least the number of presample responses minus P. If you provide
presample exogenous covariate data, but not enough, then forecast returns an
error.

• If you do not specify any presample innovations, but specify sufficient presample
responses (at least P + Q) and exogenous covariate data (at least the number of
presample responses minus P), then forecast automatically infers presample
innovations. In general, the longer the presample response series you provide, the
better the inferred presample innovations will be. If you provide presample responses
and exogenous covariate data, but not enough, forecast sets presample innovations
equal to zero.

Consider generating forecasts for an AR(2) process,

y c y yt t t t= + + +- -f f e
1 1 2 2

.

Given presample observations yN-1 and yN , forecasts are recursively generated as
follows:

• ŷ c y yN N N+ -= + +
1 1 2 1

f f

• ˆ ˆy c y yN N N+ += + +
2 1 1 2

f f

5 Conditional Mean Models

5-184

• ˆ ˆ ˆy c y yN N N+ + += + +
3 1 2 2 1

f f

M

For a stationary AR process, this recursion converges to the unconditional mean of the
process,

m
f f

=
- -()

c

1
1 2

.

For an MA(12) process, e.g.,

yt t t t= + + + +- -m e q e q e1 1 12 12... ,

you need 12 presample innovations to initialize the forecasts. All innovations from time
N + 1 and greater are set to their expectation, zero. Thus, for an MA(12) process, the
forecast for any time more than 12 steps in the future is the unconditional mean, μ.

Forecast Error

The forecast mean square error for an s-step ahead forecast is given by

MSE E y y H Xt s t s t s t s= -()+ + + - +
ˆ | , .1

2

Consider a conditional mean model given by

y x Lt tt= + +¢m y eb () ,

where y y y()L L L= + + +1 1 2
2
… . Sum the variances of the lagged innovations to get the

s-step MSE,

() ,1 1
2

2
2

1
2 2

+ + + + -y y y se…

s

where s
e

2 denotes the innovation variance.

 MMSE Forecasting of Conditional Mean Models

5-185

For stationary processes, the coefficients of the infinite lag operator polynomial are
absolutely summable, and the MSE converges to the unconditional variance of the
process.

For nonstationary processes, the series does not converge, and the forecast error grows
over time.

See Also
arima | forecast

Related Examples
• “Forecast Multiplicative ARIMA Model” on page 5-192
• “Convergence of AR Forecasts” on page 5-186

More About
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

5 Conditional Mean Models

5-186

Convergence of AR Forecasts

This example shows how to forecast a stationary AR(12) process using forecast.
Evaluate the asymptotic convergence of the forecasts, and compare forecasts made with
and without using presample data.

Step 1. Specify an AR(12) model.

Specify the model

where the innovations are Gaussian with variance 2. Generate a realization of length 300
from the process. Discard the first 250 observations as burn-in.

model = arima('Constant',3,'AR',{0.7,0.25},'ARLags',[1,12],...

 'Variance',2);

rng('default')

Y = simulate(model,300);

Y = Y(251:300);

figure

plot(Y)

xlim([0,50])

title('Simulated AR(12) Process')

 Convergence of AR Forecasts

5-187

Step 2. Forecast the process using presample data.

Generate forecasts (and forecast errors) for a 150-step time horizon. Use the simulated
series as presample data.

[Yf,YMSE] = forecast(model,150,'Y0',Y);

upper = Yf + 1.96*sqrt(YMSE);

lower = Yf - 1.96*sqrt(YMSE);

figure

plot(Y,'Color',[.75,.75,.75])

hold on

plot(51:200,Yf,'r','LineWidth',2)

plot(51:200,[upper,lower],'k--','LineWidth',1.5)

5 Conditional Mean Models

5-188

xlim([0,200])

hold off

The MMSE forecast sinusoidally decays, and begins converging to the unconditional
mean, given by

Step 3. Calculate the asymptotic variance.

The MSE of the process converges to the unconditional variance of the process ().
You can calculate the variance using the impulse response function. The impulse
response function is based on the infinite-degree MA representation of the AR(2) process.

 Convergence of AR Forecasts

5-189

The last few values of YMSE show the convergence toward the unconditional variance.

ARpol = LagOp({1,-.7,-.25},'Lags',[0,1,12]);

IRF = cell2mat(toCellArray(1/ARpol));

sig2e = 2;

variance = sum(IRF.^2)*sig2e % Display the variance

YMSE(145:end) % Display the forecast MSEs

variance =

 7.9938

ans =

 7.8870

 7.8899

 7.8926

 7.8954

 7.8980

 7.9006

Convergence is not reached within 150 steps, but the forecast MSE is approaching the
theoretical unconditional variance.

Step 4. Forecast without using presample data.

Repeat the forecasting without using any presample data.

[Yf2,YMSE2] = forecast(model,150);

upper2 = Yf2 + 1.96*sqrt(YMSE2);

lower2 = Yf2 - 1.96*sqrt(YMSE2);

YMSE2(145:end) % Display the forecast MSEs

figure

plot(Y,'Color',[.75,.75,.75])

hold on

plot(51:200,Yf2,'r','LineWidth',2)

plot(51:200,[upper2,lower2],'k--','LineWidth',1.5)

xlim([0,200])

hold off

5 Conditional Mean Models

5-190

ans =

 7.8870

 7.8899

 7.8926

 7.8954

 7.8980

 7.9006

The convergence of the forecast MSE is the same without using presample data.
However, all MMSE forecasts are the unconditional mean. This is because forecast

 Convergence of AR Forecasts

5-191

initializes the AR model with the unconditional mean when you do not provide presample
data.

See Also
arima | forecast | LagOp | simulate | toCellArray

Related Examples
• “Simulate Stationary Processes” on page 5-151
• “Forecast Multiplicative ARIMA Model” on page 5-192

More About
• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• “Autoregressive Model” on page 5-18

5 Conditional Mean Models

5-192

Forecast Multiplicative ARIMA Model

This example shows how to forecast a multiplicative seasonal ARIMA model using
forecast. The time series is monthly international airline passenger numbers from
1949 to 1960.

Load the Data and Estimate a Model.

Load the data set Data_Airline.

load(fullfile(matlabroot,'examples','econ','Data_Airline.mat'))

y = log(Data);

T = length(y);

Mdl = arima('Constant',0,'D',1,'Seasonality',12,...

 'MALags',1,'SMALags',12);

EstMdl = estimate(Mdl,y);

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 MA{1} -0.377162 0.0667944 -5.64661

 SMA{12} -0.572378 0.0854395 -6.69923

 Variance 0.00126337 0.00012395 10.1926

Forecast Airline Passenger Counts.

Use the fitted model to generate MMSE forecasts and corresponding mean square errors
over a 60-month (5-year) horizon. Use the observed series as presample data. By default,
forecast infers presample innovations using the specified model and observations.

[yF,yMSE] = forecast(EstMdl,60,'Y0',y);

upper = yF + 1.96*sqrt(yMSE);

lower = yF - 1.96*sqrt(yMSE);

figure

plot(y,'Color',[.75,.75,.75])

 Forecast Multiplicative ARIMA Model

5-193

hold on

h1 = plot(T+1:T+60,yF,'r','LineWidth',2);

h2 = plot(T+1:T+60,upper,'k--','LineWidth',1.5);

plot(T+1:T+60,lower,'k--','LineWidth',1.5)

xlim([0,T+60])

title('Forecast and 95% Forecast Interval')

legend([h1,h2],'Forecast','95% Interval','Location','NorthWest')

hold off

The MMSE forecast shows airline passenger counts continuing to grow over the forecast
horizon. The confidence bounds show that a decline in passenger counts is plausible,
however. Because this is a nonstationary process, the width of the forecast intervals
grows over time.

5 Conditional Mean Models

5-194

Compare MMSE and Monte Carlo Forecasts.

Simulate 500 sample paths over the same forecast horizon. Compare the simulation
mean to the MMSE forecast.

rng 'default';

res = infer(EstMdl,y);

Ysim = simulate(EstMdl,60,'NumPaths',500,'Y0',y,'E0',res);

yBar = mean(Ysim,2);

simU = prctile(Ysim,97.5,2);

simL = prctile(Ysim,2.5,2);

figure

h1 = plot(yF,'Color',[.85,.85,.85],'LineWidth',5);

hold on

h2 = plot(yBar,'k--','LineWidth',1.5);

xlim([0,60])

plot([upper,lower],'Color',[.85,.85,.85],'LineWidth',5)

plot([simU,simL],'k--','LineWidth',1.5)

title('Comparison of MMSE and Monte Carlo Forecasts')

legend([h1,h2],'MMSE','Monte Carlo','Location','NorthWest')

hold off

 Forecast Multiplicative ARIMA Model

5-195

The MMSE forecast and simulation mean are virtually indistinguishable. There are
slight discrepancies between the theoretical 95% forecast intervals and the simulation-
based 95% forecast intervals.

See Also
arima | estimate | forecast | infer | simulate

Related Examples
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Simulate Multiplicative ARIMA Models” on page 5-169

5 Conditional Mean Models

5-196

• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117
• “Check Fit of Multiplicative ARIMA Model” on page 3-81

More About
• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

 Forecast Conditional Mean and Variance Model

5-197

Forecast Conditional Mean and Variance Model

This example shows how to forecast responses and conditional variances from a
composite conditional mean and variance model.

Step 1. Load the data and fit a model.

Load the NASDAQ data included with the toolbox. Fit a conditional mean and variance
model to the data.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

r = price2ret(nasdaq);

N = length(r);

model = arima('ARLags',1,'Variance',garch(1,1),...

 'Distribution','t');

fit = estimate(model,r,'Variance0',{'Constant0',0.001});

[E0,V0] = infer(fit,r);

 ARIMA(1,0,0) Model:

 Conditional Probability Distribution: t

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.00103605 0.000170541 6.07506

 AR{1} 0.144925 0.0193368 7.49478

 DoF 7.43163 0.911017 8.15751

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: t

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 1.68497e-06 6.57095e-07 2.56427

 GARCH{1} 0.890486 0.012054 73.8747

 ARCH{1} 0.106033 0.012524 8.46645

 DoF 7.43163 0.911017 8.15751

5 Conditional Mean Models

5-198

Step 2. Forecast returns and conditional variances.

Use forecast to compute MMSE forecasts of the returns and conditional variances
for a 1000-period future horizon. Use the observed returns and inferred residuals and
conditional variances as presample data.

[Y,YMSE,V] = forecast(fit,1000,'Y0',r,'E0',E0,'V0',V0);

upper = Y + 1.96*sqrt(YMSE);

lower = Y - 1.96*sqrt(YMSE);

figure

subplot(2,1,1)

plot(r,'Color',[.75,.75,.75])

hold on

plot(N+1:N+1000,Y,'r','LineWidth',2)

plot(N+1:N+1000,[upper,lower],'k--','LineWidth',1.5)

xlim([0,N+1000])

title('Forecasted Returns')

hold off

subplot(2,1,2)

plot(V0,'Color',[.75,.75,.75])

hold on

plot(N+1:N+1000,V,'r','LineWidth',2);

xlim([0,N+1000])

title('Forecasted Conditional Variances')

hold off

 Forecast Conditional Mean and Variance Model

5-199

The conditional variance forecasts converge to the asymptotic variance of the GARCH
conditional variance model. The forecasted returns converge to the estimated model
constant (the unconditional mean of the AR conditional mean model).

See Also
arima | estimate | forecast | garch | infer

Related Examples
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Estimate Conditional Mean and Variance Models” on page 5-129
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117

5 Conditional Mean Models

5-200

• “Simulate Conditional Mean and Variance Models” on page 5-175

More About
• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• Using garch Objects

6

Conditional Variance Models

• “Conditional Variance Models” on page 6-2
• “Specify GARCH Models Using garch” on page 6-8
• “Specify EGARCH Models Using egarch” on page 6-19
• “Specify GJR Models Using gjr” on page 6-31
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify the Conditional Variance Model Innovation Distribution” on page 6-48
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53
• “Maximum Likelihood Estimation for Conditional Variance Models” on page 6-62
• “Conditional Variance Model Estimation with Equality Constraints” on page 6-65
• “Presample Data for Conditional Variance Model Estimation” on page 6-67
• “Initial Values for Conditional Variance Model Estimation” on page 6-69
• “Optimization Settings for Conditional Variance Model Estimation” on page 6-71
• “Infer Conditional Variances and Residuals” on page 6-77
• “Likelihood Ratio Test for Conditional Variance Models” on page 6-83
• “Compare Conditional Variance Models Using Information Criteria” on page 6-87
• “Monte Carlo Simulation of Conditional Variance Models” on page 6-92
• “Presample Data for Conditional Variance Model Simulation” on page 6-95
• “Simulate GARCH Models” on page 6-97
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104
• “Simulate Conditional Variance Model” on page 6-111
• “Monte Carlo Forecasting of Conditional Variance Models” on page 6-115
• “MMSE Forecasting of Conditional Variance Models” on page 6-117
• “Forecast GJR Models” on page 6-123
• “Forecast a Conditional Variance Model” on page 6-126
• “Converting from GARCH Functions to Model Objects” on page 6-129

6 Conditional Variance Models

6-2

Conditional Variance Models

In this section...

“General Conditional Variance Model Definition” on page 6-2
“GARCH Model” on page 6-3
“EGARCH Model” on page 6-4
“GJR Model” on page 6-6

General Conditional Variance Model Definition

Consider the time series

yt t= +m e ,

where e s
t t t

z= . Here, zt is an independent and identically distributed series of
standardized random variables. Econometrics Toolbox supports standardized Gaussian
and standardized Student’s t innovation distributions. The constant term, m , is a mean
offset.

A conditional variance model specifies the dynamic evolution of the innovation variance,

s e
t t t

Var H
2

1= ()-| ,

where Ht–1 is the history of the process. The history includes:

•
Past variances, s s s1

2
2
2

1
2

, , ,…
t-

• Past innovations, e e e1 2 1, , ,…
t-

Conditional variance models are appropriate for time series that do not exhibit
significant autocorrelation, but are serially dependent. The innovation series e s

t t t
z= is

uncorrelated, because:

 Conditional Variance Models

6-3

• E(εt) = 0.
• E(εtεt–h) = 0 for all t and h π 0.

However, if s t

2

 depends on s t-1

2

, for example, then εt depends on εt–1, even though
they are uncorrelated. This kind of dependence exhibits itself as autocorrelation in the
squared innovation series, e

t

2
.

Tip For modeling time series that are both autocorrelated and serially dependent, you
can consider using a composite conditional mean and variance model.

Two characteristics of financial time series that conditional variance models address are:

• Volatility clustering. Volatility is the conditional standard deviation of a time series.
Autocorrelation in the conditional variance process results in volatility clustering. The
GARCH model and its variants model autoregression in the variance series.

• Leverage effects. The volatility of some time series responds more to large decreases
than to large increases. This asymmetric clustering behavior is known as the leverage
effect. The EGARCH and GJR models have leverage terms to model this asymmetry.

GARCH Model

The generalized autoregressive conditional heteroscedastic (GARCH) model is an
extension of Engle’s ARCH model for variance heteroscedasticity [1]. If a series exhibits
volatility clustering, this suggests that past variances might be predictive of the current
variance.

The GARCH(P,Q) model is an autoregressive moving average model for conditional
variances, with P GARCH coefficients associated with lagged variances, and Q ARCH
coefficients associated with lagged squared innovations. The form of the GARCH(P,Q)
model in Econometrics Toolbox is

yt t= +m e ,

where e s
t t t

z= and

6 Conditional Variance Models

6-4

s k g s g s a e a et t P t P t Q t Q
2

1 1
2 2

1 1
2 2

= + + + + + +- - - -… … .

Note: The Constant property of a garch model corresponds to κ, and the Offset
property corresponds to μ.

For stationarity and positivity, the GARCH model has the following constraints:

• k > 0

• g ai j≥ ≥0 0,

•
g ai jj

Q

i

P
+ <

== ÂÂ 11
1

To specify Engle’s original ARCH(Q) model, use the equivalent GARCH(0,Q)
specification.

EGARCH Model

The exponential GARCH (EGARCH) model is a GARCH variant that models the
logarithm of the conditional variance process. In addition to modeling the logarithm,
the EGARCH model has additional leverage terms to capture asymmetry in volatility
clustering.

The EGARCH(P,Q) model has P GARCH coefficients associated with lagged log variance
terms, Q ARCH coefficients associated with the magnitude of lagged standardized
innovations, and Q leverage coefficients associated with signed, lagged standardized
innovations. The form of the EGARCH(P,Q) model in Econometrics Toolbox is

yt t= +m e ,

where e s
t t t

z= and

log logs k g s a
e

s

e

st i
i

P

t i j

t j

t j

t j

t j

E2

1

2= + + -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

Í
=

-
-

-

-

-
Â ÍÍ

˘

˚

˙
˙

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

= =

-

-
Â Â
j

Q

j
j

Q
t j

t j1 1

x
e

s
.

 Conditional Variance Models

6-5

Note: The Constant property of an egarch model corresponds to κ, and the Offset
property corresponds to μ.

The form of the expected value terms associated with ARCH coefficients in the EGARCH
equation depends on the distribution of zt:

• If the innovation distribution is Gaussian, then

E E z
t j

t j
t j

e

s p

-

-
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= { } =

2
.

• If the innovation distribution is Student’s t with ν > 2 degrees of freedom, then

E E z
t j

t j
t j

e

s
n

p

n

n
-

-
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= { } = -

-Ê
ËÁ

ˆ
¯̃

Ê
Ë
Á

ˆ
¯
˜

2

1

2

2

G

G
.

The toolbox treats the EGARCH(P,Q) model as an ARMA model for log .s
t

2
 Thus, to

ensure stationarity, all roots of the GARCH coefficient polynomial, ()1 1- - -g gL L
P

P
… ,

must lie outside the unit circle.

The EGARCH model is unique from the GARCH and GJR models because it models the
logarithm of the variance. By modeling the logarithm, positivity constraints on the model
parameters are relaxed. However, forecasts of conditional variances from an EGARCH
model are biased, because by Jensen’s inequality,

E E
t t

() exp{ (log)}.s s
2 2

≥

An EGARCH(1,1) specification will be complex enough for most applications. For an
EGARCH(1,1) model, the GARCH and ARCH coefficients are expected to be positive, and
the leverage coefficient is expected to be negative; large unanticipated downward shocks
should increase the variance. If you get signs opposite to those expected, you might
encounter difficulties inferring volatility sequences and forecasting (a negative ARCH
coefficient can be particularly problematic). In this case, an EGARCH model might not be
the best choice for your application.

6 Conditional Variance Models

6-6

GJR Model

The GJR model is a GARCH variant that includes leverage terms for modeling
asymmetric volatility clustering. In the GJR formulation, large negative changes are
more likely to be clustered than positive changes. The GJR model is named for Glosten,
Jagannathan, and Runkle [2]. Close similarities exist between the GJR model and
the threshold GARCH (TGARCH) model—a GJR model is a recursive equation for the
variance process, and a TGARCH is the same recursion applied to the standard deviation
process.

The GJR(P,Q) model has P GARCH coefficients associated with lagged variances,
Q ARCH coefficients associated with lagged squared innovations, and Q leverage
coefficients associated with the square of negative lagged innovations. The form of the
GJR(P,Q) model in Econometrics Toolbox is

yt t= +m e ,

where e s
t t t

z= and

s k g s a e x e et i t i

i

P

j

j

Q

t j j

j

Q

t j t jI2 2

1 1

2

1

2
0= + + + <È

Î
˘
˚-

= =
-

=
- -Â Â Â .

The indicator function I t je - <È
Î

˘
˚0 equals 1 if e t j-

< 0 , and 0 otherwise. Thus, the
leverage coefficients are applied to negative innovations, giving negative changes
additional weight.

Note: The Constant property of a gjr model corresponds to κ, and the Offset property
corresponds to μ.

For stationarity and positivity, the GJR model has the following constraints:

• k > 0

• g ai j≥ ≥0 0,

• a xj j+ ≥ 0

 Conditional Variance Models

6-7

•
g a xii

P
jj

Q
jj

Q

= = =Â Â Â+ + <
1 1 1

1

2
1

The GARCH model is nested in the GJR model. If all leverage coefficients are zero, then
the GJR model reduces to the GARCH model. This means you can test a GARCH model
against a GJR model using the likelihood ratio test.

References

[1] Engle, Robert F. “Autoregressive Conditional Heteroskedasticity with Estimates of
the Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

[2] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The
Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.

Related Examples
• “Specify GARCH Models Using garch” on page 6-8
• “Specify EGARCH Models Using egarch” on page 6-19
• “Specify GJR Models Using gjr” on page 6-31
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104

More About
• Using egarch Objects
• Using gjr Objects
• Using garch Objects
• “Conditional Mean Models” on page 5-3

6 Conditional Variance Models

6-8

Specify GARCH Models Using garch

In this section...

“Default GARCH Model” on page 6-8
“Specify Default GARCH Model” on page 6-10
“Using Name-Value Pair Arguments” on page 6-11
“Specify GARCH Model with Mean Offset” on page 6-15
“Specify GARCH Model with Known Parameter Values” on page 6-15
“Specify GARCH Model with t Innovation Distribution” on page 6-16
“Specify GARCH Model with Nonconsecutive Lags” on page 6-17

Default GARCH Model

The default GARCH(P,Q) model in Econometrics Toolbox is of the form

e s
t t t

z= ,

with Gaussian innovation distribution and

s k g s g s a e a et t P t P t Q t Q
2

1 1
2 2

1 1
2 2

= + + + + + +- - - -… … .

The default model has no mean offset, and the lagged variances and squared innovations
are at consecutive lags.

You can specify a model of this form using the shorthand syntax garch(P,Q). For the
input arguments P and Q, enter the number of lagged conditional variances (GARCH
terms), P, and lagged squared innovations (ARCH terms), Q, respectively. The following
restrictions apply:

• P and Q must be nonnegative integers.
• If P is zero, the GARCH(P,Q) model reduces to an ARCH(Q) model.

 Specify GARCH Models Using garch

6-9

• If P > 0, then you must also specify Q > 0.

When you use this shorthand syntax, garch creates a garch model with these default
property values.

Property Default Value

P Number of GARCH terms, P
Q Number of ARCH terms, Q
Offset 0

Constant NaN

GARCH Cell vector of NaNs
ARCH Cell vector of NaNs
Distribution 'Gaussian'

To assign nondefault values to any properties, you can modify the created model using
dot notation.

To illustrate, consider specifying the GARCH(1,1) model

e s
t t t

z= ,

with Gaussian innovation distribution and

s k g s a e
t t t

2

1 1

2

1 1

2
= + +- - .

Mdl = garch(1,1)

Mdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

6 Conditional Variance Models

6-10

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

The created model, Mdl, has NaNs for all model parameters. A NaN value signals that a
parameter needs to be estimated or otherwise specified by the user. All parameters must
be specified to forecast or simulate the model.

To estimate parameters, input the model (along with data) to estimate. This returns a
new fitted garch model. The fitted model has parameter estimates for each input NaN
value.

Calling garch without any input arguments returns a GARCH(0,0) model specification
with default property values:

DefaultMdl = garch

DefaultMdl =

 GARCH(0,0) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 0

 Constant: NaN

 GARCH: {}

 ARCH: {}

Specify Default GARCH Model

This example shows how to use the shorthand garch(P,Q) syntax to specify the default
GARCH(P, Q) model, with Gaussian innovation distribution and

By default, all parameters in the created model have unknown values.

Specify the default GARCH(1,1) model.

 Specify GARCH Models Using garch

6-11

Mdl = garch(1,1)

Mdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

The output shows that the created model, Mdl, has NaN values for all model parameters:
the constant term, the GARCH coefficient, and the ARCH coefficient. You can modify the
created model using dot notation, or input it (along with data) to estimate.

Using Name-Value Pair Arguments

The most flexible way to specify GARCH models is using name-value pair arguments.
You do not need, nor are you able, to specify a value for every model property. garch
assigns default values to any properties you do not (or cannot) specify.

The general GARCH(P,Q) model is of the form

yt t= +m e ,

where e s
t t t

z= and

s k g s g s a e a et t P t P t Q t Q
2

1 1
2 2

1 1
2 2

= + + + + + +- - - -… … .

The innovation distribution can be Gaussian or Student’s t. The default distribution is
Gaussian.

In order to estimate, forecast, or simulate a model, you must specify the parametric
form of the model (e.g., which lags correspond to nonzero coefficients, the innovation

6 Conditional Variance Models

6-12

distribution) and any known parameter values. You can set any unknown parameters
equal to NaN, and then input the model to estimate (along with data) to get estimated
parameter values.

garch (and estimate) returns a model corresponding to the model specification. You
can modify models to change or update the specification. Input models (with no NaN
values) to forecast or simulate for forecasting and simulation, respectively. Here are
some example specifications using name-value arguments.

Model Specification

• yt t= e

• e s
t t t

z=

• zt Gaussian
•

s k g s a e
t t t

2

1 1

2

1 1

2
= + +- -

garch('GARCH',NaN,'ARCH',NaN) or garch(1,1)

• yt t= +m e

• e s
t t t

z=

• zt Student’s t with unknown
degrees of freedom

•
s k g s a e

t t t

2

1 1

2

1 1

2
= + +- -

garch('Offset',NaN,'GARCH',NaN,'ARCH',NaN,...

'Distribution','t')

• yt t= e

• e s
t t t

z=

• zt Student’s t with eight degrees
of freedom

•
s s e

t t t

2

1

2

1

2
0 1 0 6 0 3= + +

- -
. . .

garch('Constant',0.1,'GARCH',0.6,'ARCH',0.3,...

'Distribution',struct('Name','t','DoF',8))

Here is a full description of the name-value arguments you can use to specify GARCH
models.

Note: You cannot assign values to the properties P and Q. garch sets these properties
equal to the largest GARCH and ARCH lags, respectively.

 Specify GARCH Models Using garch

6-13

Name-Value Arguments for GARCH Models

Name Corresponding
GARCH Model
Term(s)

When to Specify

Offset Mean offset, μ To include a nonzero mean offset. For example,
'Offset',0.3. If you plan to estimate the offset term,
specify 'Offset',NaN.
By default, Offset has value 0 (meaning, no offset).

Constant Constant in
the conditional
variance model, κ

To set equality constraints for κ. For example, if a model
has known constant 0.1, specify 'Constant',0.1.
By default, Constant has value NaN.

GARCH GARCH
coefficients,
g g1, ,…

P

To set equality constraints for the GARCH coefficients.
For example, to specify the GARCH coefficient in the
model

e s e
t t t

= +
- -

0 7 0 251
2

1
2

. . ,

specify 'GARCH',0.7.
You only need to specify the nonzero elements of GARCH.
If the nonzero coefficients are at nonconsecutive lags,
specify the corresponding lags using GARCHLags.
Any coefficients you specify must satisfy all stationarity
and positivity constraints.

GARCHLags Lags
corresponding to
nonzero GARCH
coefficients

GARCHLags is not a model property.
Use this argument as a shortcut for specifying GARCH
when the nonzero GARCH coefficients correspond to
nonconsecutive lags. For example, to specify nonzero
GARCH coefficients at lags 1 and 3, e.g.,

s g s g s a e
t t t t

2
1 1

2
3 3

2
1 1

2
= + +- - - ,

specify 'GARCHLags',[1,3].
Use GARCH and GARCHLags together to specify known
nonzero GARCH coefficients at nonconsecutive lags. For
example, if in the given GARCH(3,1) model g

1
0 3= . and

6 Conditional Variance Models

6-14

Name Corresponding
GARCH Model
Term(s)

When to Specify

g3 0 1= . , specify 'GARCH',{0.3,0.1},'GARCHLags',
[1,3].

ARCH ARCH coefficients,
a a1, ,… Q

To set equality constraints for the ARCH coefficients. For
example, to specify the ARCH coefficient in the model

e s e
t t t

= +
- -

0 7 0 251
2

1
2

. . ,

specify 'ARCH',0.25.
You only need to specify the nonzero elements of ARCH.
If the nonzero coefficients are at nonconsecutive lags,
specify the corresponding lags using ARCHLags.
Any coefficients you specify must satisfy all stationarity
and positivity constraints.

ARCHLags Lags
corresponding to
nonzero ARCH
coefficients

ARCHLags is not a model property.
Use this argument as a shortcut for specifying ARCH
when the nonzero ARCH coefficients correspond to
nonconsecutive lags. For example, to specify nonzero
ARCH coefficients at lags 1 and 3, e.g.,

s g s a e a e
t t t t

2
1 1

2
1 1

2
3 3

2
= + +- - - ,

specify 'ARCHLags',[1,3].
Use ARCH and ARCHLags together to specify known
nonzero ARCH coefficients at nonconsecutive lags. For
example, if in the above model a1

0 4= . and a3 0 2= . ,

specify 'ARCH',{0.4,0.2},'ARCHLags',[1,3].
Distribution Distribution of the

innovation process
Use this argument to specify a Student’s t innovation
distribution. By default, the innovation distribution is
Gaussian.
For example, to specify a t distribution with unknown
degrees of freedom, specify 'Distribution','t'.
To specify a t innovation distribution with known
degrees of freedom, assign Distribution a data

 Specify GARCH Models Using garch

6-15

Name Corresponding
GARCH Model
Term(s)

When to Specify

structure with fields Name and DoF. For example, for
a t distribution with nine degrees of freedom, specify
'Distribution',struct('Name','t','DoF',9).

Specify GARCH Model with Mean Offset

This example shows how to specify a GARCH(P, Q) model with a mean offset. Use name-
value pair arguments to specify a model that differs from the default model.

Specify a GARCH(1,1) model with a mean offset,

where and

Mdl = garch('Offset',NaN,'GARCHLags',1,'ARCHLags',1)

Mdl =

 GARCH(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Offset: NaN

The mean offset appears in the output as an additional parameter to be estimated or
otherwise specified.

Specify GARCH Model with Known Parameter Values

This example shows how to specify a GARCH model with known parameter values. You
can use such a fully specified model as an input to simulate or forecast.

6 Conditional Variance Models

6-16

Specify the GARCH(1,1) model

with a Gaussian innovation distribution.

Mdl = garch('Constant',0.1,'GARCH',0.7,'ARCH',0.2)

Mdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 0.1

 GARCH: {0.7} at Lags [1]

 ARCH: {0.2} at Lags [1]

Because all parameter values are specified, the created model has no NaN values. The
functions simulate and forecast don't accept input models with NaN values.

Specify GARCH Model with t Innovation Distribution

This example shows how to specify a GARCH model with a Student's t innovation
distribution.

Specify a GARCH(1,1) model with a mean offset,

where and

Assume follows a Student's t innovation distribution with eight degrees of freedom.

tdist = struct('Name','t','DoF',8);

Mdl = garch('Offset',NaN,'GARCHLags',1,'ARCHLags',1,...

 'Distribution',tdist)

 Specify GARCH Models Using garch

6-17

Mdl =

 GARCH(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 't', DoF = 8

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Offset: NaN

The value of Distribution is a struct array with field Name equal to 't' and field
DoF equal to 8. When you specify the degrees of freedom, they aren't estimated if you
input the model to estimate.

Specify GARCH Model with Nonconsecutive Lags

This example shows how to specify a GARCH model with nonzero coefficients at
nonconsecutive lags.

Specify a GARCH(3,1) model with nonzero GARCH coefficients at lags 1 and 3. Include a
mean offset.

Mdl = garch('Offset',NaN,'GARCHLags',[1,3],'ARCHLags',1)

Mdl =

 GARCH(3,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 1

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN} at Lags [1]

 Offset: NaN

The unknown nonzero GARCH coefficients correspond to lagged variances at lags 1 and
3. The output shows only nonzero coefficients.

Display the value of GARCH.

6 Conditional Variance Models

6-18

Mdl.GARCH

ans =

 [NaN] [0] [NaN]

The GARCH cell array returns three elements. The first and third elements have value
NaN, indicating these coefficients are nonzero and need to be estimated or otherwise
specified. By default, garch sets the interim coefficient at lag 2 equal to zero to maintain
consistency with MATLAB® cell array indexing.

See Also
estimate | forecast | garch | simulate | struct

Related Examples
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify the Conditional Variance Model Innovation Distribution” on page 6-48
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53
• “Specify Conditional Mean and Variance Models” on page 5-79

More About
• Using garch Objects
• “GARCH Model” on page 6-3

 Specify EGARCH Models Using egarch

6-19

Specify EGARCH Models Using egarch

In this section...

“Default EGARCH Model” on page 6-19
“Specify Default EGARCH Model” on page 6-21
“Using Name-Value Pair Arguments” on page 6-22
“Specify EGARCH Model with Mean Offset” on page 6-26
“Specify EGARCH Model with Nonconsecutive Lags” on page 6-27
“Specify EGARCH Model with Known Parameter Values” on page 6-28
“Specify EGARCH Model with t Innovation Distribution” on page 6-29

Default EGARCH Model

The default EGARCH(P,Q) model in Econometrics Toolbox is of the form

e s
t t t

z= ,

with Gaussian innovation distribution and

log logs k g s a
e

s

e

st i
i

P

t i j

t j

t j

t j

t j

E2

1

2= + + -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

Í
=

-
-

-

-

-
Â ÍÍ

˘

˚

˙
˙

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

= =

-

-
Â Â
j

Q

j
j

Q
t j

t j1 1

x
e

s
.

The default model has no mean offset, and the lagged log variances and standardized
innovations are at consecutive lags.

You can specify a model of this form using the shorthand syntax egarch(P,Q). For the
input arguments P and Q, enter the number of lagged log variances (GARCH terms), P,
and lagged standardized innovations (ARCH and leverage terms), Q, respectively. The
following restrictions apply:

• P and Q must be nonnegative integers.
• If P > 0, then you must also specify Q > 0.

When you use this shorthand syntax, egarch creates an egarch model with these
default property values.

6 Conditional Variance Models

6-20

Property Default Value

P Number of GARCH terms, P
Q Number of ARCH and leverage terms, Q
Offset 0

Constant NaN

GARCH Cell vector of NaNs
ARCH Cell vector of NaNs
Leverage Cell vector of NaNs
Distribution 'Gaussian'

To assign nondefault values to any properties, you can modify the created model using
dot notation.

To illustrate, consider specifying the EGARCH(1,1) model

e s
t t t

z= ,

with Gaussian innovation distribution and

log logs k g s a
e

s

e

st t

t

t

t

t

E
2

1 1
2

1
1

1

1

1

= + + -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

-
-

-

-

-
++

Ê

Ë
Á

ˆ

¯
˜-

-
x

e
s1

1

1

t

t

.

Mdl = egarch(1,1)

Mdl =

 EGARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Specify EGARCH Models Using egarch

6-21

The created model, Mdl, has NaNs for all model parameters. A NaN value signals that a
parameter needs to be estimated or otherwise specified by the user. All parameters must
be specified to forecast or simulate the model

To estimate parameters, input the model (along with data) to estimate. This returns a
new fitted egarch model. The fitted model has parameter estimates for each input NaN
value.

Calling egarch without any input arguments returns an EGARCH(0,0) model
specification with default property values:

DefaultMdl = egarch

DefaultMdl =

 EGARCH(0,0) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 0

 Constant: NaN

 GARCH: {}

 ARCH: {}

 Leverage: {}

Specify Default EGARCH Model

This example shows how to use the shorthand egarch(P,Q) syntax to specify the
default EGARCH(P, Q) model, with a Gaussian innovation distribution and

By default, all parameters in the created model have unknown values.

Specify the default EGARCH(1,1) model:

Mdl = egarch(1,1)

Mdl =

6 Conditional Variance Models

6-22

 EGARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

The output shows that the created model, Mdl, has NaN values for all model parameters:
the constant term, the GARCH coefficient, the ARCH coefficient, and the leverage
coefficient. You can modify the created model using dot notation, or input it (along with
data) to estimate.

Using Name-Value Pair Arguments

The most flexible way to specify EGARCH models is using name-value pair arguments.
You do not need, nor are you able, to specify a value for every model property. egarch
assigns default values to any model properties you do not (or cannot) specify.

The general EGARCH(P,Q) model is of the form

yt t= +m e ,

where e s
t t t

z= and

log logs k g s a
e

s

e

st i
i

P

t i j

t j

t j

t j

t j

E2

1

2= + + -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

Í
=

-
-

-

-

-
Â ÍÍ

˘

˚

˙
˙

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

= =

-

-
Â Â
j

Q

j
j

Q
t j

t j1 1

x
e

s
.

The innovation distribution can be Gaussian or Student’s t. The default distribution is
Gaussian.

In order to estimate, forecast, or simulate a model, you must specify the parametric
form of the model (e.g., which lags correspond to nonzero coefficients, the innovation
distribution) and any known parameter values. You can set any unknown parameters
equal to NaN, and then input the model to estimate (along with data) to get estimated
parameter values.

egarch (and estimate) returns a model corresponding to the model specification. You
can modify models to change or update the specification. Input models (with no NaN

 Specify EGARCH Models Using egarch

6-23

values) to forecast or simulate for forecasting and simulation, respectively. Here are
some example specifications using name-value arguments.

Model Specification

• yt t= e

• e s
t t t

z=

• zt Gaussian
•

log logs k g s

a
e
s

e
s

t t

t

t

t

t

E

2
1 1

2

1
1

1

1

1

= + +

-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙

-

-

-

-

-

…

˙̇
+

Ê

Ë
Á

ˆ

¯
˜-

-
x

e
s1

1

1

t

t

egarch('GARCH',NaN,'ARCH',NaN,...

'Leverage',NaN) or egarch(1,1)

• yt t= +m e

• e s
t t t

z=

• zt Student’s t with unknown degrees of
freedom

•
log logs k g s

a
e
s

e
s

t t

t

t

t

t

E

2
1 1

2

1
1

1

1

1

= + +

-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙

-

-

-

-

-

…

˙̇
+

Ê

Ë
Á

ˆ

¯
˜-

-
x

e
s1

1

1

t

t

egarch('Offset',NaN,'GARCH',NaN,...

'ARCH',NaN,'Leverage',NaN,...

'Distribution','t')

• yt t= e

• e s
t t t

z=

• zt Student’s t with eight degrees of freedom
•

log . . log

.

s s

e
s

e
s

t t

t

t

t

t

E

2
1

2

1

1

1

1

0 1 0 4

0 3

= - + +

-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

-

-

-

-

-

…

ÍÍ
Í

˘

˚
˙
˙

-
Ê

Ë
Á

ˆ

¯
˜-

-
0 1 1

1

.
e
s

t

t

egarch('Constant',-0.1,'GARCH',0.4,...

'ARCH',0.3,'Leverage',-0.1,...

'Distribution',struct('Name','t','DoF',8))

Here is a full description of the name-value arguments you can use to specify EGARCH
models.

6 Conditional Variance Models

6-24

Note: You cannot assign values to the properties P and Q. egarch sets P equal to
the largest GARCH lag, and Q equal to the largest lag with a nonzero standardized
innovation coefficient, including ARCH and leverage coefficients.

Name-Value Arguments for EGARCH Models

Name Corresponding
EGARCH Model
Term(s)

When to Specify

Offset Mean offset, μ To include a nonzero mean offset. For example,
'Offset',0.2. If you plan to estimate the offset term,
specify 'Offset',NaN.
By default, Offset has value 0 (meaning, no offset).

Constant Constant in
the conditional
variance model, κ

To set equality constraints for κ. For example, if a model
has known constant –0.1, specify 'Constant',-0.1.
By default, Constant has value NaN.

GARCH GARCH
coefficients,
g g1, ,…

P

To set equality constraints for the GARCH coefficients. For
example, to specify an EGARCH(1,1) model with g1 0 6= . ,

specify 'GARCH',0.6.
You only need to specify the nonzero elements of GARCH. If
the nonzero coefficients are at nonconsecutive lags, specify
the corresponding lags using GARCHLags.
Any coefficients you specify must satisfy all stationarity
constraints.

GARCHLags Lags
corresponding to
nonzero GARCH
coefficients

GARCHLags is not a model property.
Use this argument as a shortcut for specifying GARCH
when the nonzero GARCH coefficients correspond to
nonconsecutive lags. For example, to specify nonzero
GARCH coefficients at lags 1 and 3, e.g., nonzero g

1 and
g3, specify 'GARCHLags',[1,3].
Use GARCH and GARCHLags together to specify known
nonzero GARCH coefficients at nonconsecutive lags. For
example, if g

1
0 3= . and g3 0 1= . , specify 'GARCH',

{0.3,0.1},'GARCHLags',[1,3]

 Specify EGARCH Models Using egarch

6-25

Name Corresponding
EGARCH Model
Term(s)

When to Specify

ARCH ARCH
coefficients,
a a1, ,… Q

To set equality constraints for the ARCH coefficients. For
example, to specify an EGARCH(1,1) model with a1 0 3= . ,

specify 'ARCH',0.3.
You only need to specify the nonzero elements of ARCH. If
the nonzero coefficients are at nonconsecutive lags, specify
the corresponding lags using ARCHLags.

ARCHLags Lags
corresponding to
nonzero ARCH
coefficients

ARCHLags is not a model property.
Use this argument as a shortcut for specifying ARCH
when the nonzero ARCH coefficients correspond to
nonconsecutive lags. For example, to specify nonzero ARCH
coefficients at lags 1 and 3, e.g., nonzero a1 and a3,

specify 'ARCHLags',[1,3].
Use ARCH and ARCHLags together to specify known
nonzero ARCH coefficients at nonconsecutive lags. For
example, if a1

0 4= . and a3 0 2= . , specify 'ARCH',
{0.4,0.2},'ARCHLags',[1,3]

Leverage Leverage
coefficients,
x x1, ,… Q

To set equality constraints for the leverage coefficients. For
example, to specify an EGARCH(1,1) model with x1 0 1= - . ,

specify 'Leverage',-0.1.
You only need to specify the nonzero elements of
Leverage. If the nonzero coefficients are at nonconsecutive
lags, specify the corresponding lags using LeverageLags.

LeverageLags Lags
corresponding to
nonzero leverage
coefficients

LeverageLags is not a model property.
Use this argument as a shortcut for specifying Leverage
when the nonzero leverage coefficients correspond to
nonconsecutive lags. For example, to specify nonzero
leverage coefficients at lags 1 and 3, e.g., nonzero x

1 and
x3,

specify 'LeverageLags',[1,3].

6 Conditional Variance Models

6-26

Name Corresponding
EGARCH Model
Term(s)

When to Specify

Use Leverage and LeverageLags together to specify
known nonzero leverage coefficients at nonconsecutive
lags. For example, if x

1
0 2= - . and x3 0 1= - . , specify

'Leverage',{-0.2,-0.1},'LeverageLags',[1,3].
Distribution Distribution of

the innovation
process

Use this argument to specify a Student’s t innovation
distribution. By default, the innovation distribution is
Gaussian.
For example, to specify a t distribution with unknown
degrees of freedom, specify 'Distribution','t'.
To specify a t innovation distribution with known
degrees of freedom, assign Distribution a data
structure with fields Name and DoF. For example, for
a t distribution with nine degrees of freedom, specify
'Distribution',struct('Name','t','DoF',9).

Specify EGARCH Model with Mean Offset

This example shows how to specify an EGARCH(P, Q) model with a mean offset. Use
name-value pair arguments to specify a model that differs from the default model.

Specify an EGARCH(1,1) model with a mean offset,

where and

Mdl = egarch('Offset',NaN,'GARCHLags',1,'ARCHLags',1,...

 'LeverageLags',1)

 Specify EGARCH Models Using egarch

6-27

Mdl =

 EGARCH(1,1) Conditional Variance Model with Offset:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Offset: NaN

The mean offset appears in the output as an additional parameter to be estimated or
otherwise specified.

Specify EGARCH Model with Nonconsecutive Lags

This example shows how to specify an EGARCH model with nonzero coefficients at
nonconsecutive lags.

Specify an EGARCH(3,1) model with nonzero GARCH terms at lags 1 and 3. Include a
mean offset.

Mdl = egarch('Offset',NaN,'GARCHLags',[1,3],'ARCHLags',1,...

 'LeverageLags',1)

Mdl =

 EGARCH(3,1) Conditional Variance Model with Offset:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 1

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Offset: NaN

The unknown nonzero GARCH coefficients correspond to lagged log variances at lags 1
and 3. The output shows only the nonzero coefficients.

6 Conditional Variance Models

6-28

Display the value of GARCH:

Mdl.GARCH

ans =

 [NaN] [0] [NaN]

The GARCH cell array returns three elements. The first and third elements have value
NaN, indicating these coefficients are nonzero and need to be estimated or otherwise
specified. By default, egarch sets the interim coefficient at lag 2 equal to zero to
maintain consistency with MATLAB® cell array indexing.

Specify EGARCH Model with Known Parameter Values

This example shows how to specify an EGARCH model with known parameter values.
You can use such a fully specified model as an input to simulate or forecast.

Specify the EGARCH(1,1) model

with a Gaussian innovation distribution.

Mdl = egarch('Constant',0.1,'GARCH',0.6,'ARCH',0.2,...

 'Leverage',-0.1)

Mdl =

 EGARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 0.1

 GARCH: {0.6} at Lags [1]

 ARCH: {0.2} at Lags [1]

 Leverage: {-0.1} at Lags [1]

 Specify EGARCH Models Using egarch

6-29

Because all parameter values are specified, the created model has no NaN values. The
functions simulate and forecast don't accept input models with NaN values.

Specify EGARCH Model with t Innovation Distribution

This example shows how to specify an EGARCH model with a Student's t innovation
distribution.

Specify an EGARCH(1,1) model with a mean offset,

where and

Assume follows a Student's t innovation distribution with 10 degrees of freedom.

tDist = struct('Name','t','DoF',10);

Mdl = egarch('Offset',NaN,'GARCHLags',1,'ARCHLags',1,...

 'LeverageLags',1,'Distribution',tDist)

Mdl =

 EGARCH(1,1) Conditional Variance Model with Offset:

 Distribution: Name = 't', DoF = 10

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Offset: NaN

The value of Distribution is a struct array with field Name equal to 't' and field
DoF equal to 10. When you specify the degrees of freedom, they aren't estimated if you
input the model to estimate.

See Also
egarch | estimate | forecast | simulate | struct

6 Conditional Variance Models

6-30

Related Examples
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify the Conditional Variance Model Innovation Distribution” on page 6-48
• “Specify Conditional Mean and Variance Models” on page 5-79

More About
• Using egarch Objects
• “EGARCH Model” on page 6-4

 Specify GJR Models Using gjr

6-31

Specify GJR Models Using gjr

In this section...

“Default GJR Model” on page 6-31
“Specify Default GJR Model” on page 6-33
“Using Name-Value Pair Arguments” on page 6-34
“Specify GJR Model with Mean Offset” on page 6-38
“Specify GJR Model with Nonconsecutive Lags” on page 6-39
“Specify GJR Model with Known Parameter Values” on page 6-40
“Specify GJR Model with t Innovation Distribution” on page 6-40

Default GJR Model

The default GJR(P,Q) model in Econometrics Toolbox is of the form

e s
t t t

z= ,

with Gaussian innovation distribution and

s k g s a e x e et i t i

i

P

j

j

Q

t j j

j

Q

t j t jI2 2

1 1

2

1

2
0= + + + <È

Î
˘
˚-

= =
-

=
- -Â Â Â .

The indicator function I t je - <È
Î

˘
˚0 equals 1 if e t j-

< 0 and 0 otherwise. The default
model has no mean offset, and the lagged variances and squared innovations are at
consecutive lags.

You can specify a model of this form using the shorthand syntax gjr(P,Q). For the
input arguments P and Q, enter the number of lagged variances (GARCH terms), P, and
lagged squared innovations (ARCH and leverage terms), Q, respectively. The following
restrictions apply:

• P and Q must be nonnegative integers.
• If P > 0, then you must also specify Q > 0

6 Conditional Variance Models

6-32

When you use this shorthand syntax, gjr creates a gjr model with these default
property values.

Property Default Value

P Number of GARCH terms, P
Q Number of ARCH and leverage terms, Q
Offset 0

Constant NaN

GARCH Cell vector of NaNs
ARCH Cell vector of NaNs
Leverage Cell vector of NaNs
Distribution 'Gaussian'

To assign nondefault values to any properties, you can modify the created model using
dot notation.

To illustrate, consider specifying the GJR(1,1) model

e s
t t t

z= ,

with Gaussian innovation distribution and

s k g s a e x e e
t t t t t

I
2

1 1

2

1 1

2

1 1 1

2
0= + + + <[]- - - - .

Mdl = gjr(1,1)

Mdl =

 GJR(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 Specify GJR Models Using gjr

6-33

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

The created model, Mdl, has NaNs for all model parameters. A NaN value signals that a
parameter needs to be estimated or otherwise specified by the user. All parameters must
be specified to forecast or simulate the model.

To estimate parameters, input the model (along with data) to estimate. This returns
a new fitted gjr model. The fitted model has parameter estimates for each input NaN
value.

Calling gjr without any input arguments returns a GJR(0,0) model specification with
default property values:

DefaultMdl = gjr

DefaultMdl =

 GJR(0,0) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 0

 Constant: NaN

 GARCH: {}

 ARCH: {}

 Leverage: {}

Specify Default GJR Model

This example shows how to use the shorthand gjr(P,Q) syntax to specify the default
GJR(P, Q) model, with a Gaussian innovation distribution and

By default, all parameters in the created model have unknown values.

Specify the default GJR(1,1) model:

Mdl = gjr(1,1)

6 Conditional Variance Models

6-34

Mdl =

 GJR(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

The output shows that the created model, Mdl, has NaN values for all model parameters:
the constant term, the GARCH coefficient, the ARCH coefficient, and the leverage
coefficient. You can modify the created model using dot notation, or input it (along with
data) to estimate.

Using Name-Value Pair Arguments

The most flexible way to specify GJR models is using name-value pair arguments. You
do not need, nor are you able, to specify a value for every model property. gjr assigns
default values to any model properties you do not (or cannot) specify.

The general GJR(P,Q) model is of the form

yt t= +m e ,

where e s
t t t

z= and

s k g s a e x e et i t i

i

P

j

j

Q

t j j

j

Q

t j t jI2 2

1 1

2

1

2
0= + + + <È

Î
˘
˚-

= =
-

=
- -Â Â Â .

The innovation distribution can be Gaussian or Student’s t. The default distribution is
Gaussian.

In order to estimate, forecast, or simulate a model, you must specify the parametric
form of the model (e.g., which lags correspond to nonzero coefficients, the innovation

 Specify GJR Models Using gjr

6-35

distribution) and any known parameter values. You can set any unknown parameters
equal to NaN, and then input the model to estimate (along with data) to get estimated
parameter values.

gjr (and estimate) returns a model corresponding to the model specification. You can
modify models to change or update the specification. Input models (with no NaN values)
to forecast or simulate for forecasting and simulation, respectively. Here are some
example specifications using name-value arguments.

Model Specification

• yt t= e

• e s
t t t

z=

• zt Gaussian
•

s k g s a e x e e
t t t t t

I
2

1 1

2

1 1

2

1 1 1

2
0= + + + <[]- - - -

gjr('GARCH',NaN,'ARCH',NaN,...

'Leverage',NaN) or gjr(1,1)

• yt t= +m e

• e s
t t t

z=

• zt Student’s t with unknown degrees of freedom
•

s k g s a e x e e
t t t t t

I
2

1 1

2

1 1

2

1 1 1

2
0= + + + <[]- - - -

gjr('Offset',NaN,'GARCH',NaN,...

'ARCH',NaN,'Leverage',NaN,...

'Distribution','t')

• yt t= e

• e s
t t t

z=

• zt Student’s t with eight degrees of freedom
•

s s e e e
t t t t t

I
2

1

2

1

2

1 1

2
0 1 0 6 0 3 0 05 0= + + + <[]- - - -. . . .

gjr('Constant',0.1,'GARCH',0.6,...

'ARCH',0.3,'Leverage',0.05,...

'Distribution',...

struct('Name','t','DoF',8))

Here is a full description of the name-value arguments you can use to specify GJR
models.

Note: You cannot assign values to the properties P and Q. egarch sets P equal to the
largest GARCH lag, and Q equal to the largest lag with a nonzero squared innovation
coefficient, including ARCH and leverage coefficients.

6 Conditional Variance Models

6-36

Name-Value Arguments for GJR Models

Name Corresponding
GJR Model Term(s)

When to Specify

Offset Mean offset, μ To include a nonzero mean offset. For example,
'Offset',0.2. If you plan to estimate the offset term,
specify 'Offset',NaN.
By default, Offset has value 0 (meaning, no offset).

Constant Constant in
the conditional
variance model, κ

To set equality constraints for κ. For example, if a model has
known constant 0.1, specify 'Constant',0.1.
By default, Constant has value NaN.

GARCH GARCH
coefficients,
g g1, ,…

P

To set equality constraints for the GARCH coefficients. For
example, to specify a GJR(1,1) model with g1 0 6= . , specify
'GARCH',0.6.
You only need to specify the nonzero elements of GARCH. If
the nonzero coefficients are at nonconsecutive lags, specify
the corresponding lags using GARCHLags.
Any coefficients you specify must satisfy all stationarity
constraints.

GARCHLags Lags
corresponding
to the nonzero
GARCH
coefficients

GARCHLags is not a model property.
Use this argument as a shortcut for specifying GARCH
when the nonzero GARCH coefficients correspond to
nonconsecutive lags. For example, to specify nonzero
GARCH coefficients at lags 1 and 3, e.g., nonzero g

1 and g3,

specify 'GARCHLags',[1,3].
Use GARCH and GARCHLags together to specify known
nonzero GARCH coefficients at nonconsecutive lags. For
example, if g

1
0 3= . and g3 0 1= . , specify 'GARCH',

{0.3,0.1},'GARCHLags',[1,3]

ARCH ARCH
coefficients,
a a1, ,… Q

To set equality constraints for the ARCH coefficients. For
example, to specify a GJR(1,1) model with a1 0 3= . , specify
'ARCH',0.3.
You only need to specify the nonzero elements of ARCH. If the
nonzero coefficients are at nonconsecutive lags, specify the
corresponding lags using ARCHLags.

 Specify GJR Models Using gjr

6-37

Name Corresponding
GJR Model Term(s)

When to Specify

ARCHLags Lags
corresponding to
nonzero ARCH
coefficients

ARCHLags is not a model property.
Use this argument as a shortcut for specifying ARCH when
the nonzero ARCH coefficients correspond to nonconsecutive
lags. For example, to specify nonzero ARCH coefficients at
lags 1 and 3, e.g., nonzero a1 and a3,

specify 'ARCHLags',[1,3].
Use ARCH and ARCHLags together to specify known
nonzero ARCH coefficients at nonconsecutive lags. For
example, if a1

0 4= . and a3 0 2= . , specify 'ARCH',
{0.4,0.2},'ARCHLags',[1,3]

Leverage Leverage
coefficients,
x x1, ,… Q

To set equality constraints for the leverage coefficients. For
example, to specify a GJR(1,1) model with x

1
0 1= . specify

'Leverage',0.1.
You only need to specify the nonzero elements of Leverage.
If the nonzero coefficients are at nonconsecutive lags, specify
the corresponding lags using LeverageLags.

LeverageLags Lags
corresponding to
nonzero leverage
coefficients

LeverageLags is not a model property.
Use this argument as a shortcut for specifying Leverage
when the nonzero leverage coefficients correspond to
nonconsecutive lags. For example, to specify nonzero
leverage coefficients at lags 1 and 3, e.g., nonzero x

1 and x3,

specify 'LeverageLags',[1,3].
Use Leverage and LeverageLags together to specify
known nonzero leverage coefficients at nonconsecutive
lags. For example, if x

1
0 1= . and x3 0 05= . , specify

'Leverage',{0.1,0.05},'LeverageLags',[1,3].
Distribution Distribution of

the innovation
process

Use this argument to specify a Student’s t innovation
distribution. By default, the innovation distribution is
Gaussian.
For example, to specify a t distribution with unknown
degrees of freedom, specify 'Distribution','t'.

6 Conditional Variance Models

6-38

Name Corresponding
GJR Model Term(s)

When to Specify

To specify a t innovation distribution with known
degrees of freedom, assign Distribution a data
structure with fields Name and DoF. For example, for
a t distribution with nine degrees of freedom, specify
'Distribution',struct('Name','t','DoF',9).

Specify GJR Model with Mean Offset

This example shows how to specify a GJR(P, Q) model with a mean offset. Use name-
value pair arguments to specify a model that differs from the default model.

Specify a GJR(1,1) model with a mean offset,

where and

Mdl = gjr('Offset',NaN,'GARCHLags',1,'ARCHLags',1,...

 'LeverageLags',1)

Mdl =

 GJR(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Offset: NaN

 Specify GJR Models Using gjr

6-39

The mean offset appears in the output as an additional parameter to be estimated or
otherwise specified.

Specify GJR Model with Nonconsecutive Lags

This example shows how to specify a GJR model with nonzero coefficients at
nonconsecutive lags.

Specify a GJR(3,1) model with nonzero GARCH terms at lags 1 and 3. Include a mean
offset.

Mdl = gjr('Offset',NaN,'GARCHLags',[1,3],'ARCHLags',1,...

 'LeverageLags',1)

Mdl =

 GJR(3,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 1

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Offset: NaN

The unknown nonzero GARCH coefficients correspond to lagged variances at lags 1 and
3. The output shows only the nonzero coefficients.

Display the value of GARCH:

Mdl.GARCH

ans =

 [NaN] [0] [NaN]

The GARCH cell array returns three elements. The first and third elements have value
NaN, indicating these coefficients are nonzero and need to be estimated or otherwise

6 Conditional Variance Models

6-40

specified. By default, gjr sets the interim coefficient at lag 2 equal to zero to maintain
consistency with MATLAB® cell array indexing.

Specify GJR Model with Known Parameter Values

This example shows how to specify a GJR model with known parameter values. You can
use such a fully specified model as an input to simulate or forecast.

Specify the GJR(1,1) model

with a Gaussian innovation distribution.

Mdl = gjr('Constant',0.1,'GARCH',0.6,'ARCH',0.2,...

 'Leverage',0.1)

Mdl =

 GJR(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 0.1

 GARCH: {0.6} at Lags [1]

 ARCH: {0.2} at Lags [1]

 Leverage: {0.1} at Lags [1]

Because all parameter values are specified, the created model has no NaN values. The
functions simulate and forecast don't accept input models with NaN values.

Specify GJR Model with t Innovation Distribution

This example shows how to specify a GJR model with a Student's t innovation
distribution.

Specify a GJR(1,1) model with a mean offset,

 Specify GJR Models Using gjr

6-41

where and

Assume follows a Student's t innovation distribution with 10 degrees of freedom.

tDist = struct('Name','t','DoF',10);

Mdl = gjr('Offset',NaN,'GARCHLags',1,'ARCHLags',1,...

 'LeverageLags',1,'Distribution',tDist)

Mdl =

 GJR(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 't', DoF = 10

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Offset: NaN

The value of Distribution is a struct array with field Name equal to 't' and field
DoF equal to 10. When you specify the degrees of freedom, they aren't estimated if you
input the model to estimate.

See Also
estimate | forecast | gjr | simulate | struct

Related Examples
• “Specify the Conditional Variance Model Innovation Distribution” on page 6-48
• “Modify Properties of Conditional Variance Models” on page 6-42

More About
• Using gjr Objects
• “GJR Model” on page 6-6

6 Conditional Variance Models

6-42

Modify Properties of Conditional Variance Models

In this section...

“Dot Notation” on page 6-42
“Nonmodifiable Properties” on page 6-45

Dot Notation

A model created by garch, egarch, or gjr has values assigned to all model properties.
To change any of these property values, you do not need to reconstruct the whole model.
You can modify property values of an existing model using dot notation. That is, type the
model name, then the property name, separated by '.' (a period).

For example, start with this model specification:

Mdl = garch(1,1)

Mdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

The default model has no mean offset, so the Offset property does not appear in the
model output. The property exists, however:

Offset = Mdl.Offset

Offset =

 0

Modify the model to add an unknown mean offset term:

 Modify Properties of Conditional Variance Models

6-43

Mdl.Offset = NaN

Mdl =

 GARCH(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Offset: NaN

Offset now appears in the model output, with the updated nonzero value.

Be aware that every model property has a data type. Any modifications you make to
a property value must be consistent with the data type of the property. For example,
GARCH and ARCH (and Leverage for egarch and gjr models) are all cell vectors. This
means you must index them using cell array syntax.

For example, start with the following model:

GJRMdl = gjr(1,1)

GJRMdl =

 GJR(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

To modify the property value of GARCH, assign GARCH a cell array. Here, assign known
GARCH coefficient values:

GJRMdl.GARCH = {0.6,0.2}

6 Conditional Variance Models

6-44

GJRMdl =

 GJR(2,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 2

 Q: 1

 Constant: NaN

 GARCH: {0.6 0.2} at Lags [1 2]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

The updated model now has two GARCH terms (at lags 1 and 2) with the specified
equality constraints.

Similarly, the data type of Distribution is a data structure. The default data structure
has only one field, Name, with value 'Gaussian'.

Distribution = GJRMdl.Distribution

Distribution =

 Name: 'Gaussian'

To modify the innovation distribution, assign Distribution a new name or data
structure. The data structure can have up to two fields, Name and DoF. The second field
corresponds to the degrees of freedom for a Student's t distribution, and is only required
if Name has the value 't'.

To specify a Student's t distribution with unknown degrees of freedom, enter:

GJRMdl.Distribution = 't'

GJRMdl =

 GJR(2,1) Conditional Variance Model:

 Distribution: Name = 't', DoF = NaN

 P: 2

 Q: 1

 Constant: NaN

 Modify Properties of Conditional Variance Models

6-45

 GARCH: {0.6 0.2} at Lags [1 2]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

The updated model has a Student's t distribution with NaN degrees of freedom. To specify
a t distribution with eight degrees of freedom, say:

GJRMdl.Distribution = struct('Name','t','DoF',8)

GJRMdl =

 GJR(2,1) Conditional Variance Model:

 Distribution: Name = 't', DoF = 8

 P: 2

 Q: 1

 Constant: NaN

 GARCH: {0.6 0.2} at Lags [1 2]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

The degrees of freedom property in the model is updated. Note that the DoF field of
Distribution is not directly assignable. For example, GJRMdl.Distribution.DoF =
8 is not a valid assignment. However, you can get the individual fields:

DistributionDoF = GJRMdl.Distribution.DoF

DistributionDoF =

 8

Nonmodifiable Properties

Not all model properties are modifiable. You cannot change these properties in an
existing model:

• P. This property updates automatically when the lag corresponding to the largest
nonzero GARCH term changes.

• Q. This property updates automatically when the lag corresponding to the largest
nonzero ARCH or leverage term changes.

6 Conditional Variance Models

6-46

Not all name-value pair arguments you can use for model creation are properties of the
created model. Specifically, you can specify the arguments GARCHLags and ARCHLags
(and LeverageLags for EGARCH and GJR models) during model creation. These
are not, however, properties of garch, egarch, or gjr model. This means you cannot
retrieve or modify them in an existing model.

The ARCH, GARCH, and leverage lags update automatically if you add any elements to
(or remove from) the coefficient cell arrays GARCH, ARCH, or Leverage.

For example, specify an EGARCH(1,1) model:

Mdl = egarch(1,1)

Mdl =

 EGARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

The model output shows nonzero GARCH, ARCH, and leverage coefficients at lag 1.

Add a new GARCH coefficient at lag 3:

Mdl.GARCH{3} = NaN

Mdl =

 EGARCH(3,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 1

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Modify Properties of Conditional Variance Models

6-47

The nonzero GARCH coefficients at lags 1 and 3 now display in the model output.
However, the cell array assigned to GARCH returns three elements:

garchCoefficients = Mdl.GARCH

garchCoefficients =

 [NaN] [0] [NaN]

GARCH has a zero coefficient at lag 2 to maintain consistency with traditional MATLAB®
cell array indexing.

See Also
egarch | garch | gjr

Related Examples
• “Specify GARCH Models Using garch” on page 6-8
• “Specify EGARCH Models Using egarch” on page 6-19
• “Specify GJR Models Using gjr” on page 6-31
• “Specify the Conditional Variance Model Innovation Distribution” on page 6-48

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “GARCH Model” on page 6-3
• “EGARCH Model” on page 6-4
• “GJR Model” on page 6-6

6 Conditional Variance Models

6-48

Specify the Conditional Variance Model Innovation Distribution

In Econometrics Toolbox, the general form of the innovation process is e s
t t t

z= . A
conditional variance model specifies the parametric form of the conditional variance
process. The innovation distribution corresponds to the distribution of the independent
and identically distributed (iid) process zt.

For the distribution of zt, you can choose a standardized Gaussian or standardized
Student’s t distribution with ν > 2 degrees of freedom. Note that if zt follows a
standardized t distribution, then

z T
t

=
-n

n
n

2
,

where Tν follows a Student’s t distribution with ν > 2 degrees of freedom.

The t distribution is useful for modeling time series with more extreme values than
expected under a Gaussian distribution. Series with larger values than expected under
normality are said to have excess kurtosis.

Tip It is good practice to assess the distributional properties of model residuals to
determine if a Gaussian innovation distribution (the default distribution) is appropriate
for your data.

The property Distribution in a model stores the distribution name (and degrees of
freedom for the t distribution). The data type of Distribution is a struct array. For
a Gaussian innovation distribution, the data structure has only one field: Name. For a
Student’s t distribution, the data structure must have two fields:

• Name, with value 't'
• DoF, with a scalar value larger than two (NaN is the default value)

If the innovation distribution is Gaussian, you do not need to assign a value to
Distribution. garch, egarch, and gjr create the required data structure.

To illustrate, consider specifying a GARCH(1,1) model:

 Specify the Conditional Variance Model Innovation Distribution

6-49

Mdl = garch(1,1)

Mdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

The model output shows that Distribution is a struct array with one field, Name,
with the value 'Gaussian'.

When specifying a Student’s t innovation distribution, you can specify the distribution
with either unknown or known degrees of freedom. If the degrees of freedom are
unknown, you can simply assign Distribution the value 't'. By default, the property
Distribution has a data structure with field Name equal to 't', and field DoF equal to
NaN. When you input the model to estimate, the degrees of freedom are estimated along
with any other unknown model parameters.

For example, specify a GJR(2,1) model with an iid Student’s t innovation distribution,
with unknown degrees of freedom:

GJRMdl = gjr('GARCHLags',1:2,'ARCHLags',1,'LeverageLags',1,...

 'Distribution','t')

GJRMdl =

 GJR(2,1) Conditional Variance Model:

 Distribution: Name = 't', DoF = NaN

 P: 2

 Q: 1

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 2]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

The output shows that Distribution is a data structure with two fields. Field Name has
the value 't', and field DoF has the value NaN.

6 Conditional Variance Models

6-50

If the degrees of freedom are known, and you want to set an equality constraint, assign
a struct array to Distribution with fields Name and DoF. In this case, if the model is
input to estimate, the degrees of freedom won’t be estimated (the equality constraint is
upheld).

Specify a GARCH(1,1) model with an iid Student’s t distribution with eight degrees of
freedom:

GARCHMdl = garch('GARCHLags',1,'ARCHLags',1,...

 'Distribution',struct('Name','t','DoF',8))

GARCHMdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 't', DoF = 8

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

The output shows the specified innovation distribution.

After a model exists in the workspace, you can modify its Distribution property using
dot notation. You cannot modify the fields of the Distribution data structure directly.
For example, GARCHMdl.Distribution.DoF = 8 is not a valid assignment. However,
you can get the individual fields.

To change the distribution of the innovation process in an existing model to a Student’s t
distribution with unknown degrees of freedom, type:

Mdl.Distribution = 't';

To change the distribution to a t distribution with known degrees of freedom, use a data
structure:

Mdl.Distribution = struct('Name','t','DoF',8);

You can get the individual Distribution fields:

tDoF = Mdl.Distribution.DoF

 Specify the Conditional Variance Model Innovation Distribution

6-51

tDoF =

 8

To change the innovation distribution from a Student’s t back to a Gaussian distribution,
type:

Mdl.Distribution = 'Gaussian'

Mdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

The Name field is updated to 'Gaussian', and there is no longer a DoF field.

See Also
egarch | garch | gjr

Related Examples
• “Specify GARCH Models Using garch” on page 6-8
• “Specify EGARCH Models Using egarch” on page 6-19
• “Specify GJR Models Using gjr” on page 6-31
• “Modify Properties of Conditional Variance Models” on page 6-42

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “GARCH Model” on page 6-3

6 Conditional Variance Models

6-52

• “EGARCH Model” on page 6-4
• “GJR Model” on page 6-6

 Specify Conditional Variance Model For Exchange Rates

6-53

Specify Conditional Variance Model For Exchange Rates

This example shows how to specify a conditional variance model for daily Deutschmark/
British pound foreign exchange rates observed from January 1984 to December 1991.

Load the Data.

Load the exchange rate data included with the toolbox.

load Data_MarkPound

y = Data;

T = length(y);

figure

plot(y)

h = gca;

h.XTick = [1 659 1318 1975];

h.XTickLabel = {'Jan 1984','Jan 1986','Jan 1988',...

 'Jan 1992'};

ylabel 'Exchange Rate';

title 'Deutschmark/British Pound Foreign Exchange Rate';

6 Conditional Variance Models

6-54

The exchange rate looks nonstationary (it does not appear to fluctuate around a fixed
level).

Calculate the Returns.

Convert the series to returns. This results in the loss of the first observation.

r = price2ret(y);

figure

plot(2:T,r)

h2 = gca;

h2.XTick = [1 659 1318 1975];

h2.XTickLabel = {'Jan 1984','Jan 1986','Jan 1988',...

 Specify Conditional Variance Model For Exchange Rates

6-55

 'Jan 1992'};

ylabel 'Returns';

title 'Deutschmark/British Pound Daily Returns';

The returns series fluctuates around a common level, but exhibits volatility clustering.
Large changes in the returns tend to cluster together, and small changes tend to cluster
together. That is, the series exhibits conditional heteroscedasticity.

The returns are of relatively high frequency. Therefore, the daily changes can be small.
For numerical stability, it is good practice to scale such data. In this case, scale the
returns to percentage returns.

r = 100*r;

6 Conditional Variance Models

6-56

Check for Autocorrelation.

Check the returns series for autocorrelation. Plot the sample ACF and PACF, and
conduct a Ljung-Box Q-test.

figure

subplot(2,1,1)

autocorr(r)

subplot(2,1,2)

parcorr(r)

[h,p] = lbqtest(r,[5 10 15])

h =

 0 0 0

p =

 0.3982 0.7278 0.2109

 Specify Conditional Variance Model For Exchange Rates

6-57

The sample ACF and PACF show virtually no significant autocorrelation. The Ljung-
Box Q-test null hypothesis that all autocorrelations up to the tested lags are zero is not
rejected for tests at lags 5, 10, and 15. This suggests that a conditional mean model is not
needed for this returns series.

Check for Conditional Heteroscedasticity.

Check the return series for conditional heteroscedasticity. Plot the sample ACF and
PACF of the squared returns series (after centering). Conduct Engle's ARCH test with a
two-lag ARCH model alternative.

figure

subplot(2,1,1)

autocorr((r-mean(r)).^2)

6 Conditional Variance Models

6-58

subplot(2,1,2)

parcorr((r-mean(r)).^2)

[h,p] = archtest(r-mean(r),'lags',2)

h =

 1

p =

 0

 Specify Conditional Variance Model For Exchange Rates

6-59

The sample ACF and PACF of the squared returns show significant autocorrelation. This
suggests a GARCH model with lagged variances and lagged squared innovations might
be appropriate for modeling this series. Engle's ARCH test rejects the null hypothesis
(h = 1) of no ARCH effects in favor of the alternative ARCH model with two lagged
squared innovations. An ARCH model with two lagged innovations is locally equivalent
to a GARCH(1,1) model.

Specify a GARCH(1,1) Model.

Based on the autocorrelation and conditional heteroscedasticity specification testing,
specify the GARCH(1,1) model with a mean offset:

6 Conditional Variance Models

6-60

with and

Assume a Gaussian innovation distribution.

Mdl = garch('Offset',NaN,'GARCHLags',1,'ARCHLags',1)

Mdl =

 GARCH(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Offset: NaN

The created model, Mdl, has NaN values for all unknown parameters in the specified
GARCH(1,1) model.

You can pass the GARCH model Mdl and r into estimate to estimate the parameters.

See Also
archtest | autocorr | garch | lbqtest | parcorr

Related Examples
• “Likelihood Ratio Test for Conditional Variance Models” on page 6-83
• “Simulate Conditional Variance Model” on page 6-111
• “Forecast a Conditional Variance Model” on page 6-126

More About
• Using garch Objects
• “GARCH Model” on page 6-3
• “Autocorrelation and Partial Autocorrelation” on page 3-13

 Specify Conditional Variance Model For Exchange Rates

6-61

• “Ljung-Box Q-Test” on page 3-16
• “Engle’s ARCH Test” on page 3-25

6 Conditional Variance Models

6-62

Maximum Likelihood Estimation for Conditional Variance Models

In this section...

“Innovation Distribution” on page 6-62
“Loglikelihood Functions” on page 6-62

Innovation Distribution

For conditional variance models, the innovation process is e s
t t t

z= , where zt follows a
standardized Gaussian or Student’s t distribution with n > 2 degrees of freedom. Specify
your distribution choice in the model property Distribution.

The innovation variance, s t

2
, can follow a GARCH, EGARCH, or GJR conditional

variance process.

If the model includes a mean offset term, then

e mt ty= - .

The estimate function for garch, egarch, and gjr models estimates parameters using
maximum likelihood estimation. estimate returns fitted values for any parameters in
the input model equal to NaN. estimate honors any equality constraints in the input
model, and does not return estimates for parameters with equality constraints.

Loglikelihood Functions

Given the history of a process, innovations are conditionally independent. Let Ht denote
the history of a process available at time t, t = 1,...,N. The likelihood function for the
innovation series is given by

f H f HN N
t

N

t t(, , , |) (|),e e e e1 2 1
1

1… -

=

-= ’

where f is a standardized Gaussian or t density function.

 Maximum Likelihood Estimation for Conditional Variance Models

6-63

The exact form of the loglikelihood objective function depends on the parametric form of
the innovation distribution.

• If zt has a standard Gaussian distribution, then the loglikelihood function is

LLF
N

t

t

N
t

tt

N

= - - -

= =

Â Â
2

2
1

2

1

2

2

1

2

2
1

log() log .p s
e

s

• If zt has a standardized Student’s t distribution with n > 2 degrees of freedom, then
the loglikelihood function is

LLF N
t

t

=

+Ê
Ë
Á

ˆ
¯
˜

- Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-
=

log

()

log

G

G

n

p n n
s

1

2

2
2

1

2

2

1

NN
t

tt

N

Â Â-
+

+
-

È

Î
Í
Í

˘

˚
˙
˙=

n e

s n

1

2
1

2

2

2
1

log
()

.

estimate performs covariance matrix estimation for maximum likelihood estimates
using the outer product of gradients (OPG) method.

See Also
estimate

Related Examples
• “Likelihood Ratio Test for Conditional Variance Models” on page 6-83
• “Compare Conditional Variance Models Using Information Criteria” on page

6-87

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Conditional Variance Model Estimation with Equality Constraints” on page

6-65
• “Presample Data for Conditional Variance Model Estimation” on page 6-67

6 Conditional Variance Models

6-64

• “Initial Values for Conditional Variance Model Estimation” on page 6-69
• “Optimization Settings for Conditional Variance Model Estimation” on page

6-71

 Conditional Variance Model Estimation with Equality Constraints

6-65

Conditional Variance Model Estimation with Equality Constraints

For conditional variance model estimation, the required inputs for estimate are a model
and a vector of univariate time series data. The model specifies the parametric form
of the conditional variance model being estimated. estimate returns fitted values for
any parameters in the input model with NaN values. If you specify non-NaN values for
any parameters, estimate views these values as equality constraints and honors them
during estimation.

For example, suppose you are estimating a model with a mean offset known to be 0.3.
To indicate this, specify 'Offset',0.3 in the model you input to estimate. estimate
views this non-NaN value as an equality constraint, and does not estimate the mean
offset. estimate also honors all specified equality constraints during estimation of the
parameters without equality constraints.

estimate optionally returns the variance-covariance matrix for estimated parameters.
The parameters in the variance-covariance matrix are ordered as follows:

• Constant
• Nonzero GARCH coefficients at positive lags
• Nonzero ARCH coefficients at positive lags
• Nonzero leverage coefficients at positive lags (EGARCH and GJR models only)
• Degrees of freedom (t innovation distribution only)
• Offset (models with nonzero offset only)

If any parameter known to the optimizer has an equality constraint, the corresponding
row and column of the variance-covariance matrix has all zeros.

In addition to user-specified equality constraints, note that estimate sets any GARCH,
ARCH, or leverage coefficient with an estimate less than 1e-12 in magnitude equal to
zero.

See Also
estimate

More About
• Using garch Objects

6 Conditional Variance Models

6-66

• Using egarch Objects
• Using gjr Objects
• “Maximum Likelihood Estimation for Conditional Variance Models” on page 6-62
• “Presample Data for Conditional Variance Model Estimation” on page 6-67
• “Initial Values for Conditional Variance Model Estimation” on page 6-69
• “Optimization Settings for Conditional Variance Model Estimation” on page

6-71

 Presample Data for Conditional Variance Model Estimation

6-67

Presample Data for Conditional Variance Model Estimation

Presample data is data from time points before the beginning of the observation period.
In Econometrics Toolbox, you can specify your own presample data or use automatically
generated presample data.

In a conditional variance model, the current value of the innovation conditional variance,
s

t

2
, depends on historical information. Historical information includes past conditional

variances, s s s1
2

2
2

1
2

, , , ,…

t-
 and past innovations, e e e1 2 1, , , .…

t-

The number of past variances and innovations that a current conditional variance
depends on is determined by the degree of the conditional variance model. For example,
in a GARCH(1,1) model, each conditional variance depends on one lagged variance and
one lagged squared innovation,

s k g s a e
t t t

2

1 1

2

1 1

2
= + +- - .

In general, difficulties arise at the beginning of the series because the likelihood
contribution of the first few innovations is conditional on historical information that is
not observed. In the GARCH(1,1) example, s1

2 depends on s 0

2 and e
0
. These values are

not observed.

For the GARCH(P,Q) and GJR(P,Q) models, P presample variances and Q presample
innovations are needed to initialize the variance equation. For an EGARCH(P,Q) model,
max(P,Q) presample variances and Q presample innovations are needed to initialize the
variance equation.

If you want to specify your own presample variances and innovations to estimate, use
the name-value arguments V0 and E0, respectively.

By default, estimate generates automatic presample data as follows. For GARCH and
GJR models:

• Presample innovations are set to an estimate of the unconditional standard deviation
of the innovation series. If there is a mean offset term, presample innovations are
specified as the sample standard deviation of the offset-adjusted series. If there is
no mean offset, presample innovations are specified as the square root of the sample
mean of the squared response series.

6 Conditional Variance Models

6-68

• Presample variances are set to an estimate of the unconditional variance of the
innovation series. If there is a mean offset term, the presample innovations are
specified as the sample mean of the squared offset-adjusted series. If there is no mean
offset, presample variances are specified as the sample mean of the squared response
series.

For EGARCH models:

• Presample variances are computed as for GARCH and GJR models.
• Presample innovations are set to zero.

See Also
estimate

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Maximum Likelihood Estimation for Conditional Variance Models” on page 6-62
• “Conditional Variance Model Estimation with Equality Constraints” on page 6-65
• “Initial Values for Conditional Variance Model Estimation” on page 6-69
• “Optimization Settings for Conditional Variance Model Estimation” on page

6-71

 Initial Values for Conditional Variance Model Estimation

6-69

Initial Values for Conditional Variance Model Estimation
The estimate function for conditional variance models uses fmincon from Optimization
Toolbox to perform maximum likelihood estimation. This optimization function requires
initial (or, starting) values to begin the optimization process.

If you want to specify your own initial values, use name-value arguments. For example,
specify initial values for GARCH coefficients using the name-value argument GARCH0.

Alternatively, you can let estimate choose default initial values. Default initial values
are generated using standard time series techniques. If you partially specify initial
values (that is, specify initial values for some parameters), estimate honors the initial
values you do specify, and generates default initial values for the remaining parameters.

When generating initial values, estimate enforces any stationarity and positivity
constraints for the conditional variance model being estimated. The techniques
estimate uses to generate default initial values are as follows:

• For the GARCH and GJR models, the model is transformed to an equivalent ARMA
model for the squared, offset-adjusted response series. Note that the GJR model is
treated like a GARCH model, with all leverage coefficients equal to zero. The initial
ARMA values are solved for using the modified Yule-Walker equations as described
in Box, Jenkins, and Reinsel [1]. The initial GARCH and ARCH starting values are
calculated by transforming the ARMA starting values back to the original GARCH (or
GJR) representation.

• For the EGARCH model, the initial GARCH coefficient values are found by viewing
the model as an equivalent ARMA model for the squared, offset-adjusted log response
series. The initial GARCH values are solved for using Yule-Walker equations as
described in Box, Jenkins, and Reinsel [1]. For the other coefficients, the first nonzero
ARCH coefficient is set to a small positive value, and the first nonzero leverage
coefficient is set to a small negative value (consistent with the expected signs of these
coefficients).

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
estimate | fmincon

6 Conditional Variance Models

6-70

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Maximum Likelihood Estimation for Conditional Variance Models” on page 6-62
• “Conditional Variance Model Estimation with Equality Constraints” on page 6-65
• “Presample Data for Conditional Variance Model Estimation” on page 6-67
• “Optimization Settings for Conditional Variance Model Estimation” on page

6-71

 Optimization Settings for Conditional Variance Model Estimation

6-71

Optimization Settings for Conditional Variance Model Estimation

In this section...

“Optimization Options” on page 6-71
“Conditional Variance Model Constraints” on page 6-75

Optimization Options

estimate maximizes the loglikelihood function using fmincon from Optimization
Toolbox. fmincon has many optimization options, such as choice of optimization
algorithm and constraint violation tolerance. Choose optimization options using
optimoptions.

estimate uses the fmincon optimization options by default, with these exceptions. For
details, see fmincon and optimoptions in Optimization Toolbox.

optimoptions Properties Description estimate Settings

Algorithm Algorithm for minimizing
the negative loglikelihood
function

'sqp'

Display Level of display for
optimization progress

'off'

Diagnostics Display for diagnostic
information about the
function to be minimized

'off'

TolCon Termination tolerance on
constraint violations

1e-7

If you want to use optimization options that differ from the default, then set your own
using optimoptions.

For example, suppose that you want estimate to display optimization diagnostics.
The best practice is to set the name-value pair argument 'Display','diagnostics'
in estimate. Alternatively, you can direct the optimizer to display optimization
diagnostics.

Define a GARCH(1,1) model (Mdl) and simulate data from it.

6 Conditional Variance Models

6-72

Mdl = garch('ARCH',0.2,'GARCH',0.5,'Constant',0.5);

rng(1);

y = simulate(Mdl,500);

Mdl does not have a regression component. By default, fmincon does not display the
optimization diagnostics. Use optimoptions to set it to display the optimization
diagnostics, and set the other fmincon properties to the default settings of estimate
listed in the previous table.

options = optimoptions(@fmincon,'Diagnostics','on','Algorithm',...

 'sqp','Display','off','TolCon',1e-7)

% @fmincon is the function handle for fmincon

options =

 fmincon options:

 Options used by current Algorithm ('sqp'):

 (Other available algorithms: 'active-set', 'interior-point', 'trust-region-reflective')

 Set by user:

 Algorithm: 'sqp'

 Diagnostics: 'on'

 Display: 'off'

 TolCon: 1.0000e-07

 Default:

 DerivativeCheck: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 GradConstr: 'off'

 GradObj: 'off'

 MaxFunEvals: '100*numberOfVariables'

 MaxIter: 400

 ObjectiveLimit: -1.0000e+20

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolFun: 1.0000e-06

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

 Optimization Settings for Conditional Variance Model Estimation

6-73

 UseParallel: 0

 Options not used by current Algorithm ('sqp')

 Default:

 AlwaysHonorConstraints: 'bounds'

 HessFcn: []

 HessMult: []

 HessPattern: 'sparse(ones(numberOfVariables))'

 Hessian: 'not applicable'

 InitBarrierParam: 0.1000

 InitTrustRegionRadius: 'sqrt(numberOfVariables)'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 MaxProjCGIter: '2*(numberOfVariables-numberOfEqualities)'

 MaxSQPIter: '10*max(numberOfVariables,numberOfInequalities+…'

 PrecondBandWidth: 0

 RelLineSrchBnd: []

 RelLineSrchBndDuration: 1

 SubproblemAlgorithm: 'ldl-factorization'

 TolConSQP: 1.0000e-06

 TolPCG: 0.1000

 TolProjCG: 0.0100

 TolProjCGAbs: 1.0000e-10

The options that you set appear under the Set by user: heading. The properties under
the Default: heading are other options that you can set.

Fit Mdl to y using the new optimization options.

ToEstMdl = garch(1,1);

EstMdl = estimate(ToEstMdl,y,'Options',options);

__

 Diagnostic Information

Number of variables: 3

Functions

Objective: @(X)Mdl.nLogLikeGaussian(X,V,E,Lags,1,maxPQ,T,nan,trapValue)

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

6 Conditional Variance Models

6-74

Constraints

Nonlinear constraints: do not exist

Number of linear inequality constraints: 1

Number of linear equality constraints: 0

Number of lower bound constraints: 3

Number of upper bound constraints: 3

Algorithm selected

 sqp

__

 End diagnostic information

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.431451 0.465646 0.926565

 GARCH{1} 0.314347 0.249922 1.25778

 ARCH{1} 0.571428 0.326773 1.7487

Note:

• estimate numerically maximizes the loglikelihood function potentially using
equality, inequality, and lower and upper bound constraints. If you set Algorithm to

anything other than sqp, then check that the algorithm supports similar constraints,
such as interior-point. For example, fmincon sets Algorithm to trust-
region-reflective by default. trust-region-reflective does not support
inequality constraints. Therefore, if you do not change the default Algorithm
property value of fmincon, then estimate displays a warning. During estimation,
fmincon temporarily sets Algorithm to active-set by default to satisfy the
constraints.

• estimate sets a constraint level of TolCon so constraints are not violated. Be aware
that an estimate with an active constraint has unreliable standard errors since
variance-covariance estimation assumes the likelihood function is locally quadratic
around the maximum likelihood estimate.

 Optimization Settings for Conditional Variance Model Estimation

6-75

Conditional Variance Model Constraints

The software enforces these constraints while estimating a GARCH model:

• Covariance-stationarity,

g ai jj

Q

i

P
+ <

== ÂÂ 11
1

• Positivity of GARCH and ARCH coefficients
• Model constant strictly greater than zero
• For a t innovation distribution, degrees of freedom strictly greater than two

For GJR models, the constraints enforced during estimation are:

• Covariance-stationarity constraint,

g a xi jj

Q
jj

Q

i

P
+ + <

= == Â ÂÂ
1 11

1

2
1

• Positivity constraints on the GARCH and ARCH coefficients
• Positivity on the sum of ARCH and leverage coefficients,

a xj j j Q+ ≥ =0 1, , ,…

• Model constant strictly greater than zero
• For a t innovation distribution, degrees of freedom strictly greater than two

For EGARCH models, the constraints enforced during estimation are:

• Stability of the GARCH coefficient polynomial
• For a t innovation distribution, degrees of freedom strictly greater than two

See Also
estimate | fmincon | optimoptions

More About
• Using garch Objects

6 Conditional Variance Models

6-76

• Using egarch Objects
• Using gjr Objects
• “Maximum Likelihood Estimation for Conditional Variance Models” on page 6-62
• “Conditional Variance Model Estimation with Equality Constraints” on page 6-65
• “Presample Data for Conditional Variance Model Estimation” on page 6-67
• “Initial Values for Conditional Variance Model Estimation” on page 6-69

 Infer Conditional Variances and Residuals

6-77

Infer Conditional Variances and Residuals

This example shows how to infer conditional variances from a fitted conditional variance
model. Standardized residuals are computed using the inferred conditional variances to
check the model fit.

Step 1. Load the data.

Load the Danish nominal stock return data included with the toolbox.

load Data_Danish

y = DataTable.RN;

T = length(y);

figure

plot(y)

xlim([0,T])

title('Danish Nominal Stock Returns')

6 Conditional Variance Models

6-78

The return series appears to have a nonzero mean offset and volatility clustering.

Step 2. Fit an EGARCH(1,1) model.

Specify, and then fit an EGARCH(1,1) model to the nominal stock returns series. Include
a mean offset, and assume a Gaussian innovation distribution.

Mdl = egarch('Offset',NaN','GARCHLags',1,...

 'ARCHLags',1,'LeverageLags',1);

EstMdl = estimate(Mdl,y);

 EGARCH(1,1) Conditional Variance Model:

 Infer Conditional Variances and Residuals

6-79

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.62723 0.744007 -0.843043

 GARCH{1} 0.774189 0.23628 3.27658

 ARCH{1} 0.386361 0.373606 1.03414

 Leverage{1} -0.00249918 0.19222 -0.0130016

 Offset 0.10325 0.0377269 2.73676

Step 3. Infer the conditional variances.

Infer the conditional variances using the fitted model.

v = infer(EstMdl,y);

figure

plot(v)

xlim([0,T])

title('Inferred Conditional Variances')

6 Conditional Variance Models

6-80

The inferred conditional variances show increased volatility at the end of the return
series.

Step 4. Compute the standardized residuals.

Compute the standardized residuals for the model fit. Subtract the estimated mean
offset, and divide by the square root of the conditional variance process.

res = (y-EstMdl.Offset)./sqrt(v);

figure

subplot(2,2,1)

plot(res)

xlim([0,T])

 Infer Conditional Variances and Residuals

6-81

title('Standardized Residuals')

subplot(2,2,2)

histogram(res,10)

subplot(2,2,3)

autocorr(res)

subplot(2,2,4)

parcorr(res)

6 Conditional Variance Models

6-82

The standardized residuals exhibit no residual autocorrelation. There are a few residuals
larger than expected for a Gaussian distribution, but the normality assumption is not
unreasonable.

See Also
autocorr | egarch | estimate | infer | parcorr

Related Examples
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53
• “Likelihood Ratio Test for Conditional Variance Models” on page 6-83

More About
• Using egarch Objects
• “Goodness of Fit” on page 3-88
• “Residual Diagnostics” on page 3-90

 Likelihood Ratio Test for Conditional Variance Models

6-83

Likelihood Ratio Test for Conditional Variance Models

This example shows how to estimate a conditional variance model using estimate. Fit
two competing models to the data, and then compare their fit using a likelihood ratio
test.

Step 1. Load the data and specify a GARCH model.

Load the Deutschmark/British pound foreign exchange rate data included with the
toolbox, and convert it to returns. Specify a GARCH(1,1) model with a mean offset to
estimate.

load Data_MarkPound

r = price2ret(Data);

T = length(r);

Mdl = garch('Offset',NaN,'GARCHLags',1,'ARCHLags',1);

Step 2. Estimate the GARCH model parameters.

Fit the specified GARCH(1,1) model to the returns series using estimate. Return the
value of the loglikelihood objective function.

[EstMdl,~,logL] = estimate(Mdl,r);

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 1.07568e-06 3.57247e-07 3.01104

 GARCH{1} 0.806079 0.0132728 60.7317

 ARCH{1} 0.153097 0.0115308 13.2772

 Offset -6.134e-05 8.28711e-05 -0.740185

The estimation output shows the four estimated parameters and corresponding
standard errors. The t statistic for the mean offset is not greater than two in magnitude,
suggesting this parameter is not statistically significant.

Step 3. Fit a GARCH model without a mean offset.

Specify a second model without a mean offset, and fit it to the returns series.

6 Conditional Variance Models

6-84

Mdl2 = garch(1,1);

[EstMdl2,~,logL2] = estimate(Mdl2,r);

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 1.05346e-06 3.50483e-07 3.00575

 GARCH{1} 0.806576 0.0129095 62.4794

 ARCH{1} 0.154357 0.0115746 13.3358

All the t statistics for the new fitted model are greater than two in magnitude.

Step 4. Conduct a likelihood ratio test.

Compare the fitted models EstMdl and EstMdl2 using the likelihood ratio test. The
number of restrictions for the test is one (only the mean offset was excluded in the second
model).

[h,p] = lratiotest(logL,logL2,1)

h =

 0

p =

 0.4534

The null hypothesis of the restricted model is not rejected in favor of the larger model (h
= 0). The model without a mean offset is the more parsimonious choice.

Step 5. Infer the conditional variances and standardized innovations.

Infer and plot the conditional variances and standardized innovations for the fitted
model without a mean offset (EstMdl2).

v = infer(EstMdl2,r);

 Likelihood Ratio Test for Conditional Variance Models

6-85

inn = r./sqrt(v);

figure

subplot(2,1,1)

plot(v)

xlim([0,T])

title('Conditional Variances')

subplot(2,1,2)

plot(inn)

xlim([0,T])

title('Standardized Innovations')

6 Conditional Variance Models

6-86

The inferred conditional variances show the periods of high volatility.

See Also
estimate | garch | infer | lratiotest

Related Examples
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53
• “Simulate Conditional Variance Model” on page 6-111
• “Forecast a Conditional Variance Model” on page 6-126

More About
• Using garch Objects
• “Maximum Likelihood Estimation for Conditional Variance Models” on page 6-62
• “Model Comparison Tests” on page 3-65

 Compare Conditional Variance Models Using Information Criteria

6-87

Compare Conditional Variance Models Using Information Criteria

This example shows how to specify and fit a GARCH, EGARCH, and GJR model to
foreign exchange rate returns. Compare the fits using AIC and BIC.

Step 1. Load the data.

Load the foreign exchange rate data included with the toolbox. Convert the Swiss franc
exchange rate to returns.

load Data_FXRates

y = DataTable.CHF;

r = price2ret(y);

T = length(r);

logL = zeros(1,3); % Preallocate

numParams = logL; % Preallocate

figure

plot(r)

xlim([0,T])

title('Swiss Franc Exchange Rate Returns')

6 Conditional Variance Models

6-88

The returns series appears to exhibit some volatility clustering.

Step 2. Fit a GARCH(1,1) model.

Specify, and then fit a GARCH(1,1) model to the returns series. Return the value of the
loglikelihood objective function.

Mdl1 = garch(1,1);

[EstMdl1,EstParamCov1,logL(1)] = estimate(Mdl1,r);

numParams(1) = sum(any(EstParamCov1)); % Number of fitted parameters

 GARCH(1,1) Conditional Variance Model:

 --

 Compare Conditional Variance Models Using Information Criteria

6-89

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 1.62565e-06 4.3693e-07 3.72061

 GARCH{1} 0.913868 0.00687116 133.001

 ARCH{1} 0.0584481 0.00499475 11.7019

Step 3. Fit an EGARCH(1,1) model.

Specify, and then fit an EGARCH(1,1) model to the returns series. Return the value of
the loglikelihood objective function.

Mdl2 = egarch(1,1);

[EstMdl2,EstParamCov2,logL(2)] = estimate(Mdl2,r);

numParams(2) = sum(any(EstParamCov2));

 EGARCH(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.292496 0.0459408 -6.36681

 GARCH{1} 0.969758 0.00467846 207.281

 ARCH{1} 0.122915 0.0120521 10.1986

 Leverage{1} -0.0132285 0.00494973 -2.67256

Step 4. Fit a GJR(1,1) model.

Specify, and then fit a GJR(1,1) model to the returns series. Return the value of the
loglikelihood objective function.

Mdl3 = gjr(1,1);

[EstMdl3,EstParamCov3,logL(3)] = estimate(Mdl3,r);

numParams(3) = sum(any(EstParamCov3));

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

6 Conditional Variance Models

6-90

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 1.70866e-06 4.50865e-07 3.78974

 GARCH{1} 0.911387 0.00722421 126.157

 ARCH{1} 0.0589006 0.00686708 8.57724

 Leverage{1} 0.00131757 0.00728035 0.180976

The leverage term in the GJR model is not statistically significant.

Step 5. Compare the model fits using AIC and BIC.

Calculate the AIC and BIC values for the GARCH, EGARCH, and GJR model fits. The
GARCH model has three parameters; the EGARCH and GJR models each have four
parameters.

[aic,bic] = aicbic(logL,numParams,T)

aic =

 1.0e+04 *

 -3.3329 -3.3321 -3.3327

bic =

 1.0e+04 *

 -3.3309 -3.3295 -3.3301

The GARCH(1,1) and EGARCH(1,1) models are not nested, so you cannot compare them
by conducting a likelihood ratio test. The GARCH(1,1) is nested in the GJR(1,1) model,
however, so you could use a likelihood ratio test to compare these models.

Using AIC and BIC, the GARCH(1,1) model has slightly smaller (more negative) AIC
and BIC values. Thus, the GARCH(1,1) model is the preferred model according to these
criteria.

See Also
aicbic | estimate | garch

 Compare Conditional Variance Models Using Information Criteria

6-91

Related Examples
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53
• “Likelihood Ratio Test for Conditional Variance Models” on page 6-83

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Maximum Likelihood Estimation for Conditional Variance Models” on page 6-62
• “Information Criteria” on page 3-63

6 Conditional Variance Models

6-92

Monte Carlo Simulation of Conditional Variance Models

In this section...

“What Is Monte Carlo Simulation?” on page 6-92
“Generate Monte Carlo Sample Paths” on page 6-92
“Monte Carlo Error” on page 6-93

What Is Monte Carlo Simulation?

Monte Carlo simulation is the process of generating independent, random draws from
a specified probabilistic model. When simulating time series models, one draw (or
realization) is an entire sample path of specified length N, y1, y2,...,yN. When you generate
a large number of draws, say M, you generate M sample paths, each of length N.

Note: Some extensions of Monte Carlo simulation rely on generating dependent
random draws, such as Markov Chain Monte Carlo (MCMC). The simulate function in
Econometrics Toolbox generates independent realizations.

Some applications of Monte Carlo simulation are:

• Demonstrating theoretical results
• Forecasting future events
• Estimating the probability of future events

Generate Monte Carlo Sample Paths

Conditional variance models specify the dynamic evolution of the variance of a process
over time. Perform Monte Carlo simulation of conditional variance models by:

1 Specifying any required presample data (or use default presample data).
2 Generating the next conditional variance recursively using the specified conditional

variance model.
3 Simulating the next innovation from the innovation distribution (Gaussian or

Student’s t) using the current conditional variance.

 Monte Carlo Simulation of Conditional Variance Models

6-93

For example, consider a GARCH(1,1) process without a mean offset, e s
t t t

z= , where zt

either follows a standardized Gaussian or Student’s t distribution and

s k g s a e
t t t

2

1 1

2

1 1

2
= + +- - .

Suppose that the innovation distribution is Gaussian.

Given presample variance s 0

2 and presample innovation e0 , realizations of the
conditional variance and innovation process are recursively generated:

•
s k g s a e

1

2

1 0

2

1 0

2
= + +

• Sample e
1 from a Gaussian distribution with variance s1

2

•
s k g s a e

2

2

1 1

2

1 1

2
= + +

• Sample e
2 from a Gaussian distribution with variance s 2

2

M

•
s k g s a e

N N N

2

1 1

2

1 1

2
= + +- -

• Sample e
N from a Gaussian distribution with variance s N

2

Random draws are generated from EGARCH and GJR models similarly, using the
corresponding conditional variance equations.

Monte Carlo Error

Using many simulated paths, you can estimate various features of the model. However,
Monte Carlo estimation is based on a finite number of simulations. Therefore, Monte
Carlo estimates are subject to some amount of error. You can reduce the amount of
Monte Carlo error in your simulation study by increasing the number of sample paths,
M, that you generate from your model.

For example, to estimate the probability of a future event:

1 Generate M sample paths from your model.

6 Conditional Variance Models

6-94

2 Estimate the probability of the future event using the sample proportion of the event
occurrence across M simulations,

ˆ
#

.p
times event occurs in M draws

M
=

3 Calculate the Monte Carlo standard error for the estimate,

se
p p

M
=

-ˆ (ˆ)
.

1

You can reduce the Monte Carlo error of the probability estimate by increasing the
number of realizations. If you know the desired precision of your estimate, you can solve
for the number of realizations needed to achieve that level of precision.

See Also
simulate

Related Examples
• “Simulate Conditional Variance Model” on page 6-111
• “Simulate GARCH Models” on page 6-97
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Presample Data for Conditional Variance Model Simulation” on page 6-95
• “Monte Carlo Forecasting of Conditional Variance Models” on page 6-115

 Presample Data for Conditional Variance Model Simulation

6-95

Presample Data for Conditional Variance Model Simulation

When simulating realizations from GARCH, EGARCH, or GJR processes, you need
presample conditional variances and presample innovations to initialize the variance
equation.

For the GARCH(P,Q) and GJR(P,Q) models, P presample variances and Q presample
innovations are needed. For an EGARCH(P,Q) model, max(P,Q) presample variances and
Q presample innovations are needed.

You can either specify your own presample data, or let simulate automatically generate
presample data.

If you let simulate generate presample data, then:

• Presample variances are set to the theoretical unconditional variance of the model
being simulated.

• Presample innovations are random draws from the innovation distribution with the
theoretical unconditional variance.

If you are specifying your own presample data, note that simulate assumes presample
innovations with mean zero. If your observed series is an innovation series plus an offset,
subtract the offset from the observed series before using it as a presample innovation
series.

When you specify adequate presample variances and innovations, the first conditional
variance in the simulation recursion is the same for all sample paths. The first
simulated innovations are random, however, because they are random draws from the
innovation distribution (with common variance, specified by the presample variances and
innovations).

See Also
simulate

Related Examples
• “Simulate Conditional Variance Model” on page 6-111
• “Simulate GARCH Models” on page 6-97
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104

6 Conditional Variance Models

6-96

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Monte Carlo Simulation of Conditional Variance Models” on page 6-92
• “Monte Carlo Forecasting of Conditional Variance Models” on page 6-115

 Simulate GARCH Models

6-97

Simulate GARCH Models

This example shows how to simulate from a GARCH process with and without specifying
presample data. The sample unconditional variances of the Monte Carlo simulations
approximate the theoretical GARCH unconditional variance.

Step 1. Specify a GARCH model.

Specify a GARCH(1,1) model where the distribution of is Gaussian and

Mdl = garch('Constant',0.01,'GARCH',0.7,'ARCH',0.25)

Mdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 0.01

 GARCH: {0.7} at Lags [1]

 ARCH: {0.25} at Lags [1]

Step 2. Simulate from the model without using presample data.

Simulate five paths of length 100 from the GARCH(1,1) model, without specifying any
presample innovations or conditional variances. Display the first conditional variance for
each of the five sample paths. The model being simulated does not have a mean offset, so
the response series is an innovation series.

rng default; % For reproducibility

[Vn,Yn] = simulate(Mdl,100,'NumPaths',5);

Vn(1,:) % Display variances

figure

subplot(2,1,1)

plot(Vn)

xlim([0,100])

title('Conditional Variances')

6 Conditional Variance Models

6-98

subplot(2,1,2)

plot(Yn)

xlim([0,100])

title('Innovations')

ans =

 0.1645 0.3182 0.4051 0.1872 0.1551

The starting conditional variances are different for each realization because no
presample data was specified.

 Simulate GARCH Models

6-99

Step 3. Simulate from the model using presample data.

Simulate five paths of length 100 from the model, specifying the one required presample
innovation and conditional variance. Display the first conditional variance for each of the
five sample paths.

rng default;

[Vw,Yw] = simulate(Mdl,100,'NumPaths',5,...

 'E0',0.05,'V0',0.001);

Vw(1,:)

figure

subplot(2,1,1)

plot(Vw)

xlim([0,100])

title('Conditional Variances')

subplot(2,1,2)

plot(Yw)

xlim([0,100])

title('Innovations')

ans =

 0.0113 0.0113 0.0113 0.0113 0.0113

6 Conditional Variance Models

6-100

All five sample paths have the same starting conditional variance, calculated using the
presample data.

Note that even with the same starting variance, the realizations of the innovation series
have different starting points. This is because each is a random draw from a Gaussian
distribution with mean 0 and variance .

Step 4. Look at the unconditional variances.

Simulate 10,000 sample paths of length 500 from the specified GARCH model. Plot the
sample unconditional variances of the Monte Carlo simulations, and compare them to the
theoretical unconditional variance,

 Simulate GARCH Models

6-101

sig2 = 0.01/(1-0.7-0.25);

rng default;

[V,Y] = simulate(Mdl,500,'NumPaths',10000);

figure

plot(var(Y,0,2),'Color',[.7,.7,.7],'LineWidth',1.5)

xlim([0,500])

hold on

plot(1:500,ones(500,1)*sig2,'k--','LineWidth',2)

legend('Simulated','Theoretical','Location','NorthWest')

title('Unconditional Variance')

hold off

6 Conditional Variance Models

6-102

The simulated unconditional variances fluctuate around the theoretical unconditional
variance.

See Also
garch | simulate

Related Examples
• “Specify GARCH Models Using garch” on page 6-8
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104

 Simulate GARCH Models

6-103

More About
• Using garch Objects
• “Monte Carlo Simulation of Conditional Variance Models” on page 6-92
• “Presample Data for Conditional Variance Model Simulation” on page 6-95

6 Conditional Variance Models

6-104

Assess EGARCH Forecast Bias Using Simulations

This example shows how to simulate an EGARCH process. Simulation-based forecasts
are compared to minimum mean square error (MMSE) forecasts, showing the bias in
MMSE forecasting of EGARCH processes.

Step 1. Specify an EGARCH model.

Specify an EGARCH(1,1) process with constant , GARCH coefficient ,
ARCH coefficient and leverage coefficient .

Mdl = egarch('Constant',0.01,'GARCH',0.7,...

 'ARCH',0.3,'Leverage',-0.1)

Mdl =

 EGARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 0.01

 GARCH: {0.7} at Lags [1]

 ARCH: {0.3} at Lags [1]

 Leverage: {-0.1} at Lags [1]

Step 2. Simulate one realization.

Simulate one realization of length 50 from the EGARCH conditional variance process and
corresponding innovation series.

rng default; % For reproducibility

[v,y] = simulate(Mdl,50);

figure

subplot(2,1,1)

plot(v)

xlim([0,50])

title('Conditional Variance Process')

subplot(2,1,2)

 Assess EGARCH Forecast Bias Using Simulations

6-105

plot(y)

xlim([0,50])

title('Innovations Series')

Step 3. Simulate multiple realizations.

Using the conditional variance and innovation realizations generated in Step 2 as
presample data, simulate 5000 realizations of the EGARCH process for 50 future time
steps. Plot the simulation mean of the forecasted conditional variance process.

rng default; % For reproducibility

[Vsim,Ysim] = simulate(Mdl,50,'NumPaths',5000,...

 'E0',y,'V0',v);

6 Conditional Variance Models

6-106

figure

plot(v,'k')

hold on

plot(51:100,Vsim,'Color',[.85,.85,.85])

xlim([0,100])

h = plot(51:100,mean(Vsim,2),'k--','LineWidth',2);

title('Simulated Conditional Variance Process')

legend(h,'Simulation Mean','Location','NorthWest')

hold off

Step 4: Compare simulated and MMSE conditional variance forecasts.

Compare the simulation mean variance, the MMSE variance forecast, and the
exponentiated, theoretical unconditional log variance.

 Assess EGARCH Forecast Bias Using Simulations

6-107

The exponentiated, theoretical unconditional log variance for the specified EGARCH(1,1)
model is

sim = mean(Vsim,2);

fcast = forecast(Mdl,50,'Y0',y,'V0',v);

sig2 = exp(0.01/(1-0.7));

figure

plot(sim,':','LineWidth',2)

hold on

plot(fcast,'r','LineWidth',2)

plot(ones(50,1)*sig2,'k--','LineWidth',1.5)

legend('Simulated','MMSE','Theoretical')

title('Unconditional Variance Comparisons')

hold off

6 Conditional Variance Models

6-108

The MMSE and exponentiated, theoretical log variance are biased relative to the
unconditional variance (by about 4%) because by Jensen's inequality,

Step 5. Compare simulated and MMSE log conditional variance forecasts.

Compare the simulation mean log variance, the log MMSE variance forecast, and the
theoretical, unconditional log variance.

logsim = mean(log(Vsim),2);

logsig2 = 0.01/(1-0.7);

 Assess EGARCH Forecast Bias Using Simulations

6-109

figure

plot(logsim,':','LineWidth',2)

hold on

plot(log(fcast),'r','LineWidth',2)

plot(ones(50,1)*logsig2,'k--','LineWidth',1.5)

legend('Simulated','MMSE','Theoretical')

title('Unconditional Log Variance Comparisons')

hold off

The MMSE forecast of the unconditional log variance is unbiased.

See Also
egarch | forecast | simulate

6 Conditional Variance Models

6-110

Related Examples
• “Specify EGARCH Models Using egarch” on page 6-19

More About
• Using egarch Objects
• “EGARCH Model” on page 6-4
• “Monte Carlo Simulation of Conditional Variance Models” on page 6-92
• “Monte Carlo Forecasting of Conditional Variance Models” on page 6-115
• “MMSE Forecasting of Conditional Variance Models” on page 6-117

 Simulate Conditional Variance Model

6-111

Simulate Conditional Variance Model
This example shows how to simulate a conditional variance model using simulate.

Step 1. Load the data and specify the model.

Load the Deutschmark/British pound foreign exchange rate data included with the
toolbox, and convert to returns. Specify and fit a GARCH(1,1) model.

load Data_MarkPound

r = price2ret(Data);

T = length(r);

Mdl = garch(1,1);

EstMdl = estimate(Mdl,r);

v0 = infer(EstMdl,r);

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 1.05346e-06 3.50483e-07 3.00575

 GARCH{1} 0.806576 0.0129095 62.4794

 ARCH{1} 0.154357 0.0115746 13.3358

Step 2. Simulate foreign exchange rate returns.

Use the fitted model to simulate 25 realizations of foreign exchange rate returns and
conditional variances over a 1000-period forecast horizon. Use the observed returns and
inferred conditional variances as presample innovations and variances, respectively.

rng default; % For reproducibility

[V,Y] = simulate(EstMdl,1000,'NumPaths',25,...

 'E0',r,'V0',v0);

figure

subplot(2,1,1)

plot(v0)

hold on

plot(T+1:T+1000,V)

xlim([0,T+1000])

title('Conditional Variances')

6 Conditional Variance Models

6-112

hold off

subplot(2,1,2)

plot(r)

hold on

plot(T+1:T+1000,Y)

xlim([0,T+1000])

title('Returns')

hold off

Step 3. Plot the returns distribution at a future time.

Use simulations to generate a forecast distribution of foreign exchange returns 500 days
into the future. Generate 1000 sample paths to estimate the distribution.

 Simulate Conditional Variance Model

6-113

rng default; % For reproducibility

[V,Y] = simulate(EstMdl,500,'NumPaths',1000,...

 'E0',r-EstMdl.Offset,'V0',v0);

figure

histogram(Y(500,:),10)

title('Return Distribution in 500 Days')

See Also
estimate | forecast | garch | simulate

6 Conditional Variance Models

6-114

Related Examples
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53
• “Likelihood Ratio Test for Conditional Variance Models” on page 6-83
• “Forecast a Conditional Variance Model” on page 6-126

More About
• Using garch Objects
• “Monte Carlo Simulation of Conditional Variance Models” on page 6-92
• “Presample Data for Conditional Variance Model Simulation” on page 6-95
• “Monte Carlo Forecasting of Conditional Variance Models” on page 6-115

 Monte Carlo Forecasting of Conditional Variance Models

6-115

Monte Carlo Forecasting of Conditional Variance Models

In this section...

“Monte Carlo Forecasts” on page 6-115
“Advantage of Monte Carlo Forecasting” on page 6-115

Monte Carlo Forecasts

You can use Monte Carlo simulation to forecast a process over a future time horizon. This
is an alternative to minimum mean square error (MMSE) forecasting, which provides an
analytical forecast solution. You can calculate MMSE forecasts using forecast.

To forecast a process using Monte Carlo simulations:

• Fit a model to your observed series using estimate.
• Use the observed series and any inferred residuals and conditional variances

(calculated using infer) for presample data.
• Generate many sample paths over the desired forecast horizon using simulate.

Advantage of Monte Carlo Forecasting

An advantage of Monte Carlo forecasting is that you obtain a complete distribution
for future events, not just a point estimate and standard error. The simulation mean
approximates the MMSE forecast. Use the 2.5th and 97.5th percentiles of the simulation
realizations as endpoints for approximate 95% forecast intervals.

See Also
estimate | forecast | simulate

Related Examples
• “Simulate Conditional Variance Model” on page 6-111
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104
• “Forecast a Conditional Variance Model” on page 6-126

More About
• Using garch Objects

6 Conditional Variance Models

6-116

• Using egarch Objects
• Using gjr Objects
• “Monte Carlo Simulation of Conditional Variance Models” on page 6-92
• “MMSE Forecasting of Conditional Variance Models” on page 6-117

 MMSE Forecasting of Conditional Variance Models

6-117

MMSE Forecasting of Conditional Variance Models

In this section...

“What Are MMSE Forecasts?” on page 6-117
“EGARCH MMSE Forecasts” on page 6-117
“How forecast Generates MMSE Forecasts” on page 6-118

What Are MMSE Forecasts?

A common objective of conditional variance modeling is generating forecasts for the
conditional variance process over a future time horizon. That is, given the conditional
variance process s s s1

2
2
2 2

, , ,…
N and a forecast horizon h, generate predictions for

s s sN N N h+ + +1
2

2
2 2

, , , .…

Let ŝ
t+1

2 denote a forecast for the variance at time t + 1, conditional on the history of
the process up to time t, Ht. The minimum mean square error (MMSE) forecast is the

forecast ŝ
t+1

2 that minimizes the conditional expected square loss,

E H
t t t

(� |).s s
+ +

-1
2

1
2

Minimizing this loss function yields the MMSE forecast,

ˆ (|) (|).s s e
t t t t t

E H E H
+ + +

= =1
2

1
2

1
2

EGARCH MMSE Forecasts

For the EGARCH model, the MMSE forecast is found for the log conditional variance,

log � (log |).s s
t t t

E H
+ +

=1
2

1
2

For conditional variance forecasts of EGARCH processes, forecast returns the
exponentiated MMSE log conditional variance forecast,

6 Conditional Variance Models

6-118

ˆ exp{log ˆ }.s s
t t+ +

=1
2

1
2

This results in a slight forecast bias because of Jensen’s inequality,

E E
t t

() exp{ (log)}.s s
+ +

≥1
2

1
2

As an alternative to MMSE forecasting, you can conduct Monte Carlo simulations to
forecast EGARCH processes. Monte Carlo simulations yield unbiased forecasts for
EGARCH models. However, Monte Carlo forecasts are subject to Monte Carlo error
(which you can reduce by increasing the simulation sample size).

How forecast Generates MMSE Forecasts

The forecast function generates MMSE forecasts recursively. When you call
forecast, you can specify presample responses (Y0) and presample conditional
variances (V0) using name-value arguments. If the model being forecasted includes a
mean offset—signaled by a nonzero Offset property—forecast subtracts the offset
term from the presample responses to create presample innovations.

To begin forecasting from the end of an observed series, say Y, use the last few
observations of Y as presample responses Y0 to initialize the forecast. The minimum
number of presample responses needed to initialize forecasting is stored in the property Q
of a model.

When specifying presample conditional variances V0, the minimum number of presample
conditional variances needed to initialize forecasting is stored in the property P for
GARCH(P,Q) and GJR(P,Q) models. For EGARCH(P,Q) models, the minimum number of
presample conditional variances needed to initialize forecasting is max(P,Q).

Note that for all variance models, if you supply at least max(P,Q) + P presample response
observations (Y0), forecast infers any needed presample conditional variances (V0) for
you. If you supply presample observations, but less than max(P,Q) + P, forecast sets
any needed presample conditional variances equal to the unconditional variance of the
model.

If you do not provide any presample innovations, then for GARCH and GJR models,
forecast sets any necessary presample innovations equal to the unconditional standard
deviation of the model. For EGARCH models, forecast sets the presample innovations
equal to zero.

 MMSE Forecasting of Conditional Variance Models

6-119

GARCH Model

The forecast function generates MMSE forecasts for GARCH models recursively.

Consider generating forecasts for a GARCH(1,1) model, e s
t t t

z= , where

s k g s a e
t t t

2

1 1

2

1 1

2
= + +- - .

Given presample innovation e
T and presample conditional variance s T

2
, forecasts are

recursively generated as follows:

•
ŝ k g s a e

T T T+ = + +
1

2

1

2

1

2

•
ˆ ˆ ˆs k g s a s
T T T+ + += + +

2

2

1 1

2

1 1

2

•
ˆ ˆ ˆs k g s a s
T T T+ + += + +

3

2

1 2

2

1 2

2

M

Note that innovations are forecasted using the identity

E H E H
t t t t t

(|) (|) � .e s s
+ + +

= =1
2

1
2

1
2

This recursion converges to the unconditional variance of the process,

s
k

g a
e
2

1 1
1

=
- -()

.

GJR Model

The forecast function generates MMSE forecasts for GJR models recursively.

Consider generating forecasts for a GJR(1,1) model, e s
t t t

z= , where

s k g s a e x e e
t t t t t

I
2

1 1
2

1 1
2

1 1 1
2

0= + + + <- - - -[] . Given presample innovation e
T and

presample conditional variance s T

2
, forecasts are recursively generated as follows:

6 Conditional Variance Models

6-120

•
ˆ ˆ []s k g s a e x e e
T T T T T

I+ = + + + <1
2

1
2

1
2

1
2

0

•
ˆ ˆ ˆ ˆs k g s a s x sT T T T+ + + += + + +2

2
1 1

2
1 1

2
1 1

21

2

•
ˆ ˆ ˆ ˆs k g s a s x sT T T T+ + + += + + +3

2
1 2

2
1 2

2
1 2

21

2

M

Note that the expected value of the indicator is 1/2 for an innovation process with mean
zero, and that innovations are forecasted using the identity

E H E H
t t t t t

(|) (|) � .e s s
+ + +

= =1
2

1
2

1
2

This recursion converges to the unconditional variance of the process,

s k

g a x
e
2

1 1 11
1

2

=
- - -Ê

Ë
Á

ˆ
¯
˜

.

EGARCH Model

The forecast function generates MMSE forecasts for EGARCH models recursively. The
forecasts are initially generated for the log conditional variances, and then exponentiated
to forecast the conditional variances. This results in a slight forecast bias.

Consider generating forecasts for an EGARCH(1,1) model, e s
t t t

z= , where

log logs k g s a
e
s

e
st t

t

t

t

t

E
2

1 1
2

1
1

1

1

1

= + + -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

-
-

-

-

-
++ -

-
x

e
s1

1

1

t

t

.

The form of the expected value term depends on the choice of innovation distribution,
Gaussian or Student’s t. Given presample innovation e

T and presample conditional

variance s T

2
, forecasts are recursively generated as follows:

 MMSE Forecasting of Conditional Variance Models

6-121

•
log � logs k g s a

e

s

e

s
x

e

sT T
T

T

T

T

T

T

E+ = + + -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

+1
2

1
2

1 1

•
log � log �s k g s

T T+ += +2
2

1 1
2

•
log � log �s k g s

T T+ += +3
2

1 2
2

M

Notice that future absolute standardized innovations and future innovations are each
replaced by their expected value. This means that both the ARCH and leverage terms are
zero for all forecasts that are conditional on future innovations. This recursion converges
to the unconditional log variance of the process,

log .s
k

g
e
2

11
=

-()

forecast returns the exponentiated forecasts, exp{log � },exp{log � }, ,s s
T T+ +1
2

2
2

… which
have limit

exp .
k

g1 1-()
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

See Also
forecast

Related Examples
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104
• “Forecast a Conditional Variance Model” on page 6-126
• “Forecast GJR Models” on page 6-123

More About
• Using garch Objects

6 Conditional Variance Models

6-122

• Using egarch Objects
• Using gjr Objects
• “Monte Carlo Forecasting of Conditional Variance Models” on page 6-115

 Forecast GJR Models

6-123

Forecast GJR Models

This example shows how to generate MMSE forecasts of a GJR model using forecast.

Step 1. Specify a GJR model.

Specify a GJR(1,1) model without a mean offset and , , and
.

Mdl = gjr('Constant',0.1,'GARCH',0.7,...

 'ARCH',0.2,'Leverage',0.1);

Step 2. Generate MMSE forecasts.

Generate forecasts for a 100-period horizon with and without specifying a presample
innovation and conditional variance. Plot the forecasts along with the theoretical
unconditional variance of the model.

v1 = forecast(Mdl,100);

v2 = forecast(Mdl,100,'Y0',1.4,'V0',2.1);

denom = 1-Mdl.GARCH{1}-Mdl.ARCH{1}-0.5*Mdl.Leverage{1};

sig2 = Mdl.Constant/denom;

figure

plot(v1,'Color',[.9,.9,.9],'LineWidth',8)

hold on

plot(v2,'LineWidth',2)

plot(ones(100,1)*sig2,'k--','LineWidth',1.5)

xlim([0,100])

title('Forecast GJR Conditional Variance')

legend('No Presamples','Presamples','Theoretical',...

 'Location','SouthEast')

hold off

v2(1) % Display forecasted conditional variance

ans =

 1.9620

6 Conditional Variance Models

6-124

The forecasts generated without using presample data are equal to the theoretical
unconditional variance. In the absence of presample data, forecast uses the
unconditional variance for any required presample innovations and conditional
variances.

In this example, for the given presample innovation and conditional variance, the
starting forecast is

 Forecast GJR Models

6-125

The leverage term is not included in the forecast since the presample innovation was
positive (thus, the negative-innovation indicator is zero).

See Also
forecast | gjr

Related Examples
• “Specify GJR Models Using gjr” on page 6-31
• “Forecast a Conditional Variance Model” on page 6-126

More About
• Using gjr Objects
• “GJR Model” on page 6-6
• “MMSE Forecasting of Conditional Variance Models” on page 6-117

6 Conditional Variance Models

6-126

Forecast a Conditional Variance Model

This example shows how to forecast a conditional variance model using forecast.

Load the data and specify the model.

Load the Deutschmark/British pound foreign exchange rate data included with the
toolbox, and convert to returns. For numerical stability, convert returns to percentage
returns.

load Data_MarkPound

r = price2ret(Data);

pR = 100*r;

T = length(r);

Specify and fit a GARCH(1,1) model.

Mdl = garch(1,1);

EstMdl = estimate(Mdl,pR);

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.010868 0.00129723 8.37786

 GARCH{1} 0.804518 0.0160384 50.1619

 ARCH{1} 0.154325 0.0138523 11.1408

Generate MMSE forecasts.

Use the fitted model to generate MMSE forecasts over a 200-period horizon. Use the
observed return series as presample data. By default, forecast infers the corresponding
presample conditional variances. Compare the asymptote of the variance forecast to the
theoretical unconditional variance of the GARCH(1,1) model.

v = forecast(EstMdl,200,'Y0',pR);

sig2 = EstMdl.Constant/(1-EstMdl.GARCH{1}-EstMdl.ARCH{1});

figure

 Forecast a Conditional Variance Model

6-127

plot(v,'r','LineWidth',2)

hold on

plot(ones(200,1)*sig2,'k--','LineWidth',1.5)

xlim([0,200])

title('Forecast Conditional Variance')

legend('Forecast','Theoretical','Location','SouthEast')

hold off

The MMSE forecasts converge to the theoretical unconditional variance after about 160
steps.

See Also
estimate | forecast | garch

6 Conditional Variance Models

6-128

Related Examples
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53
• “Likelihood Ratio Test for Conditional Variance Models” on page 6-83
• “Simulate Conditional Variance Model” on page 6-111

More About
• Using garch Objects
• “MMSE Forecasting of Conditional Variance Models” on page 6-117

 Converting from GARCH Functions to Model Objects

6-129

Converting from GARCH Functions to Model Objects

In R2014a, arima, garch, egarch, and gjr models and associated functionality replace
the garchfit, garchinfer, garchplot, garchpred, garchsim, garchcount,
garchdisp, garchget, and garchset functions. If you use the older GARCH data
analysis functions, then you will receive an error. Use the information on this page to
help you convert from the older to the newer functionality.

Suppose that you want to analyze a univariate series y using an ARIMA(3,4) model with
GARCH(1,2) innovations, and you have presample observations (y0), innovations (e0),
and conditional standard deviations (sigma0). This table shows both ways to complete
such an analysis. For examples, see Related Examples.

Step Old Functionality New Functionality

Specify a compound
ARIMA-GARCH
model

Mdl = garchset('R',3,'M',4,...

 'P',1,'Q',2);

VarMdl = garch(1,2);

Mdl.Variance = VarMdl;

Mdl = arima(3,0,4);

Retrieve model
properties garchget(Mdl,'K') Mdl.Variance.Constant

Set equality
constraints

Mdl = garchset(Mdl,...

 'K',0.75,'FixK',1);
Mdl.Variance.Constant = 0.75;

Estimate parameters EstMdl = garchfit(Mdl,y,[],...

 e0,sigma0,y0);

[EstMdl,EstParamCov] = ...

 estimate(Mdl,y,'E0',e0,...

 'V0',sigma0.^2,'Y0',y0)

Count the number of
fitted parameters

numParams = garchcount(...

 EstMdl);

numParams = sum(any(...

 EstParamCov));

Infer conditional
variances (sigma2)
and obtain the
loglikelihood (logL)

[e,sigma,logL] = ...

 garchinfer(EstMdl,y,...

 [],e0,sigma0,y0);

sigma2 = sigma.^2;

[e,sigma2,logL] = infer(...

 EstMdl,y,'E0',e0,...

 'V0',sigma0.^2,'Y0',y0);

Simulate observations simY = garchsim(EstMdl,100); simY = simulate(EstMdl,100);

Filter disturbances
e = randn(100,1);

simY = garchsim(EstMdl,[],...

 [],e);

e = randn(100,1);

simY = filter(EstMdl,e);

Forecast observations foreY = garchpred(EstMdl,y,...

 15);

foreY = forecast(EstMdl,15,...

 'Y0',y);

6 Conditional Variance Models

6-130

Though similar, the input and output structure of the two functionalities differ in
some ways. This example shows how to determine some of the differences between the
two, and might help you through the conversion. This example does not show how to
reproduce equivalent results between the models, because, in general, the estimates
between the two functionalities might differ.

Suppose that you want to analyze a univariate series. You suspect that the model is
either an ARIMA(2,1)/GARCH(1,1) or ARIMA(1,1)/GARCH(1,1) model, and want to test
which model fits to the data better. Variables representing the new functionality have
the suffix 1 (e.g., Mdl1), and those of the older functionality have suffix 2 (e.g., Mdl2).

1 Simulate the data from an ARIMA(2,1) model with GARCH(1,1) innovations.

% New way

VarMdl1 = garch('GARCH',0.3,'ARCH',0.2,'Constant',0.75);

Mdl1 = arima('AR',{0.5,0.3},'MA',-0.7,'Constant',0,'Variance',VarMdl1);

[y1,e1,v1] = simulate(Mdl1,100);

% Old way

Mdl2 = garchset('AR',[0.5,0.3],'MA',-0.7,'C',0,...

 'GARCH',0.3,'ARCH',0.2,'K',0.75);

[e2,sd2,y2] = garchsim(Mdl2,100);

The differences are:

• Mdl1 is an object data type, and Mdl2 is a struct data type.
• simulate returns conditional variances, whereas garchsim returns conditional

standard deviations.
• With the new functionality, you must:

• Specify multiple coefficient values using a cell array.
• Specify the variance model using a garch, egarch, or gjr model.

2 Specify template models to use for estimation.

% New way

ToEstVarMdl1 = garch(1,1);

ToEstMdl11 = arima('ARLags',1,'MALags',1,'Variance',ToEstVarMdl1);

ToEstMdl21 = arima('ARLags',1:2,'MALags',1,'Variance',ToEstVarMdl1);

% Old way

ToEstMdl12 = garchset('R',1,'M',1,'P',1,'Q',1,'Display','off');

ToEstMdl22 = garchset('R',2,'M',1,'P',1,'Q',1,'Display','off');

 Converting from GARCH Functions to Model Objects

6-131

The new functionality has the name-value pair arguments 'ARLags' and 'MALags'
to set the polynomial terms of the model. You must specify each term order
individually, which allows for a more flexible specification. The models ToEstMdl1
and ToEstMdl2 have properties P and Q corresponding to the autoregressive and
moving average orders of the model.

3 Fit each model to the data.

% New way

logL1 = [0;0]; % Preallocate

numParams1 = logL1; % Preallocate

[EstMdl11,EstParamCov11,logl11] = estimate(ToEstMdl11,...

 y1,'Display','off');

[EstMdl21,EstParamCov21,logl21] = estimate(ToEstMdl21,...

 y1,'Display','off');

% Old way

logL2 = [0;0]; % Preallocate

numParams2 = logL2; % Preallocate

[EstMdl12,~,logl12] = garchfit(ToEstMdl12,y2);

[EstMdl22,~,logl22] = garchfit(ToEstMdl22,y2);

The estimate function:

• Returns the estimated parameter covariance matrix rather than just the
standard errors.

• Lets you decide to see estimates and optimization information, rather than
setting it when you specify the model.

4 Count the number of fitted parameters in the estimated model.

% New way

numParams11 = sum(any(EstParamCov11));

numParams21 = sum(any(EstParamCov21));

% Old way

numParams12 = garchcount(EstMdl12);

numParams22 = garchcount(EstMdl22);

The new functionality does not contain a function that counts the number of
fitted parameters in an estimated model. However, if a parameter is fixed during
estimation, then the software sets all variances and covariances of the corresponding
parameter estimate to 0. The new way to count fitted parameters uses this feature.

5 Assess which model is more appropriate using information criteria.

6 Conditional Variance Models

6-132

aic1 = aicbic(logL1,numParams1);

aic2 = aicbic(logL2,numParams2);

See Also
arima | egarch | estimate | filter | forecast | garch | gjr | infer | print |
simulate

Related Examples
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Estimate Conditional Mean and Variance Models” on page 5-129
• “Infer Residuals for Diagnostic Checking” on page 5-140
• “Infer Conditional Variances and Residuals” on page 6-77
• “Simulate GARCH Models” on page 6-97
• “Forecast a Conditional Variance Model” on page 6-126

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects

7

Multivariate Time Series Models

• “Vector Autoregressive (VAR) Models” on page 7-3
• “Multivariate Time Series Data Structures” on page 7-8
• “Multivariate Time Series Model Creation” on page 7-14
• “VAR Model Estimation” on page 7-22
• “Convert a VARMA Model to a VAR Model” on page 7-27
• “Convert a VARMA Model to a VMA Model” on page 7-29
• “Fit a VAR Model” on page 7-33
• “Fit a VARMA Model” on page 7-35
• “VAR Model Forecasting, Simulation, and Analysis” on page 7-39
• “Generate Impulse Responses for a VAR model” on page 7-42
• “Compare Generalized and Orthogonalized Impulse Response Functions” on page

7-45
• “Forecast a VAR Model” on page 7-50
• “Forecast a VAR Model Using Monte Carlo Simulation” on page 7-53
• “Multivariate Time Series Models with Regression Terms” on page 7-57
• “Implement Seemingly Unrelated Regression Analyses” on page 7-64
• “Estimate the Capital Asset Pricing Model Using SUR” on page 7-74
• “Simulate Responses of Estimated VARX Model” on page 7-80
• “VAR Model Case Study” on page 7-89
• “Cointegration and Error Correction Analysis” on page 7-108
• “Determine Cointegration Rank of VEC Model” on page 7-114
• “Identifying Single Cointegrating Relations” on page 7-116
• “Test for Cointegration Using the Engle-Granger Test” on page 7-121
• “Estimate VEC Model Parameters Using egcitest” on page 7-126
• “Simulate and Forecast a VEC Model” on page 7-129

7 Multivariate Time Series Models

7-2

• “Generate VEC Model Impulse Responses” on page 7-138
• “Identifying Multiple Cointegrating Relations” on page 7-143
• “Test for Cointegration Using the Johansen Test” on page 7-144
• “Estimate VEC Model Parameters Using jcitest” on page 7-147
• “Compare Approaches to Cointegration Analysis” on page 7-150
• “Testing Cointegrating Vectors and Adjustment Speeds” on page 7-154
• “Test Cointegrating Vectors” on page 7-155
• “Test Adjustment Speeds” on page 7-158

 Vector Autoregressive (VAR) Models

7-3

Vector Autoregressive (VAR) Models

In this section...

“Types of VAR Models” on page 7-3
“Lag Operator Representation” on page 7-4
“Stable and Invertible Models” on page 7-5
“Building VAR Models” on page 7-5

Types of VAR Models

The multivariate time series models used in Econometrics Toolbox functions are based on
linear, autoregressive models. The basic models are:

Model Name Abbreviation Equation

Vector Autoregressive VAR(p)
y yt i t i

i

p

ta A= + +-

=

Â
1

e

Vector Moving Average VMA(q)
yt j t j

j

q

ta B= + +-

=

Â e e

1

Vector Autoregressive
Moving Average

VARMA(p, q)
y yt i t i

i

p

j t j

j

q

ta A B= + + +-

=

-

=

Â Â
1 1

e e

Vector Autoregressive
Moving Average with
eXogenous inputs

VARMAX(p, q, r)
y yt t i t i

i

p

j t j

j

q

ta X b A B= + ◊ + + +-

=

-

=

Â Â
1 1

e e

Structural Vector
Autoregressive Moving
Average with eXogenous
inputs

SVARMAX(p, q, r)
A a X b A B Bt t i t i

i

p

j t j

j

q

t0

1 1

0y y= + ◊ + + +-

=

-

=

Â Â e e

The following variables appear in the equations:

• yt is the vector of response time series variables at time t. yt has n elements.

7 Multivariate Time Series Models

7-4

• a is a constant vector of offsets, with n elements.
• Ai are n-by-n matrices for each i. The Ai are autoregressive matrices. There are p

autoregressive matrices.
• εt is a vector of serially uncorrelated innovations, vectors of length n. The εt are

multivariate normal random vectors with a covariance matrix Q, where Q is an
identity matrix, unless otherwise specified.

• Bj are n-by-n matrices for each j. The Bj are moving average matrices. There are q
moving average matrices.

• Xt is an n-by-r matrix representing exogenous terms at each time t. r is the number of
exogenous series. Exogenous terms are data (or other unmodeled inputs) in addition
to the response time series yt.

• b is a constant vector of regression coefficients of size r. So the product Xt·b is a vector
of size n.

Generally, the time series yt and Xt are observable. In other words, if you have data, it
represents one or both of these series. You do not always know the offset a, coefficient
b, autoregressive matrices Ai, and moving average matrices Bj. You typically want to
fit these parameters to your data. See the vgxvarx function reference page for ways to
estimate unknown parameters. The innovations εt are not observable, at least in data,
though they can be observable in simulations.

Lag Operator Representation

There is an equivalent representation of the linear autoregressive equations in terms
of lag operators. The lag operator L moves the time index back by one: Lyt = yt–1. The
operator Lm moves the time index back by m: Lmyt = yt–m.

In lag operator form, the equation for a SVARMAX(p, q, r) model becomes

A A L y a X b B B Li
i

i

p

t t j
j

j

q

t0

1

0

1

-
Ê

Ë
Á
Á

ˆ

¯
˜
˜

= + + +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

= =
Â Â e .

This equation can be written as

A L y a X b B Lt t t() () ,= + + e

 Vector Autoregressive (VAR) Models

7-5

where

A L A A L B L B B Li
i

i

p

j
j

j

q

() () .= - = +

= =

Â Â0

1

0

1

 and

Stable and Invertible Models

A VAR model is stable if

det ... ,I A z A z A z zn p
p

- - - -() π £1 2
2 0 1 for

This condition implies that, with all innovations equal to zero, the VAR process converges
to a as time goes on. See Lütkepohl [74] Chapter 2 for a discussion.

A VMA model is invertible if

detI B z B z B z zn q
q

+ + + +() π £1 2
2

0 1 for

This condition implies that the pure VAR representation of the process is stable. For
an explanation of how to convert between VAR and VMA models, see “Changing Model
Representations” on page 7-23. See Lütkepohl [74] Chapter 11 for a discussion of
invertible VMA models.

A VARMA model is stable if its VAR part is stable. Similarly, a VARMA model is
invertible if its VMA part is invertible.

There is no well-defined notion of stability or invertibility for models with exogenous
inputs (e.g., VARMAX models). An exogenous input can destabilize a model.

Building VAR Models

To understand a multiple time series model, or multiple time series data, you generally
perform the following steps:

1 Import and preprocess data.
2 Specify a model.

a “Specifying Models” on page 7-14 to set up a model using vgxset:

7 Multivariate Time Series Models

7-6

• “Specification Structures with Known Parameters” on page 7-15 to
specify a model with known parameters

• “Specification Structures with No Parameter Values” on page 7-16 to
specify a model when you want MATLAB to estimate the parameters

• “Specification Structures with Selected Parameter Values” on page 7-17
to specify a model where you know some parameters, and want MATLAB to
estimate the others

b “Determining an Appropriate Number of Lags” on page 7-19 to determine an
appropriate number of lags for your model

3 Fit the model to data.

a “Fitting Models to Data” on page 7-24 to use vgxvarx to estimate the
unknown parameters in your models. This can involve:

• “Changing Model Representations” on page 7-23 to change your model to
a type that vgxvarx handles

• Estimating “Structural Matrices” on page 7-22
4 Analyze and forecast using the fitted model. This can involve:

a “Examining the Stability of a Fitted Model” on page 7-25 to determine
whether your model is stable and invertible.

b “VAR Model Forecasting” on page 7-39 to forecast directly from models or to
forecast using a Monte Carlo simulation.

c “Calculating Impulse Responses” on page 7-40 to calculate impulse
responses, which give forecasts based on an assumed change in an input to a
time series.

d Compare the results of your model's forecasts to data held out for forecasting.
For an example, see “VAR Model Case Study” on page 7-89.

Your application need not involve all of the steps in this workflow. For example, you
might not have any data, but want to simulate a parameterized model. In that case, you
would perform only steps 2 and 4 of the generic workflow.

You might iterate through some of these steps.

See Also
vgxget | vgxpred | vgxset | vgxsim | vgxvarx

 Vector Autoregressive (VAR) Models

7-7

Related Examples
• “Fit a VAR Model” on page 7-33
• “Implement Seemingly Unrelated Regression Analyses” on page 7-64
• “Estimate the Capital Asset Pricing Model Using SUR” on page 7-74
• “Forecast a VAR Model” on page 7-50
• “Forecast a VAR Model Using Monte Carlo Simulation” on page 7-53
• “Simulate Responses of Estimated VARX Model” on page 7-80
• “VAR Model Case Study” on page 7-89

More About
• “Multivariate Time Series Data Structures” on page 7-8
• “Multivariate Time Series Model Creation” on page 7-14
• “VAR Model Estimation” on page 7-22
• “VAR Model Forecasting, Simulation, and Analysis” on page 7-39
• “Multivariate Time Series Models with Regression Terms” on page 7-57
• “Cointegration and Error Correction Analysis” on page 7-108

7 Multivariate Time Series Models

7-8

Multivariate Time Series Data Structures

In this section...

“Multivariate Time Series Data” on page 7-8
“Response Data Structure” on page 7-8
“Example: Response Data Structure” on page 7-9
“Data Preprocessing” on page 7-11
“Partitioning Response Data” on page 7-11

Multivariate Time Series Data

Often, the first step in creating a multiple time series model is to obtain data. There are
two types of multiple time series data:

• Response data. Response data corresponds to yt in the multiple time series models
defined in “Types of VAR Models” on page 7-3.

• Exogenous data. Exogenous data corresponds to Xt in the multiple time series
models defined in “Types of VAR Models” on page 7-3. For details and examples
on structuring preparing exogenous data for multivariate model analysis, see
“Multivariate Time Series Models with Regression Terms” on page 7-57.

Before using Econometrics Toolbox functions with the data, put the data into the
required form. Use standard MATLAB commands, or preprocess the data with a
spreadsheet program, database program, PERL, or other utilities.

There are several freely available sources of data sets, such as the St. Louis Federal
Reserve Economics Database (known as FRED): http://research.stlouisfed.org/fred2/. If
you have a license, you can use Datafeed Toolbox™ functions to access data from various
sources.

Response Data Structure

Response data for multiple time series models must be in the form of a matrix. Each
row of the matrix represents one time, and each column of the matrix represents one
time series. The earliest data is the first row, the latest data is the last row. The data
represents yt in the notation of “Types of VAR Models” on page 7-3. If there are T times
and n time series, put the data in the form of a T-by-n matrix:

http://research.stlouisfed.org/fred2/

 Multivariate Time Series Data Structures

7-9

Y Y Yn

Y Y Yn

Y Y Yn
T T T

1 2

1 2

1 2

1 1 1

2 2 2

L

L

M M O M

L

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Y1t represents time series 1,..., Ynt represents time series n, 1 ≤ t ≤ T.

Multiple Paths

Response time series data can have an extra dimension corresponding to separate,
independent paths. For this type of data, use a three-dimensional array Y(t,j,p),
where:

• t is the time index of an observation, 1 ≤ t ≤ T.
• j is the index of a time series, 1 ≤ j ≤ n.
• p is the path index, 1 ≤ p ≤ P.

For any path p, Y(t,j,p) is a time series.

Example: Response Data Structure

The file Data_USEconModel ships with Econometrics Toolbox software. It contains time
series from the St. Louis Federal Reserve Economics Database (known as FRED).

Enter

load Data_USEconModel

to load the data into your MATLAB workspace. The following items load into the
workspace:

• Data, a 249-by-14 matrix containing the 14 time series,
• DataTable, a 249-by-14 tabular array that packages the data,
• dates, a 249-element vector containing the dates for Data,
• Description, a character array containing a description of the data series and the

key to the labels for each series,
• series, a 1-by-14 cell array of labels for the time series.

Examine the data structures:

7 Multivariate Time Series Models

7-10

firstPeriod = dates(1)

lastPeriod = dates(end)

firstPeriod =

 711217

lastPeriod =

 733863

• dates is a vector containing MATLAB serial date numbers, the number of days since
the putative date January 1, 0000. (This “date” is not a real date, but is convenient for
making date calculations; for more information, see “Date Formats” in the Financial
Toolbox™ User's Guide.)

• The Data matrix contains 14 columns. These represent the time series labeled by the
cell vector of strings series.

FRED Series Description

COE Paid compensation of employees in $ billions
CPIAUCSL Consumer Price Index
FEDFUNDS Effective federal funds rate
GCE Government consumption expenditures and investment in $ billions
GDP Gross Domestic Product
GDPDEF Gross domestic product in $ billions
GDPI Gross private domestic investment in $ billions
GS10 Ten-year treasury bond yield
HOANBS Non-farm business sector index of hours worked
M1SL M1 money supply (narrow money)
M2SL M2 money supply (broad money)
PCEC Personal consumption expenditures in $ billions
TB3MS Three-month treasury bill yield
UNRATE Unemployment rate

 Multivariate Time Series Data Structures

7-11

DataTable is a tabular array containing the same data as in Data, but you can call
variables using the tabular array and the name of the variable. Use dot notation to
access a variable, for example, DataTable.UNRATE calls the unemployment rate time
series.

Data Preprocessing

Your data might have characteristics that violate assumptions for linear multiple time
series models. For example, you can have data with exponential growth, or data from
multiple sources at different periodicities. You must preprocess your data to convert it
into an acceptable form for analysis.

• For time series with exponential growth, you can preprocess the data by taking the
logarithm of the growing series. In some cases you then difference the result. For an
example, see “VAR Model Case Study” on page 7-89.

• For data from multiple sources, you must decide how best to fill in missing values.
Commonly, you take the missing values as unchanged from the previous value, or as
interpolated from neighboring values.

Note: If you take a difference of a series, the series becomes 1 shorter. If you take a
difference of only some time series in a data set, truncate the other series so that all have
the same length, or pad the differenced series with initial values.

Testing Data for Stationarity

You can test each time series data column for stability using unit root tests. For details,
see “Unit Root Nonstationarity” on page 3-34.

Partitioning Response Data

To fit a lagged model to data, partition the response data in up to three sections:

• Presample data
• Estimation data
• Forecast data

The purpose of presample data is to provide initial values for lagged variables. When
trying to fit a model to the estimation data, you need to access earlier times. For

7 Multivariate Time Series Models

7-12

example, if the maximum lag in a model is 4, and if the earliest time in the estimation
data is 50, then the model needs to access data at time 46 when fitting the observations
at time 50. vgxvarx assumes the value 0 for any data that is not part of the presample
data.

The estimation data contains the observations yt. Use the estimation data to fit the
model.

Use the forecast data for comparing fitted model predictions against data. You do not
have to have a forecast period. Use one to validate the predictive power of a fitted model.

t

Presample
period

Estimation
period

Forecast
period

Y
t Y(1)

Y(2)

Y(3)

t

t

t

The following figure shows how to arrange the data in the data matrix, with j presample
rows and k forecast rows.

Y(1,1) Y(1,2) Y(1,3)

Y(j,1) Y(j,2) Y(j,3)

Y(j+1,1) Y(j+1,2) Y(j+1,3)

Y(T-k+1,1) Y(T-k+1,2) Y(T-k+1,3)

Y(T,1) Y(T,2) Y(T,3)

Y(T-k,1) Y(T-k,2) Y(T-k,3)

Presample

Forecast

Estimation..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

 Multivariate Time Series Data Structures

7-13

See Also
vgxget | vgxset | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Forecast a VAR Model” on page 7-50
• “Forecast a VAR Model Using Monte Carlo Simulation” on page 7-53
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Multivariate Time Series Model Creation” on page 7-14
• “VAR Model Estimation” on page 7-22
• “VAR Model Forecasting, Simulation, and Analysis” on page 7-39

7 Multivariate Time Series Models

7-14

Multivariate Time Series Model Creation

In this section...

“Models for Multiple Time Series” on page 7-14
“Specifying Models” on page 7-14
“Specification Structures with Known Parameters” on page 7-15
“Specification Structures with No Parameter Values” on page 7-16
“Specification Structures with Selected Parameter Values” on page 7-17
“Displaying and Changing a Specification Structure” on page 7-19
“Determining an Appropriate Number of Lags” on page 7-19

Models for Multiple Time Series

Econometrics Toolbox functions require a model specification structure as an input before
they simulate, calibrate, forecast, or perform other calculations. You can specify a model
with or without time series data. If you have data, you can fit models to the data as
described in “VAR Model Estimation” on page 7-22. If you do not have data, you can
specify a model with parameters you provide, as described in “Specification Structures
with Known Parameters” on page 7-15.

Specifying Models

Create an Econometrics Toolbox multiple time series model specification structure
using the vgxset function. Use this structure for calibrating, simulating, predicting,
analyzing, and displaying multiple time series.

There are three ways to create model structures using the vgxset function:

• “Specification Structures with Known Parameters” on page 7-15. Use this method
when you know the values of all relevant parameters of your model.

• “Specification Structures with No Parameter Values” on page 7-16. Use this
method when you know the size, type, and number of lags in your model, but do not
know the values of any of the AR or MA coefficients, or the value of your Q matrix.

• “Specification Structures with Selected Parameter Values” on page 7-17. Use this
method when you know the size, type, and number of lags in your model, and also
know some, but not all, of the values of AR or MA coefficients. This method includes
the case when you want certain parameters to be zero. You can specify as many

 Multivariate Time Series Model Creation

7-15

parameters as you like. For example, you can specify certain parameters, request that
vgxvarx estimate others, and specify other parameters with [] to indicate default
values.

Specification Structures with Known Parameters

If you know the values of model parameters, create a model structure with the
parameters. The following are the name-value pairs you can pass to vgxset for known
parameter values:

Model Parameters

Name Value

a An n-vector of offset constants. The default is empty.
AR0 An n-by-n invertible matrix representing the zero-lag structural AR

coefficients. The default is empty, which means an identity matrix.
AR An nAR-element cell array of n-by-n matrices of AR coefficients. The

default is empty.
MA0 An n-by-n invertible matrix representing the zero-lag structural MA

coefficients. The default is empty, which means an identity matrix.
MA An nMA-element cell array of n-by-n matrices of MA coefficients. The

default is empty.
b An nX-vector of regression coefficients. The default is empty.
Q An n-by-n symmetric innovations covariance matrix. The default is

empty, which means an identity matrix.
ARlag A monotonically increasing nAR-vector of AR lags. The default is

empty, which means all the lags from 1 to p, the maximum AR lag.
MAlag A monotonically increasing nMA-vector of MA lags. The default is

empty, which means all the lags from 1 to q, the maximum MA lag.

vgxset infers the model dimensionality, given by n, p, and q in “Types of VAR Models”
on page 7-3, from the input parameters. These parameters are n, nAR, and nMA
respectively in vgxset syntax. For more information, see “Specification Structures with
No Parameter Values” on page 7-16.

The ARlag and MAlag vectors allow you to specify which lags you want to include. For
example, to specify AR lags 1 and 3 without lag 2, set ARlag to [1 3]. This setting

7 Multivariate Time Series Models

7-16

corresponds to nAR = 2 for two specified lags, even though this is a third order model,
since the maximum lag is 3.

The following example shows how to create a model structure when you have known
parameters. Consider a VAR(1) model:

y a yt t t= +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+-

.

. . .

. .

,

5 0 0

1 1 3

0 2 3

1 e

Specifically, a = [0.05, 0, –.05]' and wt are distributed as standard three-dimensional
normal random variables.

Create a model specification structure with vgxset:

A1 = [.5 0 0;.1 .1 .3;0 .2 .3];

Q = eye(3);

Mdl = vgxset('a',[.05;0;-.05],'AR',{A1},'Q',Q)

Mdl =

 Model: 3-D VAR(1) with Additive Constant

 n: 3

 nAR: 1

 nMA: 0

 nX: 0

 a: [0.05 0 -0.05] additive constants

 AR: {1x1 cell} stable autoregressive process

 Q: [3x3] covariance matrix

vgxset identifies this model as a stable VAR(1) model with three dimensions and
additive constants.

Specification Structures with No Parameter Values

By default, vgxvarx fits all unspecified additive (a), AR, regression coefficients (b), and
Q parameters. You must specify the number of time series and the type of model you
want vgxvarx to fit. The following are the name-value pairs you can pass to vgxset for
unknown parameter values:

 Multivariate Time Series Model Creation

7-17

Model Orders

Name Value

n A positive integer specifying the number of time series. The default is
1.

nAR A nonnegative integer specifying the number of AR lags (corresponds
to p in “Types of VAR Models” on page 7-3). The default is 0.

nMA A nonnegative integer specifying the number of MA lags (corresponds
to q in “Types of VAR Models” on page 7-3). The default is 0.

Currently, vgxvarx cannot fit MA matrices. Therefore, specifying an
nMA greater than 0 does not yield estimated MA matrices.

nX A nonnegative integer specifying the number regression parameters
(corresponds to r in “Types of VAR Models” on page 7-3). The default is
0.

Constant Additive offset logical indicator. The default is false.

The following example shows how to specify the model in “Specification Structures with
Known Parameters” on page 7-15, but without explicit parameters.

Mdl = vgxset('n',3,'nAR',1,'Constant',true)

Mdl =

 Model: 3-D VAR(1) with Additive Constant

 n: 3

 nAR: 1

 nMA: 0

 nX: 0

 a: []

 AR: {}

 Q: []

Specification Structures with Selected Parameter Values

You can create a model structure with some known parameters, and have vgxvarx fit
the unknown parameters to data. Here are the name-value pairs you can pass to vgxset
for requested parameter values:

7 Multivariate Time Series Models

7-18

Model Parameter Estimation

Name Value

asolve An n-vector of additive offset logical indicators. The default is empty,
which means true(n,1).

ARsolve An nAR-element cell array of n-by-n matrices of AR logical indicators.
The default is empty, which means an nAR-element cell array of
true(n).

AR0solve An n-by-n matrix of AR0 logical indicators. The default is empty,
which means false(n).

MAsolve An nMA-element cell array of n-by-n matrices of MA logical indicators.
The default is empty, which means false(n).

MA0solve An n-by-n matrix of MA0 logical indicators. The default is empty,
which means false(n).

bsolve An nX-vector of regression logical indicators. The default is empty,
which means true(n,1).

Qsolve An n-by-n symmetric covariance matrix logical indicator. The default
is empty, which means true(n), unless the 'CovarType' option of
vgxvarx overrides it.

Specify a logical 1 (true) for every parameter that you want vgxvarx to estimate.

Currently, vgxvarx cannot fit the AR0, MA0, or MA matrices. Therefore, vgxvarx ignores
the AR0solve, MA0solve, and MAsolve indicators. However, you can examine the
Example_StructuralParams.m file for an approach to estimating the AR0 and MA0
matrices. Enter help Example_StructuralParams at the MATLAB command line
for information. See Lütkepohl [74] Chapter 9 for algorithms for estimating structural
models.

Currently, vgxvarx also ignores the Qsolve matrix. vgxvarx can fit either a diagonal
or a full Q matrix; see vgxvarx.

This example shows how to specify the model in “Specification Structures with Known
Parameters” on page 7-15, but with requested AR parameters with a diagonal
autoregressive structure. The dimensionality of the model is known, as is the parameter
vector a, but the autoregressive matrix A1 and covariance matrix Q are not known.

Mdl = vgxset('ARsolve',{logical(eye(3))},'a',...

 [.05;0;-.05])

 Multivariate Time Series Model Creation

7-19

Mdl =

 Model: 3-D VAR(1) with Additive Constant

 n: 3

 nAR: 1

 nMA: 0

 nX: 0

 a: [0.05 0 -0.05] additive constants

 AR: {}

 ARsolve: {1x1 cell of logicals} autoregressive lag indicators

 Q: []

Displaying and Changing a Specification Structure

After you set up a model structure, you can examine it in several ways:

• Call the vgxdisp function.
• Double-click the structure in the MATLAB Workspace browser.
• Call the vgxget function.
• Enter Spec at the MATLAB command line, where Spec is the name of the model

structure.
• Enter Spec.ParamName at the MATLAB command line, where Spec is the name

of the model structure, and ParamName is the name of the parameter you want to
examine.

You can change any part of a model structure named, for example, Spec, using the
vgxset as follows:

Spec = vgxset(Spec,'ParamName',value,...)

This syntax changes only the 'ParamName' parts of the Spec structure.

Determining an Appropriate Number of Lags

There are two Econometrics Toolbox functions that can help you determine an
appropriate number of lags for your models:

• The lratiotest function performs likelihood ratio tests to help identify the
appropriate number of lags.

7 Multivariate Time Series Models

7-20

• The aicbic function calculates the Akaike and Bayesian information criteria to
determine the minimal appropriate number of required lags.

Example: Using the Likelihood Ratio Test to Calculate the Minimal Requisite Lag

lratiotest requires inputs of the loglikelihood of an unrestricted model, the
loglikelihood of a restricted model, and the number of degrees of freedom (DoF). DoF
is the difference in the number of active parameters between the unrestricted and
restricted models. lratiotest returns a Boolean: 1 means reject the restricted model
in favor of the unrestricted model, 0 means there is insufficient evidence to reject the
restricted model.

In the context of determining an appropriate number of lags, the restricted model has
fewer lags, and the unrestricted model has more lags. Otherwise, test models with the
same type of fitted parameters (for example, both with full Q matrices, or both with
diagonal Q matrices).

• Obtain the loglikelihood (LLF) of a model as the third output of vgxvarx:

[EstSpec,EstStdErrors,LLF,W] = vgxvarx(...)

• Obtain the number of active parameters in a model as the second output of
vgxcount:

[NumParam,NumActive] = vgxcount(Spec)

For example, suppose you have four fitted models with varying lag structures. The
models have loglikelihoods LLF1, LLF2, LLF3, and LLF4, and active parameter counts
n1p, n2p, n3p, and n4p. Suppose model 4 has the largest number of lags. Perform
likelihood ratio tests of models 1, 2, and 3 against model 4, as follows:

reject1 = lratiotest(LLF4,LLF1,n4p - n1p)

reject2 = lratiotest(LLF4,LLF2,n4p - n2p)

reject3 = lratiotest(LLF4,LLF3,n4p - n3p)

If reject1 = 1, you reject model 1 in favor of model 4, and similarly for models 2 and 3.
If any of the models have rejectI = 0, you have an indication that you can use fewer
lags than in model 4.

Example: Using Akaike Information Criterion to Calculate the Minimal Requisite Lag

aicbic requires inputs of the loglikelihood of a model and of the number of active
parameters in the model. It returns the value of the Akaike information criterion. Lower

 Multivariate Time Series Model Creation

7-21

values are better than higher values. aicbic accepts vectors of loglikelihoods and
vectors of active parameters, and returns a vector of Akaike information criteria, which
makes it easy to find the minimum.

• Obtain the loglikelihood (LLF) of a model as the third output of vgxvarx:

[EstSpec,EstStdErrors,LLF,W] = vgxvarx(...)

• Obtain the number of active parameters in a model as the second output of
vgxcount:

[NumParam,NumActive] = vgxcount(Spec)

For example, suppose you have four fitted models with varying lag structures. The
models have loglikelihoods LLF1, LLF2, LLF3, and LLF4, and active parameter counts
n1p, n2p, n3p, and n4p. Calculate the Akaike information criteria as follows:

AIC = aicbic([LLF1 LLF2 LLF3 LLF4],[n1p n2p n3p n4p])

The most suitable model has the lowest value of the Akaike information criterion.

See Also
var2vec | vec2var | vgxar | vgxma | vgxqual | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Fit a VARMA Model” on page 7-35
• “Convert a VARMA Model to a VMA Model” on page 7-29
• “Convert a VARMA Model to a VAR Model” on page 7-27
• “Forecast a VAR Model” on page 7-50
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3

7 Multivariate Time Series Models

7-22

VAR Model Estimation

In this section...

“Preparing Models for Fitting” on page 7-22
“Changing Model Representations” on page 7-23
“Fitting Models to Data” on page 7-24
“Examining the Stability of a Fitted Model” on page 7-25

Preparing Models for Fitting

To create a model of multiple time series data, decide on a parametric form of the model,
and fit parameters to the data. When you have a calibrated (fitted) model, check if the
model fits the data adequately.

To fit a model to data, you must have:

• Time series data, as described in “Multivariate Time Series Data” on page 7-8
• At least one time series model specification structure, as described in “Multivariate

Time Series Model Creation” on page 7-14

There are several Econometrics Toolbox functions that aid these tasks, including:

• vgxvarx, which fits VARX models.
• vgxar and vgxma, which convert models to pure AR or MA models; vgxar enables

you to fit VARMA models with vgxvarx, as described in “Fit a VARMA Model” on
page 7-35

• lratiotest, lmtest, waldtest, and aicbic, which can help determine the number
of lags to include in a model.

• vgxqual, which examines the stability of models, as described in “Examining the
Stability of a Fitted Model” on page 7-25.

• vgxpred, which creates forecasts that can be used to check the adequacy of the fit, as
described in “VAR Model Forecasting, Simulation, and Analysis” on page 7-39

Structural Matrices

The structural matrices in SVARMAX models are the A0 and B0 matrices. See
“Types of VAR Models” on page 7-3 for definitions of these terms. Currently,

 VAR Model Estimation

7-23

vgxvarx cannot fit these matrices to data. However, you can examine the
Example_StructuralParams.m file for an approach to estimating the AR0 and MA0
matrices. Enter help Example_StructuralParams at the MATLAB command line
for information. See Lütkepohl [74] Chapter 9 for algorithms for estimating structural
models.

Changing Model Representations

You can convert a VARMA model to an equivalent VAR model using the vgxar function.
(See “Types of VAR Models” on page 7-3 for definitions of these terms.) Similarly, you can
convert a VARMA model to an equivalent VMA model using the vgxma function. These
functions are useful in the following situations:

• Calibration of models

The vgxvarx function can calibrate only VAR and VARX models. So to calibrate
a VARMA model, you could first convert it to a VAR model. However, you can ask
vgxvarx to ignore VMA terms and fit just the VAR structure. See “Fit a VARMA
Model” on page 7-35 for a comparison of conversion versus no conversion.

• Forecasting

It is straightforward to generate forecasts for VMA models. In fact, vgxpred
internally converts models to VMA models to calculate forecast statistics.

• Analyzing models

Sometimes it is easier to define your model using one structure, but you want to
analyze it using a different structure.

The algorithm for conversion between models involves series that are, in principle,
infinite. The vgxar and vgxma functions truncate these series to the maximum of nMA
and nAR, introducing an inaccuracy. You can specify that the conversion give more
terms, or give terms to a specified accuracy. See [74] for more information on these
transformations.

For model conversion examples, see “Convert a VARMA Model to a VAR Model” on page
7-27 and “Convert a VARMA Model to a VMA Model” on page 7-29.

Conversion Types and Accuracy

Some conversions occur when explicitly requested, such as those initiated by calls to
vgxar and vgxma. Other conversions occur automatically as needed for calculations.

7 Multivariate Time Series Models

7-24

For example, vgxpred internally converts models to VMA models to calculate forecast
statistics.

By default, conversions give terms up to the largest lag present in the model. However,
for more accuracy in conversion, you can specify that the conversion use more terms. You
can also specify that it continue until a residual term is below a threshold you set. The
syntax is

SpecAR = vgxar(Spec,nAR,ARlag,Cutoff)

SpecMA = vgxma(Spec,nMA,MAlag,Cutoff)

• nMA and nAR represent the number of terms in the series.
• ARlag and MAlag are vectors of particular lags that you want in the converted model.
• Cutoff is a positive parameter that truncates the series if the norm of a converted

term is smaller than Cutoff. Cutoff is 0 by default.

For details, see the function reference pages for vgxar and vgxma.

Fitting Models to Data

The vgxvarx function performs parameter estimation. vgxvarx only estimates
parameters for VAR and VARX models. In other words, vgxvarx does not estimate
moving average matrices, which appear, for example, in VMA and VARMA models. For
definitions of these terms, see “Types of VAR Models” on page 7-3. For an example of
fitting a VAR model to data, see “Fit a VAR Model” on page 7-33.

The vgxar function converts a VARMA model to a VAR model. Currently, it does not
handle VARMAX models.

You have two choices in fitting parameters to a VARMA model or VARMAX model:

• Set the vgxvarx 'IgnoreMA' parameter to 'yes' (the default is 'no'). In this case
vgxvarx ignores VMA parameters, and fits the VARX parameters.

• Convert a VARMA model to a VAR model using vgxar. Then fit the resulting VAR
model using vgxvarx.

Each of these options is effective on some data. Try both if you have VMA terms in your
model. See “Fit a VARMA Model” on page 7-35 for an example showing both options.

 VAR Model Estimation

7-25

How vgxvarx Works

vgxvarx finds maximum likelihood estimators of AR and Q matrices and the a and b
vectors if present. For VAR models and if the response series do not contain NaN values,
vgxvarx uses a direct solution algorithm that requires no iterations. For VARX models
or if the response data contain missing values, vgxvarx optimizes the likelihood using
the expectation-conditional-maximization (ECM) algorithm. The iterations usually
converge quickly, unless two or more exogenous data streams are proportional to each
other. In that case, there is no unique maximum likelihood estimator, and the iterations
might not converge. You can set the maximum number of iterations with the MaxIter
parameter, which has a default value of 1000. vgxvarx does not support exogenous
series containing NaN values.

vgxvarx calculates the loglikelihood of the data, giving it as an output of the fitted
model. Use this output in testing the quality of the model. For example, see “Determining
an Appropriate Number of Lags” on page 7-19 and “Examining the Stability of a Fitted
Model” on page 7-25.

Examining the Stability of a Fitted Model

When you enter the name of a fitted model at the command line, you obtain a summary.
This summary contains a report on the stability of the VAR part of the model, and the
invertibility of the VMA part. You can also find whether a model is stable or invertible by
entering:

[isStable,isInvertible] = vgxqual(Spec)

This gives a Boolean value of 1 for isStable if the model is stable, and a Boolean value
of 1 for isInvertible if the model is invertible. This stability or invertibility does not
take into account exogenous terms, which can disrupt the stability of a model.

Stable, invertible models give reliable results, while unstable or noninvertible ones might
not.

Stability and invertibility are equivalent to all eigenvalues of the associated lag operators
having modulus less than 1. In fact vgxqual evaluates these quantities by calculating
eigenvalues. For more information, see the vgxqual function reference page or Hamilton
[52]

7 Multivariate Time Series Models

7-26

See Also
aicbic | lratiotest | var2vec | vec2var | vgxar | vgxinfer | vgxma | vgxqual
| vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Fit a VARMA Model” on page 7-35
• “Convert a VARMA Model to a VMA Model” on page 7-29
• “Convert a VARMA Model to a VAR Model” on page 7-27
• “Forecast a VAR Model” on page 7-50
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3

 Convert a VARMA Model to a VAR Model

7-27

Convert a VARMA Model to a VAR Model

This example creates a VARMA model, then converts it to a pure VAR model.

Create a VARMA model specification structure.

A1 = [.2 -.1 0;.1 .2 .05;0 .1 .3];

A2 = [.3 0 0;.1 .4 .1;0 0 .2];

A3 = [.4 .1 -.1;.2 -.5 0;.05 .05 .2];

MA1 = .2*eye(3);

MA2 = [.3 .2 .1;.2 .4 0;.1 0 .5];

Spec = vgxset('AR',{A1,A2,A3},'MA',{MA1,MA2})

Spec =

 Model: 3-D VARMA(3,2) with No Additive Constant

 n: 3

 nAR: 3

 nMA: 2

 nX: 0

 AR: {3x1 cell} stable autoregressive process

 MA: {2x1 cell} invertible moving average process

 Q: []

Convert the structure to a pure VAR structure:

SpecAR = vgxar(Spec)

SpecAR =

 Model: 3-D VAR(3) with No Additive Constant

 n: 3

 nAR: 3

 nMA: 0

 nX: 0

 AR: {3x1 cell} unstable autoregressive process

 Q: []

The converted process is unstable; see the AR row. An unstable model could yield
inaccurate predictions. Taking more terms in the series gives a stable model:

7 Multivariate Time Series Models

7-28

specAR4 = vgxar(Spec,4)

specAR4 =

 Model: 3-D VAR(4) with No Additive Constant

 n: 3

 nAR: 4

 nMA: 0

 nX: 0

 AR: {4x1 cell} stable autoregressive process

 Q: []

See Also
var2vec | vec2var | vgxar | vgxma | vgxvarx

Related Examples
• “Fit a VARMA Model” on page 7-35
• “Convert a VARMA Model to a VMA Model” on page 7-29
• “Forecast a VAR Model” on page 7-50
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “VAR Model Estimation” on page 7-22

 Convert a VARMA Model to a VMA Model

7-29

Convert a VARMA Model to a VMA Model

This example uses a VARMA model and converts it to a pure VMA model.

Create a VARMA model specification structure.

A1 = [.2 -.1 0;.1 .2 .05;0 .1 .3];

A2 = [.3 0 0;.1 .4 .1;0 0 .2];

A3 = [.4 .1 -.1;.2 -.5 0;.05 .05 .2];

MA1 = .2*eye(3);

MA2 = [.3 .2 .1;.2 .4 0;.1 0 .5];

Spec = vgxset('AR',{A1,A2,A3},'MA',{MA1,MA2})

Spec =

 Model: 3-D VARMA(3,2) with No Additive Constant

 n: 3

 nAR: 3

 nMA: 2

 nX: 0

 AR: {3x1 cell} stable autoregressive process

 MA: {2x1 cell} invertible moving average process

 Q: []

Convert the structure to a pure VAR structure:

SpecAR = vgxar(Spec)

SpecAR =

 Model: 3-D VAR(3) with No Additive Constant

 n: 3

 nAR: 3

 nMA: 0

 nX: 0

 AR: {3x1 cell} unstable autoregressive process

 Q: []

Convert the model specification structure Spec to a pure MA structure:

SpecMA = vgxma(Spec)

7 Multivariate Time Series Models

7-30

SpecMA =

 Model: 3-D VMA(3) with No Additive Constant

 n: 3

 nAR: 0

 nMA: 3

 nX: 0

 MA: {3x1 cell} non-invertible moving average process

 Q: []

Notice that the pure VMA process has more MA terms than the original process. The
number is the maximum of nMA and nAR, and nAR = 3.

The converted VMA model is not invertible; see the MA row. A noninvertible model can
yield inaccurate predictions. Taking more terms in the series results in an invertible
model.

specMA4 = vgxma(Spec,4)

specMA4 =

 Model: 3-D VMA(4) with No Additive Constant

 n: 3

 nAR: 0

 nMA: 4

 nX: 0

 MA: {4x1 cell} invertible moving average process

 Q: []

Converting the resulting VMA model to a pure VAR model results in the same VAR(3)
model as SpecAR.

SpecAR2 = vgxar(SpecMA);

vgxdisp(SpecAR,SpecAR2)

 Model 1: 3-D VAR(3) with No Additive Constant

 Conditional mean is not AR-stable and is MA-invertible

 Model 2: 3-D VAR(3) with No Additive Constant

 Conditional mean is not AR-stable and is MA-invertible

 Parameter Model 1 Model 2

 -------------- -------------- --------------

 Convert a VARMA Model to a VMA Model

7-31

 AR(1)(1,1) 0.4 0.4

 (1,2) -0.1 -0.1

 (1,3) -0 -0

 (2,1) 0.1 0.1

 (2,2) 0.4 0.4

 (2,3) 0.05 0.05

 (3,1) -0 -0

 (3,2) 0.1 0.1

 (3,3) 0.5 0.5

 AR(2)(1,1) 0.52 0.52

 (1,2) 0.22 0.22

 (1,3) 0.1 0.1

 (2,1) 0.28 0.28

 (2,2) 0.72 0.72

 (2,3) 0.09 0.09

 (3,1) 0.1 0.1

 (3,2) -0.02 -0.02

 (3,3) 0.6 0.6

 AR(3)(1,1) 0.156 0.156

 (1,2) -0.004 -0.004

 (1,3) -0.18 -0.18

 (2,1) 0.024 0.024

 (2,2) -0.784 -0.784

 (2,3) -0.038 -0.038

 (3,1) -0.01 -0.01

 (3,2) 0.014 0.014

 (3,3) -0.17 -0.17

 Q(:,:) [] []

See Also
var2vec | vec2var | vgxar | vgxma | vgxvarx

Related Examples
• “Fit a VARMA Model” on page 7-35
• “Convert a VARMA Model to a VAR Model” on page 7-27
• “Forecast a VAR Model” on page 7-50
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3

7 Multivariate Time Series Models

7-32

• “VAR Model Estimation” on page 7-22

 Fit a VAR Model

7-33

Fit a VAR Model

This example uses two series: the consumer price index (CPI) and the unemployment
rate (UNRATE) from the data set Data_USEconmodel.

Obtain the two time series, and convert them for stationarity:

load Data_USEconModel

cpi = DataTable.CPIAUCSL;

cpi = log(cpi);

dCPI = diff(cpi);

unem = DataTable.UNRATE;

Y = [dCPI,unem(2:end)];

Create a VAR model:

Spec = vgxset('n',2,'nAR',4,'Constant',true)

Spec =

 Model: 2-D VAR(4) with Additive Constant

 n: 2

 nAR: 4

 nMA: 0

 nX: 0

 a: []

 AR: {}

 Q: []

Fit the model to the data using vgxvarx:

[EstSpec,EstStdErrors,logL,W] = vgxvarx(Spec,Y);

vgxdisp(EstSpec)

 Model : 2-D VAR(4) with Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 a Constant:

 0.00184568

 0.315567

 AR(1) Autoregression Matrix:

 0.308635 -0.0032011

 -4.48152 1.34343

7 Multivariate Time Series Models

7-34

 AR(2) Autoregression Matrix:

 0.224224 0.00124669

 7.19015 -0.26822

 AR(3) Autoregression Matrix:

 0.353274 0.00287036

 1.48726 -0.227145

 AR(4) Autoregression Matrix:

 -0.0473456 -0.000983119

 8.63672 0.0768312

 Q Innovations Covariance:

 3.51443e-05 -0.000186967

 -0.000186967 0.116697

See Also
vgxinfer | vgxpred | vgxvarx

Related Examples
• “Fit a VARMA Model” on page 7-35
• “Forecast a VAR Model” on page 7-50
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “VAR Model Estimation” on page 7-22

 Fit a VARMA Model

7-35

Fit a VARMA Model
This example uses artificial data to generate a time series, then shows two ways of fitting
a VARMA model to the series.

Specify the model:

AR1 = [.3 -.1 .05;.1 .2 .1;-.1 .2 .4];

AR2 = [.1 .05 .001;.001 .1 .01;-.01 -.01 .2];

Q = [.2 .05 .02;.05 .3 .1;.02 .1 .25];

MA1 = [.5 .2 .1;.1 .6 .2;0 .1 .4];

MA2 = [.2 .1 .1; .05 .1 .05;.02 .04 .2];

Spec = vgxset('AR',{AR1,AR2},'Q',Q,'MA',{MA1,MA2})

Spec =

 Model: 3-D VARMA(2,2) with No Additive Constant

 n: 3

 nAR: 2

 nMA: 2

 nX: 0

 AR: {2x1 cell} stable autoregressive process

 MA: {2x1 cell} invertible moving average process

 Q: [3x3] covariance matrix

Generate a time series using vgxsim:

YF = [100 50 20;110 52 22;119 54 23]; % starting values

rng(1); % For reproducibility

Y = vgxsim(Spec,190,[],YF);

Fit the data to a VAR model by calling vgxvarx with the 'IgnoreMA' option:

estSpec = vgxvarx(Spec,Y(3:end,:),[],Y(1:2,:),'IgnoreMA','yes');

Compare the estimated model with the original:

vgxdisp(Spec,estSpec)

 Model 1: 3-D VARMA(2,2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Model 2: 3-D VAR(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Parameter Model 1 Model 2

7 Multivariate Time Series Models

7-36

 -------------- -------------- --------------

 AR(1)(1,1) 0.3 0.723964

 (1,2) -0.1 0.119695

 (1,3) 0.05 0.10452

 (2,1) 0.1 0.0828041

 (2,2) 0.2 0.788177

 (2,3) 0.1 0.299648

 (3,1) -0.1 -0.138715

 (3,2) 0.2 0.397231

 (3,3) 0.4 0.748157

 AR(2)(1,1) 0.1 -0.126833

 (1,2) 0.05 -0.0690256

 (1,3) 0.001 -0.118524

 (2,1) 0.001 0.0431623

 (2,2) 0.1 -0.265387

 (2,3) 0.01 -0.149646

 (3,1) -0.01 0.107702

 (3,2) -0.01 -0.304243

 (3,3) 0.2 0.0165912

 MA(1)(1,1) 0.5

 (1,2) 0.2

 (1,3) 0.1

 (2,1) 0.1

 (2,2) 0.6

 (2,3) 0.2

 (3,1) 0

 (3,2) 0.1

 (3,3) 0.4

 MA(2)(1,1) 0.2

 (1,2) 0.1

 (1,3) 0.1

 (2,1) 0.05

 (2,2) 0.1

 (2,3) 0.05

 (3,1) 0.02

 (3,2) 0.04

 (3,3) 0.2

 Q(1,1) 0.2 0.193553

 Q(2,1) 0.05 0.0408221

 Q(2,2) 0.3 0.252461

 Q(3,1) 0.02 0.00690626

 Q(3,2) 0.1 0.0922074

 Q(3,3) 0.25 0.306271

 Fit a VARMA Model

7-37

The estimated Q matrix is close to the original Q matrix. However, the estimated AR
terms are not close to the original AR terms. Specifically, nearly all the AR(2) coefficients
are the opposite sign, and most AR(1) coefficients are off by about a factor of 2.

Alternatively, before fitting the model, convert it to a pure AR model. To do this, specify
the model and generate a time series as above. Then, convert the model to a pure AR
model:

specAR = vgxar(Spec);

Fit the converted model to the data:

estSpecAR = vgxvarx(specAR,Y(3:end,:),[],Y(1:2,:));

Compare the fitted model to the original model:

vgxdisp(specAR,estSpecAR)

 Model 1: 3-D VAR(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Model 2: 3-D VAR(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Parameter Model 1 Model 2

 -------------- -------------- --------------

 AR(1)(1,1) 0.8 0.723964

 (1,2) 0.1 0.119695

 (1,3) 0.15 0.10452

 (2,1) 0.2 0.0828041

 (2,2) 0.8 0.788177

 (2,3) 0.3 0.299648

 (3,1) -0.1 -0.138715

 (3,2) 0.3 0.397231

 (3,3) 0.8 0.748157

 AR(2)(1,1) -0.13 -0.126833

 (1,2) -0.09 -0.0690256

 (1,3) -0.114 -0.118524

 (2,1) -0.129 0.0431623

 (2,2) -0.35 -0.265387

 (2,3) -0.295 -0.149646

 (3,1) 0.03 0.107702

 (3,2) -0.17 -0.304243

 (3,3) 0.05 0.0165912

 Q(1,1) 0.2 0.193553

 Q(2,1) 0.05 0.0408221

 Q(2,2) 0.3 0.252461

7 Multivariate Time Series Models

7-38

 Q(3,1) 0.02 0.00690626

 Q(3,2) 0.1 0.0922074

 Q(3,3) 0.25 0.306271

The model coefficients between the pure AR models are closer than between the original
VARMA model and the fitted AR model. Most model coefficients are within 20% or the
original. Notice, too, that estSpec and estSpecAR are identical. This is because both
are AR(2) models fitted to the same data series.

See Also
vgxinfer | vgxpred | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Forecast a VAR Model” on page 7-50
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “VAR Model Estimation” on page 7-22

 VAR Model Forecasting, Simulation, and Analysis

7-39

VAR Model Forecasting, Simulation, and Analysis

In this section...

“VAR Model Forecasting” on page 7-39
“Data Scaling” on page 7-40
“Calculating Impulse Responses” on page 7-40

VAR Model Forecasting

When you have models with parameters (known or estimated), you can examine the
predictions of the models. For information on specifying models, see “Multivariate Time
Series Model Creation” on page 7-14. For information on calibrating models, see “VAR
Model Estimation” on page 7-22.

The main methods of forecasting are:

• Generating forecasts with error bounds using vgxpred
• Generating simulations with vgxsim
• Generating sample paths with vgxproc

These functions base their forecasts on a model specification and initial data. The
functions differ in their innovations processes:

• vgxpred assumes zero innovations. Therefore, vgxpred yields a deterministic
forecast.

• vgxsim assumes the innovations are jointly normal with covariance matrix Q.
vgxsim yields pseudorandom (Monte Carlo) sample paths.

• vgxproc uses a separate input for the innovations process. vgxproc yields a sample
path that is deterministically based on the innovations process.

vgxpred is faster and takes less memory than generating many sample paths using
vgxsim. However, vgxpred is not as flexible as vgxsim. For example, suppose you
transform some time series before making a model, and want to undo the transformation
when examining forecasts. The error bounds given by transforms of vgxpred error
bounds are not valid bounds. In contrast, the error bounds given by the statistics of
transformed simulations are valid.

7 Multivariate Time Series Models

7-40

For examples, see “Forecast a VAR Model” on page 7-50, “Forecast a VAR Model
Using Monte Carlo Simulation” on page 7-53, and “Simulate Responses of Estimated
VARX Model” on page 7-80.

How vgxpred and vgxsim Work

vgxpred generates two quantities:

• A deterministic forecast time series based on 0 innovations
• Time series of forecast covariances based on the Q matrix

The simulations for models with VMA terms uses presample innovation terms.
Presample innovation terms are values of εt for times before the forecast period that
affect the MA terms. For definitions of the terms MA, Q, and εt, see “Types of VAR
Models” on page 7-3. If you do not provide all requisite presample innovation terms,
vgxpred assumes the value 0 for missing terms.

vgxsim generates random time series based on the model using normal random
innovations distributed with Q covariances. The simulations of models with MA
terms uses presample innovation terms. If you do not provide all requisite presample
innovation terms, vgxsim assumes the value 0 for missing terms.

Data Scaling

If you scaled any time series before fitting a model, you can unscale the resulting time
series to understand its predictions more easily.

• If you scaled a series with log, transform predictions of the corresponding model with
exp.

• If you scaled a series with diff(log), transform predictions of the corresponding
model with cumsum(exp). cumsum is the inverse of diff; it calculates cumulative
sums. As in integration, you must choose an appropriate additive constant for the
cumulative sum. For example, take the log of the final entry in the corresponding data
series, and use it as the first term in the series before applying cumsum.

Calculating Impulse Responses

You can examine the effect of impulse responses to models with the vgxproc function. An
impulse response is the deterministic response of a time series model to an innovations
process that has the value of one standard deviation in one component at the initial time,

 VAR Model Forecasting, Simulation, and Analysis

7-41

and zeros in all other components and times. vgxproc simulates the evolution of a time
series model from a given innovations process. Therefore, vgxproc is appropriate for
examining impulse responses.

The only difficulty in using vgxproc is determining exactly what is “the value of one
standard deviation in one component at the initial time.” This value can mean different
things depending on your model.

• For a structural model, B0 is usually a known diagonal matrix, and Q is an identity
matrix. In this case, the impulse response to component i is the square root of B(i,i).

• For a nonstructural model, there are several choices. The simplest choice, though
not necessarily the most accurate, is to take component i as the square root of Q(i,i).
Other possibilities include taking the Cholesky decomposition of Q, or diagonalizing Q
and taking the square root of the diagonal matrix.

For an example, see “Generate Impulse Responses for a VAR model” on page 7-42.

See Also
vgxpred | vgxproc | vgxsim | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Forecast a VAR Model” on page 7-50
• “Forecast a VAR Model Using Monte Carlo Simulation” on page 7-53
• “Simulate Responses of Estimated VARX Model” on page 7-80
• “Generate Impulse Responses for a VAR model” on page 7-42
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Multivariate Time Series Data Structures” on page 7-8
• “VAR Model Estimation” on page 7-22
• “Multivariate Time Series Models with Regression Terms” on page 7-57

7 Multivariate Time Series Models

7-42

Generate Impulse Responses for a VAR model

This example shows how to generate impulse responses of an interest rate shock on real
GDP using vgxproc.

Load the Data_USEconModel data set. This example uses two time series: the logarithm
of real GDP, and the real 3-month T-bill rate, both differenced to be approximately
stationary. Suppose that a VAR(4) model is appropriate to describe the time series.

load Data_USEconModel

DEF = log(DataTable.CPIAUCSL);

GDP = log(DataTable.GDP);

rGDP = diff(GDP - DEF); % Real GDP is GDP - deflation

TB3 = 0.01*DataTable.TB3MS;

dDEF = 4*diff(DEF); % Scaling

rTB3 = TB3(2:end) - dDEF; % Real interest is deflated

Y = [rGDP,rTB3];

Define the forecast horizon.

FDates = datenum({'30-Jun-2009'; '30-Sep-2009'; '31-Dec-2009';

'31-Mar-2010'; '30-Jun-2010'; '30-Sep-2010'; '31-Dec-2010';

'31-Mar-2011'; '30-Jun-2011'; '30-Sep-2011'; '31-Dec-2011';

'31-Mar-2012'; '30-Jun-2012'; '30-Sep-2012'; '31-Dec-2012';

'31-Mar-2013'; '30-Jun-2013'; '30-Sep-2013'; '31-Dec-2013';

'31-Mar-2014'; '30-Jun-2014' });

FT = numel(FDates);

Fit a VAR(4) model specification:

Spec = vgxset('n',2,'nAR',4,'Constant',true);

impSpec = vgxvarx(Spec,Y(5:end,:),[],Y(1:4,:));

impSpec = vgxset(impSpec,'Series',...

 {'Transformed real GDP','Transformed real 3-mo T-bill rate'});

Generate the innovations processes both with and without an impulse (shock):

W0 = zeros(FT, 2); % Innovations without a shock

W1 = W0;

W1(1,2) = sqrt(impSpec.Q(2,2)); % Innovations with a shock

Generate the processes with and without the shock:

Yimpulse = vgxproc(impSpec,W1,[],Y); % Process with shock

 Generate Impulse Responses for a VAR model

7-43

Ynoimp = vgxproc(impSpec,W0,[],Y); % Process with no shock

Undo the scaling for the GDP processes:

Yimp1 = exp(cumsum(Yimpulse(:,1))); % Undo scaling

Ynoimp1 = exp(cumsum(Ynoimp(:,1)));

Compute and plot the relative difference between the calculated GDPs:

RelDiff = (Yimp1 - Ynoimp1) ./ Yimp1;

plot(FDates,100*RelDiff);dateaxis('x',12)

title(...

'Impact of Interest Rate Shock on Real Gross Domestic Product')

ylabel('% Change')

7 Multivariate Time Series Models

7-44

The graph shows that an increased interest rate causes a dip in the real GDP for a short
time. Afterwards the real GDP begins to climb again, reaching its former level in about 1
year.

See Also
armairf | vgxpred | vgxproc | vgxsim | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Forecast a VAR Model” on page 7-50
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “VAR Model Forecasting, Simulation, and Analysis” on page 7-39

 Compare Generalized and Orthogonalized Impulse Response Functions

7-45

Compare Generalized and Orthogonalized Impulse Response
Functions

This example shows the differences between orthogonal and generalized impulse
response functions using the three-dimensional VAR(2) model in [74], p. 78. The
variables in the model represent the quarterly rates of fixed investment, disposable
income, and consumption expenditures of Germany. The estimated model is

where and . The estimated covariance matrix of
the innovations is

The VAR(2) model contains a constant, but because the impulse response function is
the derivative of with respect to , the constant does not affect the impulse response
function.

Create a cell vector containing the autoregressive coefficient matrices, and a matrix for
the innovations covariance matrix.

AR1 = [-0.320 0.146 0.961;

 0.044 -0.153 0.289;

 -0.002 0.225 -0.264];

AR2 = [-0.161 0.115 0.934;

 0.050 0.019 -0.010;

 0.034 0.355 -0.022];

ar0 = {AR1 AR2};

InnovCov = [21.30 0.72 1.23;

 0.72 1.37 0.61;

 1.23 0.61 0.89]*1e-4;

Plot and compute the orthogonalized impulse response function. Because no VMA
coefficients exist, specify an empty array ([]) for the second input argument.

7 Multivariate Time Series Models

7-46

figure;

armairf(ar0,[],'InnovCov',InnovCov);

OrthoY = armairf(ar0,[],'InnovCov',InnovCov);

The impulse responses seem to die out after nine periods. OrthoY is a 10-by-3-by-3
matrix of impulse responses. The rows correspond to periods, columns correspond to a
variable, and pages correspond to the variable receiving the shock.

Plot and compute the generalized impulse response function. Display both sets of impulse
responses.

figure;

armairf(ar0,[],'InnovCov',InnovCov,'Method','generalized');

 Compare Generalized and Orthogonalized Impulse Response Functions

7-47

GenY = armairf(ar0,[],'InnovCov',InnovCov,'Method','generalized');

for j = 1:3

 fprintf('Shock to Response %d',j)

 table(OrthoY(:,:,j),GenY(:,:,j),'VariableNames',{'Orthogonal',...

 'Generalized'})

end

Shock to Response 1

ans =

 Orthogonal Generalized

 ___ ___

 0.046152 0.0015601 0.0026651 0.046152 0.0015601 0.0026651

 -0.01198 0.0025622 -0.00044488 -0.01198 0.0025622 -0.00044488

 -0.00098179 0.0012629 0.0027823 -0.00098179 0.0012629 0.0027823

 0.0049802 2.1799e-05 6.3661e-05 0.0049802 2.1799e-05 6.3661e-05

 0.0013726 0.00018127 0.00033187 0.0013726 0.00018127 0.00033187

 -0.00083369 0.00037736 0.00012609 -0.00083369 0.00037736 0.00012609

 0.00055287 1.0779e-05 0.00015701 0.00055287 1.0779e-05 0.00015701

 0.00027093 3.2276e-05 6.2713e-05 0.00027093 3.2276e-05 6.2713e-05

 3.7154e-05 5.1385e-05 9.3341e-06 3.7154e-05 5.1385e-05 9.3341e-06

 2.325e-05 1.0003e-05 2.8313e-05 2.325e-05 1.0003e-05 2.8313e-05

Shock to Response 2

ans =

 Orthogonal Generalized

 ___ ___

 0 0.0116 0.0049001 0.0061514 0.011705 0.0052116

 0.0064026 -0.00035872 0.0013164 0.0047488 -1.4011e-05 0.0012454

 0.0050746 0.00088845 0.0035692 0.0048985 0.0010489 0.0039082

 0.0020934 0.001419 -0.00069114 0.0027385 0.0014093 -0.00067649

 0.0014919 -8.9823e-05 0.00090697 0.0016616 -6.486e-05 0.00094311

 -0.00043831 0.00048004 0.00032749 -0.00054552 0.00052606 0.00034138

 0.0011216 6.5734e-05 2.1313e-05 0.0011853 6.6585e-05 4.205e-05

 0.00010281 2.9385e-05 0.00015523 0.000138 3.3424e-05 0.0001622

 -3.2553e-05 0.00010201 2.6429e-05 -2.731e-05 0.00010795 2.7437e-05

 0.00018252 -5.2551e-06 2.6551e-05 0.00018399 -3.875e-06 3.0088e-05

Shock to Response 3

ans =

7 Multivariate Time Series Models

7-48

 Orthogonal Generalized

 ___ ___

 0 0 0.0076083 0.013038 0.006466 0.009434

 0.0073116 0.0021988 -0.0020086 0.0058379 0.0023108 -0.0010618

 0.0031572 -0.00067127 0.00084299 0.0049047 0.00027687 0.0033197

 -0.0030985 0.00091269 0.00069346 -4.6882e-06 0.0014793 0.00021826

 0.001993 6.1109e-05 -0.00012102 0.00277 5.3838e-05 0.00046724

 0.00050636 -0.00010115 0.00024511 -5.4815e-05 0.00027437 0.0004034

 -0.00036814 0.00021062 3.6381e-06 0.00044188 0.00020705 5.8359e-05

 0.00028783 -2.6426e-05 2.3079e-05 0.00036206 3.0686e-06 0.00011696

 1.3105e-05 8.9361e-06 4.9558e-05 4.1567e-06 7.4706e-05 5.6331e-05

 1.6913e-05 2.719e-05 -1.1202e-05 0.00011501 2.2025e-05 1.2756e-05

 Compare Generalized and Orthogonalized Impulse Response Functions

7-49

If armairf shocks the first variable, then the impulse responses of all variables are
equivalent between methods. The second and third pages illustrate that the generalized
and orthogonal impulse responses are generally different. However, if InnovCov is
diagonal, then both methods produce the same impulse responses.

Another difference between the two methods is that generalized impulse responses are
invariant to the order of the variables. However, orthogonal impulse responses differ
with varying variable order.

See Also
armairf | vgxproc

Related Examples
• “Fit a VAR Model” on page 7-33
• “Generate VEC Model Impulse Responses” on page 7-138

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “VAR Model Forecasting, Simulation, and Analysis” on page 7-39

7 Multivariate Time Series Models

7-50

Forecast a VAR Model
This example shows how to use vgxpred to forecast a VAR model.

vgxpred enables you to generate forecasts with error estimates. vgxpred requires:

• A fully-specified model (for example , impSpec in what follows)
• The number of periods for the forecast (for example, FT in what follows)

vgxpred optionally takes:

• An exogenous data series
• A presample time series (e.g., Y(end-3:end,:) in what follows)
• Extra paths

Load the Data_USEconModel data set. This example uses two time series: the logarithm
of real GDP, and the real 3-month T-bill rate, both differenced to be approximately
stationary. Suppose that a VAR(4) model is appropriate to describe the time series.

load Data_USEconModel

DEF = log(DataTable.CPIAUCSL);

GDP = log(DataTable.GDP);

rGDP = diff(GDP - DEF); % Real GDP is GDP - deflation

TB3 = 0.01*DataTable.TB3MS;

dDEF = 4*diff(DEF); % Scaling

rTB3 = TB3(2:end) - dDEF; % Real interest is deflated

Y = [rGDP,rTB3];

Fit a VAR(4) model specification:

Spec = vgxset('n',2,'nAR',4,'Constant',true);

impSpec = vgxvarx(Spec,Y(5:end,:),[],Y(1:4,:));

impSpec = vgxset(impSpec,'Series',...

 {'Transformed real GDP','Transformed real 3-mo T-bill rate'});

Predict the evolution of the time series:

FDates = datenum({'30-Jun-2009'; '30-Sep-2009'; '31-Dec-2009';

'31-Mar-2010'; '30-Jun-2010'; '30-Sep-2010'; '31-Dec-2010';

'31-Mar-2011'; '30-Jun-2011'; '30-Sep-2011'; '31-Dec-2011';

'31-Mar-2012'; '30-Jun-2012'; '30-Sep-2012'; '31-Dec-2012';

'31-Mar-2013'; '30-Jun-2013'; '30-Sep-2013'; '31-Dec-2013';

'31-Mar-2014'; '30-Jun-2014' });

FT = numel(FDates);

 Forecast a VAR Model

7-51

[Forecast,ForecastCov] = vgxpred(impSpec,FT,[],...

 Y(end-3:end,:));

View the forecast using vgxplot:

vgxplot(impSpec,Y(end-10:end,:),Forecast,ForecastCov);

See Also
vgxpred | vgxproc | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33

7 Multivariate Time Series Models

7-52

• “Forecast a VAR Model Using Monte Carlo Simulation” on page 7-53
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “VAR Model Forecasting, Simulation, and Analysis” on page 7-39

 Forecast a VAR Model Using Monte Carlo Simulation

7-53

Forecast a VAR Model Using Monte Carlo Simulation

This example shows how to use Monte Carlo simulation via vgxsim to forecast a VAR
model.

vgxsim enables you to generate simulations of time series based on your model. If you
have a trustworthy model structure, you can use these simulations as sample forecasts.

vgxsim requires:

• A model (impSpec in what follows)
• The number of periods for the forecast (FT in what follows)

vgxsim optionally takes:

• An exogenous data series
• A presample time series (Y(end-3:end,:) in what follows)
• Presample innovations
• The number of realizations to simulate (2000 in what follows)

Load the Data_USEconModel data set. This example uses two time series: the logarithm
of real GDP, and the real 3-month T-bill rate, both differenced to be approximately
stationary. For illustration, a VAR(4) model describes the time series.

load Data_USEconModel

DEF = log(DataTable.CPIAUCSL);

GDP = log(DataTable.GDP);

rGDP = diff(GDP - DEF); % Real GDP is GDP - deflation

TB3 = 0.01*DataTable.TB3MS;

dDEF = 4*diff(DEF); % Scaling

rTB3 = TB3(2:end) - dDEF; % Real interest is deflated

Y = [rGDP,rTB3];

Fit a VAR(4) model specification:

Spec = vgxset('n',2,'nAR',4,'Constant',true);

impSpec = vgxvarx(Spec,Y(5:end,:),[],Y(1:4,:));

impSpec = vgxset(impSpec,'Series',...

 {'Transformed real GDP','Transformed real 3-mo T-bill rate'});

Define the forecast horizon.

7 Multivariate Time Series Models

7-54

FDates = datenum({'30-Jun-2009'; '30-Sep-2009'; '31-Dec-2009';

'31-Mar-2010'; '30-Jun-2010'; '30-Sep-2010'; '31-Dec-2010';

'31-Mar-2011'; '30-Jun-2011'; '30-Sep-2011'; '31-Dec-2011';

'31-Mar-2012'; '30-Jun-2012'; '30-Sep-2012'; '31-Dec-2012';

'31-Mar-2013'; '30-Jun-2013'; '30-Sep-2013'; '31-Dec-2013';

'31-Mar-2014'; '30-Jun-2014' });

FT = numel(FDates);

Simulate the model for 10 steps, replicated 2000 times:

rng(1); %For reproducibility

Ysim = vgxsim(impSpec,FT,[],Y(end-3:end,:),[],2000);

Calculate the mean and standard deviation of the simulated series:

Ymean = mean(Ysim,3); % Calculate means

Ystd = std(Ysim,0,3); % Calculate std deviations

Plot the means +/- 1 standard deviation for the simulated series:

subplot(2,1,1)

plot(dates(end-10:end),Y(end-10:end,1),'k')

hold('on')

plot([dates(end);FDates],[Y(end,1);Ymean(:,1)],'r')

plot([dates(end);FDates],[Y(end,1);Ymean(:,1)]+[0;Ystd(:,1)],'b')

plot([dates(end);FDates],[Y(end,1);Ymean(:,1)]-[0;Ystd(:,1)],'b')

datetick('x')

title('Transformed real GDP')

subplot(2,1,2)

plot(dates(end-10:end),Y(end-10:end,2),'k')

hold('on')

axis([dates(end-10),FDates(end),-.1,.1]);

plot([dates(end);FDates],[Y(end,2);Ymean(:,2)],'r')

plot([dates(end);FDates],[Y(end,2);Ymean(:,2)]+[0;Ystd(:,2)],'b')

plot([dates(end);FDates],[Y(end,2);Ymean(:,2)]-[0;Ystd(:,2)],'b')

datetick('x')

title('Transformed real 3-mo T-bill rate')

 Forecast a VAR Model Using Monte Carlo Simulation

7-55

See Also
vgxpred | vgxproc | vgxsim | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Forecast a VAR Model” on page 7-50
• “Simulate Responses of Estimated VARX Model” on page 7-80
• “VAR Model Case Study” on page 7-89

7 Multivariate Time Series Models

7-56

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “VAR Model Forecasting, Simulation, and Analysis” on page 7-39

 Multivariate Time Series Models with Regression Terms

7-57

Multivariate Time Series Models with Regression Terms

In this section...

“Design Matrix Structure for Including Exogenous Data” on page 7-58
“Estimation of Models that Include Exogenous Data” on page 7-62

Incorporate feedback from exogenous predictors, or study their linear associations to the
response series by including a regression component in multivariate time series models.
By order of increasing complexity, examples of multivariate, time series, regression
models include:

• Modeling the effects of an intervention or to include shared intercepts among several
responses. In these cases, the exogenous series are indicator variables.

• Modeling the contemporaneous linear associations between a subset of exogenous
series to each response. Applications include CAPM analysis and studying the effects
of prices of items on their demand. These applications are examples of seemingly
unrelated regression (SUR). For more details, see “Implement Seemingly Unrelated
Regression Analyses” on page 7-64 and “Estimate the Capital Asset Pricing Model
Using SUR” on page 7-74.

• Modeling the linear associations between contemporaneous and lagged, exogenous
series and the response as part of a multivariate, distributed lag model. Applications
include determining how a change in monetary growth affects real gross domestic
product (GDP) and gross national income (GNI).

• Any combination of SUR and the distributed lag model that includes the lagged
effects of responses, also known as simultaneous equation models. VARMAX modeling
is an example (see “Types of VAR Models” on page 7-3).

The general equation for a multivariate, time series, regression model is

y yt t i t i

i

p

j t j

j

q

ta X b A B= + ◊ + + +-

=

-

=

Â Â
1 1

e e ,

where, in particular,

• Xt is an n-by-r design matrix.

7 Multivariate Time Series Models

7-58

• Row j of Xt contains the observations of the regression variables that correspond to
the period t observation of response series j.

• Column k of Xt corresponds to the period t observations of regression variable k.
(There are r regression variables composed from the exogenous series. For details,
see “Design Matrix Structure for Including Exogenous Data” on page 7-58.)

• Xt can contain lagged exogenous series.
• b is an r-by-1 vector of regression coefficients corresponding to the r regression

variables. The column entries of Xt share a common regression coefficient for all t.
That is, the regression component of the response series (yt = [y1t,y2t,...,ynt]′) for period
t is

X b X r b

X b X r b

X n b X n

t t

t t

t

r

r

(,) (,)

(,) (,)

(,) (

1 1 1

2 1 2

1

1

1

1

+

+

+

+

+

+

L

L

M

L ,,)

.

r bt r

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

• a is an n-by-1 vector of intercepts corresponding to the n response series.

Design Matrix Structure for Including Exogenous Data

Overview

For maximum flexibility, construct a design matrix that linearly associates the
exogenous series to each response series. It helps to think of the design matrix as a
vector of T smaller, block design matrices. The rows of block design matrix t correspond
to observation t of the response series, and the columns correspond to the regression
coefficients of the regression variables.

vgxvarx estimates the regression component of multivariate time series models using
the Statistics and Machine Learning Toolbox function mvregress. Therefore, you must
pass the design matrix as a T-by-1 cell vector, where cell t is the n-by-r numeric, block,
design matrix at period t, n is the number of response series, and r is the number of
regression variables in the design. That is, the structure of the entire design matrix is

 Multivariate Time Series Models with Regression Terms

7-59

Regression variables X

X X r

X n X n r

t

(,) (,)

(,) (,)

1 1 1

1

1 1

1 1

L

M O M

L

È

Î

ÍÍ
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

X X r

X n X n r

X

(,) (,)

(,) (,)

(,

1 1 1

1

1 1

2 2

2 2

L

M O M

L

M

)) (,)

(,) (,)

T T

T T

X r

X n X n r

L

M O M

L

1

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ï

Ì

Ô
Ô
Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô
Ô
Ô

¸

˝

ÔÔ
Ô
Ô
Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
Ô
Ô
Ô
Ô

At each time t, the n-by-r matrix Xt multiplies the r-by-1 vector b, yielding an n-by-1
vector of linear combinations. This setup implies suggests that:

• The number of regression variables might differ from the number of exogenous series.
That is, you can associate different sets of exogenous series among response series.

• Each block design matrix in the cell vector must have the same dimensionality.
That is, the multivariate time series framework does not accommodate time-varying
models. The state-space framework does accommodate time-varying, multivariate
time series models. For details, see ssm.

vgxinfer, vgxpred, vgxproc, and vgxsim accommodate multiple response paths. You
can associate a common design matrix for all response paths by passing in a cell vector of
design matrices. You can also associate a different design matrix to each response path
by passing in a T-by-M cell matrix of design matrices, where M is the number of response
paths and cell (t,m) is an n-by-r numeric, design matrix at period t (denoted Xt

(m)). That
is, the structure of the entire design matrix for all paths is

7 Multivariate Time Series Models

7-60

Path Path 1

1 1 1

1

1
1

1
1

1
1

1
1

L

L

M O M

L

M

X X r

X n X n r

(,) (,)

(,) (,)

() ()

() ()

ÈÈ

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

, ,

(,) (,)

(,) (,)

() ()

()

L

L

M O M

L

X X r

X n X n r

M M

M

1 1 1

1

1 1

1 1
(()

() ()

()

(,) (,)

(,) (,)

M

X X r

X n X n r

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 1 1

1

2 2

2

1 1

1
2

L

M O M

L
(()

() ()

()

, ,

(,) (,)

(,) (,1

2 2

2

1 1 1

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

L

L

M O M

L

X X r

X n X n

M M

M
rr

X X r

X n X

M

T T

T

)

(,) (,)

(,)

()

() ()

()

2

1 1

1

1 1 1

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

M O M

L

M O M

L ((,)

, ,

(,) (,)

(,)()

() ()

(
n r

X X r

X n
T

T T

T

M M

M1

1 1 1

1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

L

L

M O M

)) ()(,)L X n r
T

M

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Ï

Ì

Ô
Ô
Ô
Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô
Ô
Ô
Ô

¸

˝

Ô
Ô
Ô
Ô
Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
ÔÔ
Ô
Ô
Ô
Ô

.

For more details on how to structure design matrices for mvregress, see “Set Up
Multivariate Regression Problems”.

Examples of Design Matrix Structures

• Intervention model — Suppose a tariff is imposed over some time period. You suspect
that this tariff affects GNP and three other economic time series. To determine the
effects of the tariff, use an intervention model, where the response series are the four
econometric series, and the exogenous, regression variables are indicator variables
representing the presence of the tariff in the system. Here are two ways of including
the exogenous tariffs.

• Responses share a regression coefficient — Each block design matrix (or cell)
consists of either ones(4,1) or zeros(4,1), where a 1 indicates that the tariff
is in the system, and 0 otherwise. That is, at period t, a cell of the entire design
matrix contains one of

1

1

1

1

0

0

0

0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 or .

 Multivariate Time Series Models with Regression Terms

7-61

• Responses do not share regression coefficients — Each block matrix (or cell)
consists of either eye(4) or zeros(4). That is, at period t, a cell of the entire
design matrix contains one of

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙ or
˙̇
˙

.

In this case, the sole exogenous, indicator variable expands to four regression
variables. The advantage of the larger (replicated) formulation is that it allows for
vgxvarx to estimate the influence of the tariff on each response series separately.
The resulting estimated regression coefficient vector ˆb can have differing values
for each component. The different values reflect the different direct influences of
the tariff on each time series.

Once you have the entire design matrix (denoted Design), you must put each block
design matrix that composes Design into the respective cells of a T-by-1 cell vector
(or cell matrix for multiple paths). To do this, use mat2cell. Specify to break up
Design into T, 4-by-size(Design,2) block design matrices using

DesignCell = mat2cell(Design,4*ones(T,1),size(Design,2))

DesignCell is the properly structured regression variables that you can now pass
into vgxvarx to estimate the model parameters.

• SUR that associates all exogenous series to each response series — If the columns of a
X are exogenous series, then, to associate all exogenous series to each response,

1 Create the entire design matrix by expanding X using its Kronecker product with
the n-by-n identity matrix, e.g., if there are four responses, then the entire design
matrix is

Design = kron(X,eye(4));

2 Put each block design matrix into the cells of a T-by-1 cell vector using
mat2cell. Each block matrix has four rows and size(Design,2) columns.

• Linear trend — You can model linear trends in your data by including the exogenous
matrix eye(n)*t in cell t of the entire design matrix.

7 Multivariate Time Series Models

7-62

Estimation of Models that Include Exogenous Data

Before you estimate a multivariate, time series, regression model using vgxvarx, specify
the number of regression variables in the created model. (For details on specifying a
multivariate time series model using vgxset, see “Multivariate Time Series Model
Creation” on page 7-14). Recall from “Design Matrix Structure for Including Exogenous
Data” on page 7-58 that the number of regression variables in the model is the
number of columns in each design matrix denoted r. You can indicate the number of
regression variables several ways:

• For a new model,

• Specify the nX name-value pair argument as the number of regression variables
when you create the model using vgxset.

• Specify the bsolve name-value pair argument as the logical vector true(r,1)

vgxset creates a multivariate time series model object, and fills in the appropriate
properties. In what follows, Mdl denotes a created multivariate time aeries model in
the Workspace.

• For a model in the Workspace, set either of the nX or bsolve properties to r or
true(r,1), respectively, using dot notation, e.g., Mdl.nX = r.

You can also exclude a subset of regression coefficient from being estimated.
For example, to exclude the first regression coefficient, set 'bsolve',
[false(1);true(r-1,1)]. Be aware that if the model is new (i.e, Mdl.b = []), then
the software sets any coefficient it doesn’t estimate to 0. To fix a coefficient to a value:

1 Enter

Mdl.b = ones(r,1);

2 Specify values for the elements you want to hold fixed during estimation in the b
property. For example, to specify that the first regression coefficient should be held
at 2 during estimation, enter

Mdl.b(1) = 2;

3 Enter

Mdl.bsolve = [false(1);true(r-1,1)];

The software does not estimate regression intercepts (a) by default. To include a different
regression intercept for each response series, specify 'Constant',true when you create

 Multivariate Time Series Models with Regression Terms

7-63

the model using vgxset, or set the Constant property of a model in the Workspace to
true using dot notation. Alternatively, you can specify 'asolve',true(n,1) or set
the asolve property to true(n,1). To exclude a regression intercept from estimation,
follow the same steps as for excluding a regression coefficient.

To estimate the regression coefficients, pass the model, response data, and the cell vector
of design matrices (see “Design Matrix Structure for Including Exogenous Data” on page
7-58) to vgxvarx. For details on how vgxvarx works when it estimates regression
coefficients, see “How vgxvarx Works” on page 7-25.

Be aware that the presence of exogenous series in a multivariate time series model might
destabilized the fitted model.

See Also
mvregress | vgxpred | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Implement Seemingly Unrelated Regression Analyses” on page 7-64
• “Estimate the Capital Asset Pricing Model Using SUR” on page 7-74
• “Simulate Responses of Estimated VARX Model” on page 7-80

More About
• “Vector Autoregressive (VAR) Models” on page 7-3

7 Multivariate Time Series Models

7-64

Implement Seemingly Unrelated Regression Analyses

This example shows how to prepare exogenous data for several seemingly unrelated
regression (SUR) analyses. The response and exogenous series are random paths from a
standard Gaussian distribution.

In seemingly unrelated regression (SUR), each response variable is a function of a subset
of the exogenous series, but not of any endogenous variable. That is, for and

, the model for response at period is

The indices of the regression coefficients and exogenous predictors indicate that:

• You can associate each response with a different subset of exogenous predictors.
• The response series might not share intercepts or regression coefficients.

SUR accommodates intra-period innovation heteroscedasticity and correlation, but inter-
period innovation independence and homoscedasticity, i.e.,

Simulate Data from the True Model

Suppose that the true model is

where , are multivariate Gaussian random variables each having mean
zero and jointly having covariance matrix

 Implement Seemingly Unrelated Regression Analyses

7-65

Suppose that the paths represent different econometric measurements, e.g. stock returns.

Simulate four exogenous predictor paths from the standard Gaussian distribution.

rng(1); % For reproducibility

n = 3; % Number of response series

nExo = 4; % Number of exogenous series

T = 100;

X = randn(100,nExo);

The multivariate time series analysis functions of Econometrics Toolbox™ require you to
input the exogenous data in a T-by-1 cell vector. Cell of the cell vector is a design matrix
indicating the linear relationship of the exogenous variables with each response series at
period . Specifically, each design matrix in the cell array:

• Has rows, each corresponding to a response series.
• Has columns since, in this example, all exogenous variables are in the

regression component of each response series.

To create the cell vector of design matrices for this case, first expand the exogenous
predictor data by finding its Kronecker product with the -by- identity matrix.

ExpandX1 = kron(X,eye(n));

r1 = size(ExpandX1,2); % Number of regression variables

ExpandX1 is an -by- numeric matrix formed by multiplying each element of X to
the -by- identity matrix, and then putting the product in the corresponding position of
a -by-1 block matrix of -by- matrices.

Create the cell vector of design matrices by putting each consecutive -by- block
matrices of ExpandX1 into the cells of a -by-1 cell vector. Verify that one of the cells
contains the expected design matrix (e.g. the third cell)).

CellX1 = mat2cell(ExpandX1,n*ones(T,1));

CellX1{3}

X(3,:)

ans =

 Columns 1 through 7

 -0.7585 0 0 1.9302 0 0 1.8562

 0 -0.7585 0 0 1.9302 0 0

7 Multivariate Time Series Models

7-66

 0 0 -0.7585 0 0 1.9302 0

 Columns 8 through 12

 0 0 1.3411 0 0

 1.8562 0 0 1.3411 0

 0 1.8562 0 0 1.3411

ans =

 -0.7585 1.9302 1.8562 1.3411

In period 3, all observed predictors are associated with each response series.

Create a multivariate time series model object that characterizes the true model using
vgxset.

aTrue = [1; -1; 0.5];

bTrue = [2; 4; -2; -1.5; 2.5; 0.5; 0.5; -1.75; -1.5; 0.75; -0.05; 0.7];

InnovCov = [1 0.5 -0.05; 0.5 1 0.25; -0.05 0.25 1];

TrueMdl = vgxset('n',n,'b',bTrue,'a',aTrue,'Q',InnovCov)

Y = vgxsim(TrueMdl,100,CellX1);

TrueMdl =

 Model: 3-D VARMAX(0,0,12) with Additive Constant

 n: 3

 nAR: 0

 nMA: 0

 nX: 12

 a: [1 -1 0.5] additive constants

 b: [12x1] regression coefficients

 Q: [3x3] covariance matrix

SUR Using All Predictors for Each Response Series

Create a multivariate time series model suitable for SUR using vgxset. You must
specify the number of response series ('n'), the number of regression variables
('nX'), and whether to include different regression intercepts for each response series
('Constant').

 Implement Seemingly Unrelated Regression Analyses

7-67

Mdl1 = vgxset('n',n,'nX',r1,'Constant',true)

Mdl1 =

 Model: 3-D VARMAX(0,0,12) with Additive Constant

 n: 3

 nAR: 0

 nMA: 0

 nX: 12

 a: []

 b: []

 Q: []

Mdl1 is a multivariate time series model object. Unlike TrueMdl, none of the coefficients,
intercepts, and intra-period covariance matrix have values. Therefore, Mdl1 is suitable
for estimation.

Estimate the regression coefficients using vgxvarx. Extract the residuals. Display the
estimated model using vgxdisp

[EstMdl1,~,~,W] = vgxvarx(Mdl1,Y,CellX1);

vgxdisp(EstMdl1)

 Model : 3-D VARMAX(0,0,12) with Additive Constant

 a Constant:

 0.978981

 -1.06438

 0.453232

 b Regression Parameter:

 1.76856

 3.85757

 -2.20089

 -1.55085

 2.44067

 0.464144

 0.69588

 -1.71386

 -1.6414

 0.670357

 -0.0564374

 0.565809

 Q Innovations Covariance:

 1.38503 0.667301 -0.159136

7 Multivariate Time Series Models

7-68

 0.667301 0.973123 0.216492

 -0.159136 0.216492 0.993384

EstMdl is a multivariate time series model containing the estimated parameters. W is a
-by- matrix of residuals. By default, vgxvarx models a full, intra-period innovations

covariance matrix.

Alternatively, and in this case, you can use the backslash operator on X and Y. However,
you must include a column of ones in X for the intercepts.

coeff = [ones(T,1) X]\Y

coeff =

 0.9790 -1.0644 0.4532

 1.7686 3.8576 -2.2009

 -1.5508 2.4407 0.4641

 0.6959 -1.7139 -1.6414

 0.6704 -0.0564 0.5658

coeff is a nExo + 1-by- n matrix of estimated regression coefficients and intercepts.
The estimated intercepts are in the first row, and the rest of the matrix contains the
estimated regression coefficients

Compare all estimates to their true values.

fprintf('\n');

fprintf(' Intercepts \n');

fprintf(' True | vgxvarx | backslash\n');

fprintf('--------------------------------------\n');

for j = 1:n

 fprintf(' %8.4f | %8.4f | %8.4f\n',aTrue(j),EstMdl1.a(j),coeff(1,j));

end

cB = coeff';

cB = cB(:);

fprintf('\n');

fprintf(' Coefficients \n');

fprintf(' True | vgxvarx | backslash\n');

fprintf('--------------------------------------\n');

for j = 1:r1

 fprintf(' %8.4f | %8.4f | %8.4f\n',bTrue(j),...

 Implement Seemingly Unrelated Regression Analyses

7-69

 EstMdl1.b(j),cB(n + j));

end

fprintf('\n');

fprintf(' Innovations Covariance\n');

fprintf(' True | vgxvarx\n');

fprintf('--\n');

for j = 1:n

 fprintf('%8.4f %8.4f %8.4f | %8.4f %8.4f %8.4f\n',...

 InnovCov(j,:),EstMdl1.Q(j,:));

end

 Intercepts

 True | vgxvarx | backslash

 1.0000 | 0.9790 | 0.9790

 -1.0000 | -1.0644 | -1.0644

 0.5000 | 0.4532 | 0.4532

 Coefficients

 True | vgxvarx | backslash

 2.0000 | 1.7686 | 1.7686

 4.0000 | 3.8576 | 3.8576

 -2.0000 | -2.2009 | -2.2009

 -1.5000 | -1.5508 | -1.5508

 2.5000 | 2.4407 | 2.4407

 0.5000 | 0.4641 | 0.4641

 0.5000 | 0.6959 | 0.6959

 -1.7500 | -1.7139 | -1.7139

 -1.5000 | -1.6414 | -1.6414

 0.7500 | 0.6704 | 0.6704

 -0.0500 | -0.0564 | -0.0564

 0.7000 | 0.5658 | 0.5658

 Innovations Covariance

 True | vgxvarx

--

 1.0000 0.5000 -0.0500 | 1.3850 0.6673 -0.1591

 0.5000 1.0000 0.2500 | 0.6673 0.9731 0.2165

 -0.0500 0.2500 1.0000 | -0.1591 0.2165 0.9934

The estimates from implementing vgxvarx and the backslash operator are the same,
and are fairly close to their corresponding true values.

7 Multivariate Time Series Models

7-70

One way to check the relationship strength between the predictors and responses is to
compute the coefficient of determination (i.e., the fraction of variation explained by the
predictors), which is

where is the estimated variance of residual series , and is the estimated variance
of response series .

R2 = 1 - sum(diag(cov(W)))/sum(diag(cov(Y)))

R2 =

 0.9118

The SUR model and predictor data explain approximately 91% of the variation in the
response data.

SUR Using a Unique Predictor for Each Response Series

For each period , create block design matrices such that response series is linearly
associated to predictor series , . Put the block design matrices in cells of a -
by-1 cell vector in chronological order.

CellX2 = cell(T,1);

for j = 1:T

 CellX2{j} = diag(X(j,1:n));

end

r2 = size(CellX2{1},2);

Create a multivariate time series model by using vgxset and specifying the number of
response series, the number of regression variables, and whether to include different
regression intercepts for each response series.

Mdl2 = vgxset('n',n,'nX',r2,'Constant',true);

Estimate the regression coefficients using vgxvarx. Display the estimated parameters.
Compute the coefficient of determination.

[EstMdl2,~,~,W2] = vgxvarx(Mdl2,Y,CellX2);

 Implement Seemingly Unrelated Regression Analyses

7-71

vgxdisp(EstMdl2)

R2 = 1 - sum(diag(cov(W2)))/sum(diag(cov(Y)))

 Model : 3-D VARMAX(0,0,3) with Additive Constant

 a Constant:

 1.07752

 -1.43445

 0.674376

 b Regression Parameter:

 1.01491

 3.83837

 -2.71834

 Q Innovations Covariance:

 4.96205 4.91571 -1.86546

 4.91571 20.8263 -11.0945

 -1.86546 -11.0945 7.75392

R2 =

 0.1177

The model and predictors explain approximately 12% of the variation in the response
series. This should not be surprising since the model is not the same as the response-
generating process.

SUR Using a Shared Intercept for All Response Series

Create block design matrices such that each response series is linearly associated to all
predictor series . Prepend the resulting design matrix with a vector of ones representing
the common intercept.

ExpandX3 = [ones(T*n,1) kron(X,eye(n))];

r3 = size(ExpandX3,2);

Put the block design matrices into the cells of a -by-1 cell vector in chronological order.

CellX3 = mat2cell(ExpandX3,n*ones(T,1));

Create a multivariate time series model by using vgxset and specifying the number of
response series and the number of regression variables. By default, vgxset excludes
regression intercepts.

Mdl3 = vgxset('n',n,'nX',r3);

7 Multivariate Time Series Models

7-72

Estimate the regression coefficients using vgxvarx. Display the estimated parameters.
Compute the coefficient of determination.

[EstMdl3,~,~,W3] = vgxvarx(Mdl3,Y,CellX3);

vgxdisp(EstMdl3)

a = EstMdl3.b(1)

R2 = 1 - sum(diag(cov(W3)))/sum(diag(cov(Y)))

 Model : 3-D VARMAX(0,0,13) with No Additive Constant

 b Regression Parameter:

 0.388833

 1.73468

 3.94099

 -2.20458

 -1.56878

 2.48483

 0.462187

 0.802394

 -1.97614

 -1.62978

 0.63972

 0.0190058

 0.562466

 Q Innovations Covariance:

 1.72265 -0.164059 -0.122294

 -0.164059 3.02031 0.12577

 -0.122294 0.12577 0.997404

a =

 0.3888

R2 =

 0.9099

The shared, estimated regression intercept is 0.389, and the other coefficients
are similar to the first SUR implementation. The model and predictors explain

 Implement Seemingly Unrelated Regression Analyses

7-73

approximately 91% of the variation in the response series. This should not be surprising
since the model almost the same as the response-generating process.

See Also
mvregress | vgxpred | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Estimate the Capital Asset Pricing Model Using SUR” on page 7-74
• “Simulate Responses of Estimated VARX Model” on page 7-80
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Multivariate Time Series Models with Regression Terms” on page 7-57

7 Multivariate Time Series Models

7-74

Estimate the Capital Asset Pricing Model Using SUR

This example shows how to implement the capital asset pricing model (CAPM) using the
Econometric Toolbox™ multivariate time series framework.

The CAPM model characterizes comovements between asset and market prices. Under
this framework, individual asset returns are linearly associated with the return of the
whole market (for details, see [52], [74], and [60]). That is, given the return series of
all stocks in a market () and the return of a riskless asset (), the CAPM model for
return series () is

for all assets in the market.

 is an -by-1 vector of asset alphas that should be zero, and it is of interest
to investigate assets whose asset alphas are significantly away from zero.
is a -by-1 vector of asset betas that specify the degree of comovement between the asset
being modeled and the market. An interpretation of element of is

• If , then asset moves in the same direction and with the same volatility as the
market, i.e., is positively correlated with the market .

• If , then asset moves in the opposite direction, but with the same volatility
as the market, i.e., is negatively correlated with the market.

• If , then asset is uncorrelated with the market.

In general:

• determines the direction that the asset is moving relative to the market as
described in the previous bullets.

• is the factor that determines how much more or less volatile asset is relative
to the market. For example, if , then asset is 10 times as volatile as the
market.

Load and Process the Data

Load the CAPM data set included in the Financial Toolbox™.

 Estimate the Capital Asset Pricing Model Using SUR

7-75

load CAPMuniverse

varWithNaNs = Assets(any(isnan(Data),1))

dateRange = datestr([Dates(1) Dates(end)])

varWithNaNs =

 'AMZN' 'GOOG'

dateRange =

03-Jan-2000

07-Nov-2005

The variable Data is a 1471-by-14 numeric matrix containing the daily returns of a set
of 12 stocks (columns 1 through 12), one rickless asset (column 13), and the return of
the whole market (column 14). The returns were measured from 03Jan2000 through
07Nov2005. AMZN and GOOG had their IPO during sampling, and so they have missing
values.

Assign variables for the response and predictor series.

Y = bsxfun(@minus,Data(:,1:12),Data(:,14));

X = Data(:,13) - Data(:,14);

[T,n] = size(Y)

T =

 1471

n =

 12

Y is a 1471-by-12 matrix of the returns adjusted by the riskless return. X is a 1471-by-1
vector of the market return adjusted by the riskless return.

Create block design matrices for each period, and put them into cells of a -by-1 cell
vector. You can specify that each response series has its own intercept when you create

7 Multivariate Time Series Models

7-76

the multivariate time series model object. Therefore, do not consider the intercept when
you create the block design matrices.

Design = kron(X,eye(n));

CellX = mat2cell(Design,n*ones(T,1));

nX = size(Design,2);

Create the Multivariate Time Series Model

Create a multivariate time series model that characterizes the CAPM model. You must
specify the number of response series, whether to give each response series equation an
intercept, and the number of regression variables.

Mdl = vgxset('n',n,'Constant',true,'nX',nX);

Mdl is a multivariate time series model object that characterizes the desired CAPM
model.

Estimate the Multivariate Time Series Model

Pass the CAPM model specification (Mdl), the response series (Y), and the cell vector of
block design matrices (CellX) to vgxvarx. Request to return the estimated multivariate
time series model and the estimated coefficient standard errors. vgxvarx maximizes
the likelihood using the expectation-conditional-maximization (ECM) algorithm. ECM
accommodates missing response values directly (i.e., without imputation), but at the cost
of computation time.

[EstMdl,EstCoeffSEMdl] = vgxvarx(Mdl,Y,CellX);

EstMdl and EstCoeffSEMdl have the same structure as Mdl, but EstMdl contains the
parameter estimates and EstCoeffSEMdl contains the estimated standard errors of the
parameter estimates. EstCoeffSEMdl:

• Contains the biased maximum likelihood standard errors.
• Does not include the estimated standard errors of the intra-period covariances. To

include the standard errors of the intra-period covariances, specify the name-value
pair 'StdErrType','all' in vgxvarx.

Analyze Coefficient Estimates

Display the regression estimates, their standard errors, and their t statistics. By default,
the software estimates, stores, and displays standard errors from maximum likelihood.
Specify to use the unbiased least squares standard errors.

 Estimate the Capital Asset Pricing Model Using SUR

7-77

dispMdl = vgxset(EstMdl,'Q',[]) % Suppress printing covariance estimates

vgxdisp(dispMdl,EstCoeffSEMdl,'DoFAdj',true)

dispMdl =

 Model: 12-D VARMAX(0,0,12) with Additive Constant

 n: 12

 nAR: 0

 nMA: 0

 nX: 12

 a: [12x1] additive constants

 asolve: [12x1 logical] additive constant indicators

 b: [12x1] regression coefficients

 bsolve: [12x1 logical] regression coefficient indicators

 Q: []

 Qsolve: [12x12 logical] covariance matrix indicators

 Model : 12-D VARMAX(0,0,12) with Additive Constant

 Standard errors with DoF adjustment (least-squares)

 Parameter Value Std. Error t-Statistic

 -------------- -------------- -------------- --------------

 a(1) 0.00116454 0.000869904 1.3387

 a(2) 0.000715822 0.00121752 0.587932

 a(3) -0.000223753 0.000806185 -0.277546

 a(4) -2.44513e-05 0.000689289 -0.0354732

 a(5) 0.00140469 0.00101676 1.38153

 a(6) 0.00412219 0.000910392 4.52793

 a(7) 0.000116143 0.00068952 0.168441

 a(8) -1.37697e-05 0.000456934 -0.0301351

 a(9) 0.000110279 0.000710953 0.155114

 a(10) -0.000244727 0.000521036 -0.469693

 a(11) 3.2336e-05 0.000861501 0.0375346

 a(12) 0.000128267 0.00103773 0.123603

 b(1) 1.22939 0.0741875 16.5714

 b(2) 1.36728 0.103833 13.1681

 b(3) 1.5653 0.0687534 22.7669

 b(4) 1.25942 0.0587843 21.4245

 b(5) 1.34406 0.0867116 15.5003

 b(6) 0.617321 0.0776404 7.95103

 b(7) 1.37454 0.0588039 23.375

 b(8) 1.08069 0.0389684 27.7326

 b(9) 1.60024 0.0606318 26.3928

 b(10) 1.1765 0.0444352 26.4767

 b(11) 1.50103 0.0734709 20.4303

7 Multivariate Time Series Models

7-78

 b(12) 1.65432 0.0885002 18.6928

To determine whether the parameters are significantly away from zero, suppose that a t
statistic of 3 or more indicates significance.

Response series 6 has a significant asset alpha.

sigASymbol = Assets(6)

sigASymbol =

 'GOOG'

As a result, GOOG has exploitable economic properties.

All asset betas are greater than 3. This indicates that all assets are significantly
correlated with the market.

However, GOOG has an asset beta of approximately 0.62, whereas all other asset
betas are greater than 1. This indicates that the magnitude of the volatility of GOOG is
approximately 62% of the market volatility. The reason for this is that GOOG steadily and
almost consistently appreciated in value while the market experienced volatile horizontal
movements.

For more details and an alternative analysis, see “Capital Asset Pricing Model with
Missing Data”.

See Also
mvregress | vgxpred | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Implement Seemingly Unrelated Regression Analyses” on page 7-64
• “Simulate Responses of Estimated VARX Model” on page 7-80
• “VAR Model Case Study” on page 7-89

More About
• “Vector Autoregressive (VAR) Models” on page 7-3

 Estimate the Capital Asset Pricing Model Using SUR

7-79

• “Multivariate Time Series Models with Regression Terms” on page 7-57

7 Multivariate Time Series Models

7-80

Simulate Responses of Estimated VARX Model

This example shows how to estimate a multivariate time series model that contains
lagged endogenous and exogenous variables, and how to simulate responses. The
response series are the quarterly:

• Changes in real gross domestic product (rGDP) rates ()
• Real money supply (rM1SL) rates ()
• Short-term interest rates (i.e., three-month treasury bill yield,)

from March, 1959 through March, 2009 . The exogenous series is the quarterly changes
in the unemployment rates ().

Suppose that a model for the responses is this VARX(4,3) model

Preprocess the Data

Load the U.S. macroeconomic data set. Flag the series and their periods that contain
missing values (indicated by NaN values).

load Data_USEconModel

varNaN = any(ismissing(DataTable),1); % Variables containing NaN values

seriesWithNaNs = series(varNaN)

seriesWithNaNs =

 Columns 1 through 3

 '(FEDFUNDS) Effec...' '(GS10) Ten-year ...' '(M1SL) M1 money ...'

 Columns 4 through 5

 '(M2SL) M2 money ...' '(UNRATE) Unemplo...'

 Simulate Responses of Estimated VARX Model

7-81

In this data set, the variables that contain missing values entered the sample later than
the other variables. There are no missing values after sampling started for a particular
variable.

vgxvarx accommodates missing values for responses, but not for regression variables.
Flag all periods corresponding to a missing regression variable value.

idx = ~isnan(DataTable.UNRATE);

For the rest of the example, consider only those values that of the series indicated by a
true in idx.

Compute rGDP and rM1SL, and the growth rates of rGDP, rM1SL, short-term interest
rates, and the unemployment rate. Description contains a description of the data and
the variable names. Reserve the last three years of data to investigate the out-of-sample
performance of the estimated model.

rGDP = DataTable.GDP(idx)./(DataTable.GDPDEF(idx)/100);

rM1SL = DataTable.M1SL(idx)./(DataTable.GDPDEF(idx)/100);

dLRGDP = diff(log(rGDP)); % rGDP growth rate

dLRM1SL = diff(log(rM1SL)); % rM1SL growth rate

d3MTB = diff(DataTable.TB3MS(idx)); % Change in short-term interest rate (3MTB)

dUNRATE = diff(DataTable.UNRATE(idx)); % Change in unemployment rate

T = numel(d3MTB); % Total sample size

oosT = 12; % Out-of-sample size

estT = T - oosT; % Estimation sample size

estIdx = 1:estT; % Estimation sample indices

oosIdx = (T - 11):T; % Out-of-sample indices

dates = dates((end - T + 1):end);

EstY = [dLRGDP(estIdx) dLRM1SL(estIdx) d3MTB(estIdx)]; % In-sample responses

estX = dUNRATE(estIdx); % In-sample exogenous data

n = size(EstY,2);

OOSY = [dLRGDP(oosIdx) dLRM1SL(oosIdx) d3MTB(oosIdx)]; % Out-of-sample responses

oosX = dUNRATE(oosIdx); % Out-of-sample exogenous data

Create the Design Matrices

Create an estT-by-1 cell vector of block design matrices that associate the predictor
series with each response such that the responses do not share a coefficient.

7 Multivariate Time Series Models

7-82

EstExpandX = kron(estX,eye(n));

EstCellX = mat2cell(EstExpandX,n*ones(estT,1));

nX = size(EstExpandX,2);

Specify the VARX Model

Specify a multivariate time series model object that characterizes the VARX(4,3) model
using vgxset.

Mdl = vgxset('n',n,'nAR',4,'nX',nX,'Constant',true);

Estimate the VAR(4) Model

Estimate the parameters of the VARX(4,3) model using vgxvarx. Display the parameter
estimates.

EstMdl = vgxvarx(Mdl,EstY,EstCellX);

vgxdisp(EstMdl)

 Model : 3-D VARMAX(4,0,3) with Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 a Constant:

 0.00811792

 0.000709263

 0.0465824

 b Regression Parameter:

 -0.0162116

 -0.00163933

 -1.50115

 AR(1) Autoregression Matrix:

 -0.0375772 -0.0133236 0.00108218

 -0.00519697 0.177963 -0.00501432

 -0.873992 -6.89049 -0.165888

 AR(2) Autoregression Matrix:

 0.0753033 0.0775643 -0.001049

 0.00282857 0.29064 -0.00159574

 4.00724 0.465046 -0.221024

 AR(3) Autoregression Matrix:

 -0.0927688 -0.0240239 -0.000549057

 0.0627837 0.0686179 -0.00212185

 -7.52241 10.247 0.227121

 AR(4) Autoregression Matrix:

 0.0646951 -0.0792765 -0.000176166

 0.0276958 0.00922231 -0.000183861

 Simulate Responses of Estimated VARX Model

7-83

 1.38523 -11.8774 0.0518154

 Q Innovations Covariance:

 3.57524e-05 7.05807e-06 -4.23542e-06

 7.05807e-06 9.67992e-05 -0.00188786

 -4.23542e-06 -0.00188786 0.777151

EstMdl is a multivariate time series model object containing the estimated parameters.

Simulate Out-Of-Sample Response Paths Using the Same Exogenous Data per Path

Simulate 1000, 3 year response series paths from the estimated model assuming that
the exogenous unemployment rate is a fixed series. Since the model contains 4 lags
per endogenous variable, specify the last 4 observations in the estimation sample as
presample data.

OOSExpandX = kron(oosX,eye(n));

OOSCellX = mat2cell(OOSExpandX,n*ones(oosT,1));

numPaths = 1000;

Y0 = EstY((end-3):end,:);

rng(1); % For reproducibility

YSim = vgxsim(EstMdl,oosT,OOSCellX,Y0,[],numPaths);

YSim is a 12-by-3-by-1000 numeric array of simulated responses. The rows of YSim
correspond to out-of-sample periods, the columns correspond to the response series, and
the leaves correspond to paths.

Plot the response data and the simulated responses. Identify the 5%, 25%, 75% and 95%
percentiles, and the mean and median of the simulated series at each out-of-sample
period.

YSimBar = mean(YSim,3);

YSimQrtl = quantile(YSim,[0.05 0.25 0.5 0.75 0.95],3);

RepDates = repmat(dates(oosIdx),1,1000);

respNames = {'dLRGDP' 'dLRM1SL' 'd3MTB'};

figure;

for j = 1:n;

 subplot(3,1,j);

 h1 = plot(dates(oosIdx),squeeze(YSim(:,j,:)),'Color',0.75*ones(3,1));

 hold on;

 h2 = plot(dates(oosIdx),YSimBar(:,j),'.-k','LineWidth',2);

 h3 = plot(dates(oosIdx),squeeze(YSimQrtl(:,j,:)),':r','LineWidth',1.5);

 h4 = plot(dates((end - 30):end),[EstY((end - 18):end,j);OOSY(:,j)],...

 'b','LineWidth',2);

7 Multivariate Time Series Models

7-84

 title(sprintf('%s',respNames{j}));

 datetick;

 axis tight;

 hold off;

end

legend([h1(1) h2(1) h3(1) h4],{'Simulated Series','Simulation Mean',...

 'Simulation Quartile','Data'},'Location',[0.4 0.1 0.01 0.01],...

 'FontSize',8);

Simulate Out-Of-Sample Response Paths Using Random Exogenous Data

Suppose that the change in the unemployment rate is an AR(4) model, and fit the model
to the estimation sample data.

 Simulate Responses of Estimated VARX Model

7-85

MdlUNRATE = arima('ARLags',1:4);

EstMdlUNRATE = estimate(MdlUNRATE,estX,'Display','off');

EstMdlUNRATE is an arima class model object containing the parameter estimates.

Simulate 1000, 3 year paths from the estimated AR(4) model for the change in
unemployment rate. Since the model contains 4 lags, specify the last 4 observations in
the estimation sample as presample data.

XSim = simulate(EstMdlUNRATE,oosT,'Y0',estX(end-3:end),...

 'NumPaths',numPaths);

XSim is a 12-by-1000 numeric matrix of simulated exogenous paths. The rows correspond
to periods and the columns correspond to paths.

Create a cell matrix of block design matrices to organize the exogenous data, where each
column corresponds to a path.

ExpandXSim = kron(XSim,eye(n));

size(ExpandXSim)

CellXSim = mat2cell(ExpandXSim,n*ones(oosT,1),n*ones(1,numPaths));

size(CellXSim)

CellXSim{1,1}

ans =

 36 3000

ans =

 12 1000

ans =

 0.7901 0 0

 0 0.7901 0

 0 0 0.7901

ExpandXSim is a 36-by-3000 numeric matrix, and CellXSim is a 12-by-1000 cell matrix
of mutually exclusive, neighboring, 3-by-3 block matrices in ExpandXSim.

7 Multivariate Time Series Models

7-86

Simulate 3 years of 1000 future response series paths from the estimated model using
the simulated exogenous data. Since the model contains 4 lags per endogenous variable,
specify the last 4 observations in the estimation sample as presample data.

YSimRX = vgxsim(EstMdl,oosT,CellXSim,Y0,[],numPaths);

YSimRX is a 12-by-3-by-1000 numeric array of simulated responses.

Plot the response data and the simulated responses. Identify the 5%, 25%, 75% and 95%
percentiles, and the mean and median of the simulated series at each out-of-sample
period.

YSimBarRX = mean(YSimRX,3);

YSimQrtlRX = quantile(YSimRX,[0.05 0.25 0.5 0.75 0.95],3);

figure;

for j = 1:n;

 subplot(3,1,j);

 h1 = plot(dates(oosIdx),squeeze(YSimRX(:,j,:)),'Color',0.75*ones(3,1));

 hold on;

 h2 = plot(dates(oosIdx),YSimBarRX(:,j),'.-k','LineWidth',2);

 h3 = plot(dates(oosIdx),squeeze(YSimQrtlRX(:,j,:)),':r','LineWidth',1.5);

 h4 = plot(dates((end - 30):end),[EstY((end - 18):end,j);OOSY(:,j)],...

 'b','LineWidth',2);

 title(sprintf('%s with Simulated Unemployment Rate',respNames{j}));

 datetick;

 axis tight;

 hold off;

end

legend([h1(1) h2(1) h3(1) h4],{'Simulated Series','Simulation Mean',...

 'Simulation Quartile','Data'},'Location',[0.4 0.1 0.01 0.01],...

 'FontSize',8)

 Simulate Responses of Estimated VARX Model

7-87

See Also
mvregress | vgxpred | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Implement Seemingly Unrelated Regression Analyses” on page 7-64
• “Estimate the Capital Asset Pricing Model Using SUR” on page 7-74
• “VAR Model Case Study” on page 7-89

7 Multivariate Time Series Models

7-88

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Multivariate Time Series Models with Regression Terms” on page 7-57

 VAR Model Case Study

7-89

VAR Model Case Study

This example shows how to analyze a VAR model.

Overview of Case Study

This section contains an example of the workflow described in “Building VAR Models”.
The example uses three time series: GDP, M1 money supply, and the 3-month T-bill rate.
The example shows:

• Loading and transforming the data for stationarity
• Partitioning the transformed data into presample, estimation, and forecast intervals

to support a backtesting experiment
• Making several models
• Fitting the models to the data
• Deciding which of the models is best
• Making forecasts based on the best model

Load and Transform Data

The file Data_USEconModel ships with Econometrics Toolbox™ software. The file
contains time series from the Federal Reserve Bank of St. Louis Economics Data (FRED)
database in a tabular array. This example uses three of the time series:

• GDP (GDP)
• M1 money supply (M1SL)
• 3-month T-bill rate (TB3MS)

Load the data into a time series matrix Y.

load Data_USEconModel

gdp = DataTable.GDP;

m1 = DataTable.M1SL;

tb3 = DataTable.TB3MS;

Y = [gdp,m1,tb3];

Plot the data to look for trends.

figure

subplot(3,1,1)

plot(dates,Y(:,1),'r');

7 Multivariate Time Series Models

7-90

title('GDP')

datetick('x')

grid on

subplot(3,1,2);

plot(dates,Y(:,2),'b');

title('M1')

datetick('x')

grid on

subplot(3,1,3);

plot(dates, Y(:,3), 'k')

title('3-mo T-bill')

datetick('x')

grid on

hold off

 VAR Model Case Study

7-91

The GDP and M1 data appear to grow, while the T-bill returns show no long-term
growth. To counter the trends in GDP and M1, take a difference of the logarithms of
the data. Taking a difference shortens the time series. Therefore, truncate the T-bill
series and date series X so that the Y data matrix has the same number of rows for each
column.

Y = [diff(log(Y(:,1:2))), Y(2:end,3)]; % Transformed data

X = dates(2:end);

figure

subplot(3,1,1)

plot(X,Y(:,1),'r');

title('GDP')

datetick('x')

grid on

subplot(3,1,2);

plot(X,Y(:,2),'b');

title('M1')

datetick('x')

grid on

subplot(3,1,3);

plot(X, Y(:,3),'k'),

title('3-mo T-bill')

datetick('x')

grid on

7 Multivariate Time Series Models

7-92

The scale of the first two columns is about 100 times smaller than the third. Multiply
the first two columns by 100 so that the time series are all roughly on the same scale.
This scaling makes it easy to plot all the series on the same plot. More importantly, this
type of scaling makes optimizations more numerically stable (for example, maximizing
loglikelihoods).

Y(:,1:2) = 100*Y(:,1:2);

figure

plot(X,Y(:,1),'r');

hold on

plot(X,Y(:,2),'b');

datetick('x')

grid on

plot(X,Y(:,3),'k');

 VAR Model Case Study

7-93

legend('GDP','M1','3-mo T-bill');

hold off

Select and Fit the Models

You can select many different models for the data. This example uses four models.

• VAR(2) with diagonal autoregressive and covariance matrices
• VAR(2) with full autoregressive and covariance matrices
• VAR(4) with diagonal autoregressive and covariance matrices
• VAR(4) with full autoregressive and covariance matrices

7 Multivariate Time Series Models

7-94

Make all the series the same length, and transform them to be stationary and on a
similar scale.

dGDP = 100*diff(log(gdp(49:end)));

dM1 = 100*diff(log(m1(49:end)));

dT3 = diff(tb3(49:end));

Y = [dGDP dM1 dT3];

Create the four models.

dt = logical(eye(3));

VAR2diag = vgxset('ARsolve',repmat({dt},2,1),...

 'asolve',true(3,1),'Series',{'GDP','M1','3-mo T-bill'});

VAR2full = vgxset(VAR2diag,'ARsolve',[]);

VAR4diag = vgxset(VAR2diag,'nAR',4,'ARsolve',repmat({dt},4,1));

VAR4full = vgxset(VAR2full,'nAR',4);

The matrix dt is a diagonal logical matrix. dt specifies that both the autoregressive
matrices for VAR2diag and VAR4diag are diagonal. In contrast, the specifications for
VAR2full and VAR4full have empty matrices instead of dt. Therefore, vgxvarx fits
the defaults, which are full matrices for autoregressive and correlation matrices.

To assess the quality of the models, divide the response data Y into three periods:
presample, estimation, and forecast. Fit the models to the estimation data, using the
presample period to provide lagged data. Compare the predictions of the fitted models
to the forecast data. The estimation period is in sample, and the forecast period is out of
sample (also known as backtesting).

For the two VAR(4) models, the presample period is the first four rows of Y. Use the same
presample period for the VAR(2) models so that all the models are fit to the same data.
This is necessary for model fit comparisons. For both models, the forecast period is the
final 10% of the rows of Y. The estimation period for the models goes from row 5 to the
90% row. Define these data periods.

YPre = Y(1:4,:);

T = ceil(.9*size(Y,1));

YEst = Y(5:T,:);

YF = Y((T+1):end,:);

TF = size(YF,1);

Now that the models and time series exist, you can easily fit the models to the data.

[EstSpec1,EstStdErrors1,logL1,W1] = ...

 VAR Model Case Study

7-95

 vgxvarx(VAR2diag,YEst,[],YPre,'CovarType','Diagonal');

[EstSpec2,EstStdErrors2,logL2,W2] = ...

 vgxvarx(VAR2full,YEst,[],YPre);

[EstSpec3,EstStdErrors3,logL3,W3] = ...

 vgxvarx(VAR4diag,YEst,[],YPre,'CovarType','Diagonal');

[EstSpec4,EstStdErrors4,logL4,W4] = ...

 vgxvarx(VAR4full,YEst,[],YPre);

• The EstSpec structures are the fitted models.
• The EstStdErrors structures contain the standard errors of the fitted models.
• The logL values are the loglikelihoods of the fitted models, which you use to help

select the best model.
• The W vectors are the estimated innovations (residuals) processes, which are the same

size as YEst.
• The specification for EstSpec1 and EstSpec3 includes diagonal covariance matrices.

Check Model Adequacy

You can check whether the estimated models are stable and invertible using the
vgxqual function. (There are no MA terms in these models, so the models are
necessarily invertible.) The test shows that all the estimated models are stable.

[isStable1,isInvertible1] = vgxqual(EstSpec1);

[isStable2,isInvertible2] = vgxqual(EstSpec2);

[isStable3,isInvertible3] = vgxqual(EstSpec3);

[isStable4,isInvertible4] = vgxqual(EstSpec4);

[isStable1,isStable2,isStable3,isStable4]

ans =

 1 1 1 1

You can also look at the estimated specification structures. Each contains a line stating
whether the model is stable.

EstSpec4

EstSpec4 =

 Model: 3-D VAR(4) with Additive Constant

7 Multivariate Time Series Models

7-96

 Series: {'GDP' 'M1' '3-mo T-bill'}

 n: 3

 nAR: 4

 nMA: 0

 nX: 0

 a: [0.524224 0.106746 -0.671714] additive constants

 asolve: [1 1 1 logical] additive constant indicators

 AR: {4x1 cell} stable autoregressive process

 ARsolve: {4x1 cell of logicals} autoregressive lag indicators

 Q: [3x3] covariance matrix

 Qsolve: [3x3 logical] covariance matrix indicators

AR: {4x1 cell} stable autoregressive process appears in the output
indicating that the autoregressive process is stable.

You can compare the restricted (diagonal) AR models to their unrestricted (full)
counterparts using lratiotest. The test rejects or fails to reject the hypothesis that the
restricted models are adequate, with a default 5% tolerance. This is an in-sample test.

Apply the likelihood ratio tests by counting the parameters in the models using
vgxcount, and then use lratiotest to perform the tests.

[n1,n1p] = vgxcount(EstSpec1);

[n2,n2p] = vgxcount(EstSpec2);

[n3,n3p] = vgxcount(EstSpec3);

[n4,n4p] = vgxcount(EstSpec4);

reject1 = lratiotest(logL2,logL1,n2p - n1p)

reject3 = lratiotest(logL4,logL3,n4p - n3p)

reject4 = lratiotest(logL4,logL2,n4p - n2p)

reject1 =

 1

reject3 =

 1

reject4 =

 VAR Model Case Study

7-97

 0

The 1 results indicate that the likelihood ratio test rejected both the restricted models,
AR(1) and AR(3), in favor of the corresponding unrestricted models. Therefore, based on
this test, the unrestricted AR(2) and AR(4) models are preferable. However, the test does
not reject the unrestricted AR(2) model in favor of the unrestricted AR(4) model. (This
test regards the AR(2) model as an AR(4) model with restrictions that the autoregression
matrices AR(3) and AR(4) are 0.) Therefore, it seems that the unrestricted AR(2) model is
the best model.

To find the best model in a set, minimize the Akaike information criterion (AIC). Use in-
sample data to compute the AIC. Calculate the criterion for the four models.

AIC = aicbic([logL1 logL2 logL3 logL4],[n1p n2p n3p n4p])

AIC =

 1.0e+03 *

 1.5129 1.4462 1.5122 1.4628

The best model according to this criterion is the unrestricted AR(2) model. Notice, too,
that the unrestricted AR(4) model has lower Akaike information than either of the
restricted models. Based on this criterion, the unrestricted AR(2) model is best, with the
unrestricted AR(4) model coming next in preference.

To compare the predictions of the four models against the forecast data YF, use vgxpred.
This function returns both a prediction of the mean time series, and an error covariance
matrix that gives confidence intervals about the means. This is an out-of-sample
calculation.

[FY1,FYCov1] = vgxpred(EstSpec1,TF,[],YEst);

[FY2,FYCov2] = vgxpred(EstSpec2,TF,[],YEst);

[FY3,FYCov3] = vgxpred(EstSpec3,TF,[],YEst);

[FY4,FYCov4] = vgxpred(EstSpec4,TF,[],YEst);

This plot shows the predictions in the shaded region to the right.

figure

vgxplot(EstSpec2,YEst,FY2,FYCov2)

7 Multivariate Time Series Models

7-98

It is now straightforward to calculate the sum-of-squares error between the predictions
and the data, YF.

Error1 = YF - FY1;

Error2 = YF - FY2;

Error3 = YF - FY3;

Error4 = YF - FY4;

SSerror1 = Error1(:)' * Error1(:);

SSerror2 = Error2(:)' * Error2(:);

SSerror3 = Error3(:)' * Error3(:);

SSerror4 = Error4(:)' * Error4(:);

figure

bar([SSerror1 SSerror2 SSerror3 SSerror4],.5)

 VAR Model Case Study

7-99

ylabel('Sum of squared errors')

set(gca,'XTickLabel',...

 {'AR2 diag' 'AR2 full' 'AR4 diag' 'AR4 full'})

title('Sum of Squared Forecast Errors')

The predictive performances of the four models are similar.

The full AR(2) model seems to be the best and most parsimonious fit. Its model
parameters are as follows.

vgxdisp(EstSpec2)

 Model : 3-D VAR(2) with Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Series : GDP

7 Multivariate Time Series Models

7-100

 Series : M1

 Series : 3-mo T-bill

 a Constant:

 0.687401

 0.3856

 -0.915879

 AR(1) Autoregression Matrix:

 0.272374 -0.0162214 0.0928186

 0.0563884 0.240527 -0.389905

 0.280759 -0.0712716 -0.32747

 AR(2) Autoregression Matrix:

 0.242554 0.140464 -0.177957

 0.00130726 0.380042 -0.0484981

 0.260414 0.024308 -0.43541

 Q Innovations Covariance:

 0.632182 0.105925 0.216806

 0.105925 0.991607 -0.155881

 0.216806 -0.155881 1.00082

Forecast Observations

You can make predictions or forecasts using the fitted model (EstSpec4) either by:

• Running vgxpred based on the last few rows of YF
• Simulating several time series with vgxsim

In both cases, transform the forecasts so they are directly comparable to the original time
series.

Generate 10 predictions from the fitted model beginning at the latest times using
vgxpred.

[YPred,YCov] = vgxpred(EstSpec2,10,[],YF);

Transform the predictions by undoing the scaling and differencing applied to the original
data. Make sure to insert the last observation at the beginning of the time series before
using cumsum to undo the differencing. And, since differencing occurred after taking
logarithms, insert the logarithm before using cumsum.

YFirst = [gdp,m1,tb3];

YFirst = YFirst(49:end,:); % Remove NaNs

dates = dates(49:end);

EndPt = YFirst(end,:);

EndPt(1:2) = log(EndPt(1:2));

YPred(:,1:2) = YPred(:,1:2)/100; % Rescale percentage

 VAR Model Case Study

7-101

YPred = [EndPt; YPred]; % Prepare for cumsum

YPred(:,1:3) = cumsum(YPred(:,1:3));

YPred(:,1:2) = exp(YPred(:,1:2));

lastime = dates(end);

timess = lastime:91:lastime+910; % Insert forecast horizon

figure

subplot(3,1,1)

plot(timess,YPred(:,1),':r')

hold on

plot(dates,YFirst(:,1),'k')

datetick('x')

grid on

title('GDP')

subplot(3,1,2);

plot(timess,YPred(:,2),':r')

hold on

plot(dates,YFirst(:,2),'k')

datetick('x')

grid on

title('M1')

subplot(3,1,3);

plot(timess,YPred(:,3),':r')

hold on

plot(dates,YFirst(:,3),'k')

datetick('x')

grid on

title('3-mo T-bill')

hold off

7 Multivariate Time Series Models

7-102

The plots show the extrapolations in dotted red, and the original data series in solid
black.

Look at the last few years in this plot to get a sense of how the predictions relate to the
latest data points.

YLast = YFirst(170:end,:);

timeslast = dates(170:end);

figure

subplot(3,1,1)

plot(timess,YPred(:,1),'--r')

hold on

plot(timeslast,YLast(:,1),'k')

 VAR Model Case Study

7-103

datetick('x')

grid on

title('GDP')

subplot(3,1,2);

plot(timess,YPred(:,2),'--r')

hold on

plot(timeslast,YLast(:,2),'k')

datetick('x')

grid on

title('M1')

subplot(3,1,3);

plot(timess,YPred(:,3),'--r')

hold on

plot(timeslast,YLast(:,3),'k')

datetick('x')

grid on

title('3-mo T-bill')

hold off

7 Multivariate Time Series Models

7-104

The forecast shows increasing GDP, little growth in M1, and a slight decline in the
interest rate. However, the forecast has no error bars.

Alternatively, you can generate 10 predictions from the fitted model beginning at the
latest times using vgxsim. This method simulates 2000 time series times, and then
generates the means and standard deviations for each period. The means of the deviates
for each period are the predictions for that period.

Simulate a time series from the fitted model beginning at the latest times.

rng(1); % For reproducibility

YSim = vgxsim(EstSpec2,10,[],YF,[],2000);

 VAR Model Case Study

7-105

Transform the predictions by undoing the scaling and differencing applied to the original
data. Make sure to insert the last observation at the beginning of the time series before
using cumsum to undo the differencing. And, since differencing occurred after taking
logarithms, insert the logarithm before using cumsum.

YFirst = [gdp,m1,tb3];

EndPt = YFirst(end,:);

EndPt(1:2) = log(EndPt(1:2));

YSim(:,1:2,:) = YSim(:,1:2,:)/100;

YSim = [repmat(EndPt,[1,1,2000]);YSim];

YSim(:,1:3,:) = cumsum(YSim(:,1:3,:));

YSim(:,1:2,:) = exp(YSim(:,1:2,:));

Compute the mean and standard deviation of each series, and plot the results. The plot
has the mean in black, with a +/- 1 standard deviation in red.

YMean = mean(YSim,3);

YSTD = std(YSim,0,3);

figure

subplot(3,1,1)

plot(timess,YMean(:,1),'k')

datetick('x')

grid on

hold on

plot(timess,YMean(:,1)+YSTD(:,1),'--r')

plot(timess,YMean(:,1)-YSTD(:,1),'--r')

title('GDP')

subplot(3,1,2);

plot(timess,YMean(:,2),'k')

hold on

datetick('x')

grid on

plot(timess,YMean(:,2)+YSTD(:,2),'--r')

plot(timess,YMean(:,2)-YSTD(:,2),'--r')

title('M1')

subplot(3,1,3);

plot(timess,YMean(:,3),'k')

hold on

datetick('x')

grid on

plot(timess,YMean(:,3)+YSTD(:,3),'--r')

plot(timess,YMean(:,3)-YSTD(:,3),'--r')

title('3-mo T-bill')

7 Multivariate Time Series Models

7-106

hold off

The plots show increasing growth in GDP, moderate to little growth in M1, and
uncertainty about the direction of T-bill rates.

See Also
aicbic | lratiotest | vgxpred | vgxset | vgxsim | vgxvarx

Related Examples
• “Fit a VAR Model” on page 7-33
• “Forecast a VAR Model” on page 7-50

 VAR Model Case Study

7-107

• “Forecast a VAR Model Using Monte Carlo Simulation” on page 7-53

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Multivariate Time Series Model Creation” on page 7-14
• “VAR Model Estimation” on page 7-22
• “VAR Model Forecasting, Simulation, and Analysis” on page 7-39
• “Multivariate Time Series Models with Regression Terms” on page 7-57

7 Multivariate Time Series Models

7-108

Cointegration and Error Correction Analysis

In this section...

“Integration and Cointegration” on page 7-108
“Cointegration and Error Correction” on page 7-108
“The Role of Deterministic Terms” on page 7-110
“Cointegration Modeling” on page 7-111

Integration and Cointegration

A univariate time series yt is integrated if it can be brought to stationarity through
differencing. The number of differences required to achieve stationarity is called the
order of integration. Time series of order d are denoted I(d). Stationary series are denoted
I(0).

An n-dimensional time series yt is cointegrated if some linear combination β1y1t + … +
βnynt of the component variables is stationary. The combination is called a cointegrating
relation, and the coefficients β = (β1 , … , βn)′ form a cointegrating vector. Cointegration
is usually associated with systems of I(1) variables, since any I(0) variables are trivially
cointegrated with other variables using a vector with coefficient 1 on the I(0) component
and coefficient 0 on the other components. The idea of cointegration can be generalized to
systems of higher-order variables if a linear combination reduces their common order of
integration.

Cointegration is distinguished from traditional economic equilibrium, in which a balance
of forces produces stable long-term levels in the variables. Cointegrated variables are
generally unstable in their levels, but exhibit mean-reverting “spreads” (generalized by
the cointegrating relation) that force the variables to move around common stochastic
trends. Cointegration is also distinguished from the short-term synchronies of positive
covariance, which only measures the tendency to move together at each time step.
Modification of the VAR model to include cointegrated variables balances the short-term
dynamics of the system with long-term tendencies.

Cointegration and Error Correction

The tendency of cointegrated variables to revert to common stochastic trends is expressed
in terms of error-correction. If yt is an n-dimensional time series and β is a cointegrating

 Cointegration and Error Correction Analysis

7-109

vector, then the combination β′yt−1 measures the “error” in the data (the deviation from
the stationary mean) at time t−1. The rate at which series “correct” from disequilibrium
is represented by a vector α of adjustment speeds, which are incorporated into the VAR
model at time t through a multiplicative error-correction term αβ′yt−1.

In general, there may be multiple cointegrating relations among the variables in yt,
in which case the vectors α and β become matrices A and B, with each column of B
representing a specific relation. The error-correction term becomes AB′yt−1 = Cyt−1.
Adding the error-correction term to a VAR model in differences produces the vector error-
correction (VEC) model:

D Dy Cy B yt t i t i

i

q

t= + +- -

=

Â1

1

e .

If the variables in yt are all I(1), the terms involving differences are stationary, leaving
only the error-correction term to introduce long-term stochastic trends. The rank of the
impact matrix C determines the long-term dynamics. If C has full rank, the system yt
is stationary in levels. If C has rank 0, the error-correction term disappears, and the
system is stationary in differences. These two extremes correspond to standard choices in
univariate modeling. In the multivariate case, however, there are intermediate choices,
corresponding to reduced ranks between 0 and n. If C is restricted to reduced rank r,
then C factors into (nonunique) n-by-r matrices A and B with C = AB′, and there are r
independent cointegrating relations among the variables in yt.

By collecting differences, a VEC(q) model can be converted to a VAR(p) model in levels,
with p = q+1:

y A y A yt t p t p t= + + +
- -1 1

... .e

Conversion between VEC(q) and VAR(p) representations of an n-dimensional system are
carried out by the functions vec2var and var2vec using the formulas:

A C I B

A B B i q

A B

q

n

i i i

p q

1 1

1 2

= +

= - =

= -

¸

˝
Ô

˛
Ô

-

+

, VEC() to VAR(,..., pp q= +1) (using)vec2var

7 Multivariate Time Series Models

7-110

C A I

B A

p q p

i n

i

p

i j

j i

p

= -

= -

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô

= -
=

= +

Â

Â

1

1

1 VAR() to VEC() (uusing)var2vec

Because of the equivalence of the two representations, a VEC model with a reduced-
rank error-correction coefficient is often called a cointegrated VAR model. In particular,
cointegrated VAR models can be simulated and forecast using standard VAR techniques.

The Role of Deterministic Terms

The cointegrated VAR model is often augmented with exogenous terms Dx:

D Dy AB y B y Dxt t i t i

i

q

t= ¢ + + +- -

=

Â1

1

e .

Variables in x may include seasonal or interventional dummies, or deterministic terms
representing trends in the data. Since the model is expressed in differences ∆yt, constant
terms in x represent linear trends in the levels of yt and linear terms represent quadratic
trends. In contrast, constant and linear terms in the cointegrating relations have the
usual interpretation as intercepts and linear trends, although restricted to the stationary
variable formed by the cointegrating relation. Johansen [61] considers five cases for AB
´yt−1 + Dx which cover the majority of observed behaviors in macroeconomic systems:

Case Form of AB′yt − 1 + Dx Model Interpretation
H2 AB′yt − 1 There are no intercepts or trends in the

cointegrating relations and there are no
trends in the data. This model is only
appropriate if all series have zero mean.

H1* A(Byt − 1 + c0) There are intercepts in the cointegrating
relations and there are no trends in
the data. This model is appropriate for
nontrending data with nonzero mean.

 Cointegration and Error Correction Analysis

7-111

H1 A(B′yt − 1+c0) + c1 There are intercepts in the cointegrating
relations and there are linear trends in
the data. This is a model of deterministic
cointegration, where the cointegrating
relations eliminate both stochastic and
deterministic trends in the data.

H* A(B′yt − 1 + c0 + d0t) + c1 There are intercepts and linear trends
in the cointegrating relations and there
are linear trends in the data. This is a
model of stochastic cointegration, where the
cointegrating relations eliminate stochastic
but not deterministic trends in the data.

H A(B′yt − 1 + c0 + d0t) + c1 + d1t There are intercepts and linear trends
in the cointegrating relations and there
are quadratic trends in the data. Unless
quadratic trends are actually present in
the data, this model may produce good in-
sample fits but poor out-of-sample forecasts.

In Econometrics Toolbox, deterministic terms outside of the cointegrating relations,
c1 and d1, are identified by projecting constant and linear regression coefficients,
respectively, onto the orthogonal complement of A.

Cointegration Modeling

Integration and cointegration both present opportunities for transforming variables to
stationarity. Integrated variables, identified by unit root and stationarity tests, can be
differenced to stationarity. Cointegrated variables, identified by cointegration tests, can
be combined to form new, stationary variables. In practice, it must be determined if such
transformations lead to more reliable models, with variables that retain an economic
interpretation.

Generalizing from the univariate case can be misleading. In the standard Box-Jenkins
[15] approach to univariate ARMA modeling, stationarity is an essential assumption.
Without it, the underlying distribution theory and estimation techniques become invalid.
In the corresponding multivariate case, where the VAR model is unrestricted and there
is no cointegration, choices are less straightforward. If the goal of a VAR analysis is to
determine relationships among the original variables, differencing loses information.
In this context, Sims, Stock, and Watson [97] advise against differencing, even in the

7 Multivariate Time Series Models

7-112

presence of unit roots. If, however, the goal is to simulate an underlying data-generating
process, integrated levels data can cause a number of problems. Model specification
tests lose power due to an increase in the number of estimated parameters. Other tests,
such as those for Granger causality, no longer have standard distributions, and become
invalid. Finally, forecasts over long time horizons suffer from inconsistent estimates, due
to impulse responses that do not decay. Enders [35] discusses modeling strategies.

In the presence of cointegration, simple differencing is a model misspecification, since
long-term information appears in the levels. Fortunately, the cointegrated VAR model
provides intermediate options, between differences and levels, by mixing them together
with the cointegrating relations. Since all terms of the cointegrated VAR model are
stationary, problems with unit roots are eliminated.

Cointegration modeling is often suggested, independently, by economic theory. Examples
of variables that are commonly described with a cointegrated VAR model include:

• Money stock, interest rates, income, and prices (common models of money demand)
• Investment, income, and consumption (common models of productivity)
• Consumption and long-term income expectation (Permanent Income Hypothesis)
• Exchange rates and prices in foreign and domestic markets (Purchasing Power Parity)
• Spot and forward currency exchange rates and interest rates (Covered Interest Rate

Parity)
• Interest rates of different maturities (Term Structure Expectations Hypothesis)
• Interest rates and inflation (Fisher Equation)

Since these theories describe long-term equilibria among the variables, accurate
estimation of cointegrated models may require large amounts of low-frequency (annual,
quarterly, monthly) macroeconomic data. As a result, these models must consider the
possibility of structural changes in the underlying data-generating process during the
sample period.

Financial data, by contrast, is often available at high frequencies (hours, minutes,
microseconds). The mean-reverting spreads of cointegrated financial series can be
modeled and examined for arbitrage opportunities. For example, the Law of One Price
suggests cointegration among the following groups of variables:

• Prices of assets with identical cash flows
• Prices of assets and dividends
• Spot, future, and forward prices

 Cointegration and Error Correction Analysis

7-113

• Bid and ask prices

See Also
egcitest | jcitest | jcontest

Related Examples
• “Test for Cointegration Using the Engle-Granger Test” on page 7-121
• “Determine Cointegration Rank of VEC Model” on page 7-114
• “Estimate VEC Model Parameters Using egcitest” on page 7-126
• “Simulate and Forecast a VEC Model” on page 7-129
• “Test for Cointegration Using the Johansen Test” on page 7-144
• “Estimate VEC Model Parameters Using jcitest” on page 7-147
• “Compare Approaches to Cointegration Analysis” on page 7-150
• “Test Cointegrating Vectors” on page 7-155
• “Test Adjustment Speeds” on page 7-158

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Identifying Single Cointegrating Relations” on page 7-116
• “Identifying Multiple Cointegrating Relations” on page 7-143
• “Testing Cointegrating Vectors and Adjustment Speeds” on page 7-154

7 Multivariate Time Series Models

7-114

Determine Cointegration Rank of VEC Model

This example shows how to convert an n-dimensional VAR model to a VEC model, and
then compute and interpret the cointegration rank of the resulting VEC model.

The rank of the error-correction coefficient matrix, C, determines the cointegration rank.
If rank(C) is:

• Zero, then the converted VEC(p) model is a stationary VAR(p - 1) model in terms of
, without any cointegration relations.

• n, then the VAR(p) model is stable in terms of .
• The integer r such that , then there are cointegrating relations. That

is, there are linear combinations that comprise stationary series. You can factor
the error-correction term into the two n-by- r matrices . contains the
adjustment speeds, and the cointegration matrix. This factorization is not unique.

For more details, see “Cointegration and Error Correction” and [74], Chapter 6.3.

Consider the following VAR(2) model.

Create the variables A1 and A2 for the autoregressive coefficients. Pack the matrices into
a cell vector.

A1 = [1 0.26 0; -0.1 1 0.35; 0.12 -0.5 1.15];

A2 = [-0.2 -0.1 -0.1; 0.6 -0.4 -0.1; -0.02 -0.03 -0.1];

Var = {A1 A2};

Compute the autoregressive and error-correction coefficient matrices of the equivalent
VEC model.

[Vec,C] = var2vec(Var);

Because the degree of the VAR model is 2, the resulting VEC model has degree .
Hence, Vec is a one-dimensional cell array containing the autoregressive coefficient
matrix.

 Determine Cointegration Rank of VEC Model

7-115

Determine the cointegration rank by computing the rank of the error-correction
coefficient matrix C.

r = rank(C)

r =

 2

The cointegrating rank is 2. This result suggests that there are two independent linear
combinations of the three variables that are stationary.

See Also
var2vec | vec2var

Related Examples
• “Test Cointegrating Vectors” on page 7-155
• “Test Adjustment Speeds” on page 7-158

More About
• “Cointegration and Error Correction Analysis” on page 7-108
• “Identifying Single Cointegrating Relations” on page 7-116

7 Multivariate Time Series Models

7-116

Identifying Single Cointegrating Relations

In this section...

“The Engle-Granger Test for Cointegration” on page 7-116
“Limitations of the Engle-Granger Test” on page 7-116

The Engle-Granger Test for Cointegration

Modern approaches to cointegration testing originated with Engle and Granger [37].
Their method is simple to describe: regress the first component y1t of yt on the remaining
components of yt and test the residuals for a unit root. The null hypothesis is that the
series in yt are not cointegrated, so if the residual test fails to find evidence against
the null of a unit root, the Engle-Granger test fails to find evidence that the estimated
regression relation is cointegrating. Note that you can write the regression equation as
y c cb y b y yt t d dt t t1 1 2 0 0

- - - = ¢- - =... b e , where b = - ¢ ¢[]1 b is the cointegrating vector
and c0 is the intercept. A complication of the Engle-Granger approach is that the residual
series is estimated rather than observed, so the standard asymptotic distributions of
conventional unit root statistics do not apply. Augmented Dickey-Fuller tests (adftest)
and Phillips-Perron tests (pptest) can not be used directly. For accurate testing,
distributions of the test statistics must be computed specifically for the Engle-Granger
test.

The Engle-Granger test is implemented in Econometrics Toolbox by the function
egcitest. For an example, see “Test for Cointegration Using the Engle-Granger Test”
on page 7-121.

Limitations of the Engle-Granger Test

The Engle-Granger method has several limitations. First of all, it identifies only a single
cointegrating relation, among what might be many such relations. This requires one of
the variables, , to be identified as "first" among the variables in . This choice, which
is usually arbitrary, affects both test results and model estimation. To see this, permute
the three interest rates in the Canadian data and estimate the cointegrating relation for
each choice of a "first" variable.

load Data_Canada

 Identifying Single Cointegrating Relations

7-117

Y = Data(:,3:end); % Interest rate data

P0 = perms([1 2 3]);

[~,idx] = unique(P0(:,1));

 % Rows of P0 with unique regressand y1

P = P0(idx,:); % Unique regressions

numPerms = size(P,1);

% Preallocate:

T0 = size(Y,1);

H = zeros(1,numPerms);

PVal = zeros(1,numPerms);

CIR = zeros(T0,numPerms);

% Run all tests:

for i = 1:numPerms

 YPerm = Y(:,P(i,:));

 [h,pValue,~,~,reg] = egcitest(YPerm,'test','t2');

 H(i) = h;

 PVal(i) = pValue;

 c0i = reg.coeff(1);

 bi = reg.coeff(2:3);

 betai = [1;-bi]

 CIR(:,i) = YPerm*betai-c0i;

end

% Display the test results:

H,PVal

betai =

 1.0000

 -2.2209

 1.0718

betai =

 1.0000

 -0.6029

 -0.3472

7 Multivariate Time Series Models

7-118

betai =

 1.0000

 -1.4394

 0.4001

H =

 1 1 0

PVal =

 0.0202 0.0290 0.0625

For this data, two regressands identify cointegration while the third regressand fails
to do so. Asymptotic theory indicates that the test results will be identical in large
samples, but the finite-sample properties of the test make it cumbersome to draw reliable
inferences.

A plot of the identified cointegrating relations shows the previous estimate
(Cointegrating relation 1), plus two others. There is no guarantee, in the context of
Engle-Granger estimation, that the relations are independent: Plot the cointegrating
relations:

h = gca;

COrd = h.ColorOrder;

h.NextPlot = 'ReplaceChildren';

h.ColorOrder = circshift(COrd,3);

plot(dates,CIR,'LineWidth',2)

title('{\bf Multiple Cointegrating Relations}')

legend(strcat({'Cointegrating relation '}, ...

 num2str((1:numPerms)')),'location','NW');

axis tight

grid on

 Identifying Single Cointegrating Relations

7-119

Another limitation of the Engle-Granger method is that it is a two-step procedure, with
one regression to estimate the residual series, and another regression to test for a unit
root. Errors in the first estimation are necessarily carried into the second estimation. The
estimated, rather than observed, residual series requires entirely new tables of critical
values for standard unit root tests.

Finally, the Engle-Granger method estimates cointegrating relations independently of
the VEC model in which they play a role. As a result, model estimation also becomes
a two-step procedure. In particular, deterministic terms in the VEC model must be
estimated conditionally, based on a predetermined estimate of the cointegrating

7 Multivariate Time Series Models

7-120

vector. For an example of VEC model parameter estimation, see “Estimate VEC Model
Parameters Using egcitest”.

See Also
egcitest

Related Examples
• “Test for Cointegration Using the Engle-Granger Test” on page 7-121
• “Estimate VEC Model Parameters Using egcitest” on page 7-126
• “Simulate and Forecast a VEC Model” on page 7-129

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108

 Test for Cointegration Using the Engle-Granger Test

7-121

Test for Cointegration Using the Engle-Granger Test

This example shows how to test the null hypothesis that there are no cointegrating
relationships among the response series composing a multivariate model.

Load Data_Canada into the MATLAB® Workspace. The data set contains the term
structure of Candian interest rates [75]. Extract the short-term, medium-term, and long-
term interest rate series.

load Data_Canada

Y = Data(:,3:end); % Multivariate response series

Plot the response series.

figure

plot(dates,Y,'LineWidth',2)

xlabel 'Year';

ylabel 'Percent';

names = series(3:end);

legend(names,'location','NW')

title '{\bf Canadian Interest Rates, 1954-1994}';

axis tight

grid on

7 Multivariate Time Series Models

7-122

The plot shows evidence of cointegration among the three series, which move together
with a mean-reverting spread.

To test for cointegration, compute both the (t1) and (t2) Dickey-Fuller statistics.
egcitest compares the test statistics to tabulated values of the Engle-Granger critical
values.

[h,pValue,stat,cValue] = egcitest(Y,'test',{'t1','t2'})

h =

 0 1

 Test for Cointegration Using the Engle-Granger Test

7-123

pValue =

 0.0526 0.0202

stat =

 -3.9321 -25.4538

cValue =

 -3.9563 -22.1153

The test fails to reject the null of no cointegration, but just barely, with a p-value only
slightly above the default 5% significance level, and a statistic only slightly above the
left-tail critical value. The test does reject the null of no cointegration.

The test regresses Y(:,1) on Y(:,2:end) and (by default) an intercept c0. The residual
series is

[Y(:,1) Y(:,2:end)]*beta - c0 = Y(:,1) - Y(:,2:end)*b - c0.

The fifth output argument of egcitest contains, , among other regression statistics, the
regression coefficients c0 and b.

Examine the regression coefficients to examine the hypothesized cointegrating vector
beta = [1; -b].

[~,~,~,~,reg] = egcitest(Y,'test','t2');

c0 = reg.coeff(1);

b = reg.coeff(2:3);

beta = [1;-b];

h = gca;

COrd = h.ColorOrder;

h.NextPlot = 'ReplaceChildren';

h.ColorOrder = circshift(COrd,3);

plot(dates,Y*beta-c0,'LineWidth',2);

title '{\bf Cointegrating Relation}';

axis tight;

legend off;

7 Multivariate Time Series Models

7-124

grid on;

The combination appears relatively stationary, as the test confirms.

See Also
egcitest

Related Examples
• “Estimate VEC Model Parameters Using egcitest” on page 7-126
• “Simulate and Forecast a VEC Model” on page 7-129

 Test for Cointegration Using the Engle-Granger Test

7-125

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108
• “Identifying Single Cointegrating Relations” on page 7-116

7 Multivariate Time Series Models

7-126

Estimate VEC Model Parameters Using egcitest

This example shows how to estimate the parameters of a vector error-correctin (VEC)
model. Before estimating VEC model parameters, you must determine whether there are
any cointegrating relations (see “Test for Cointegration Using the Engle-Granger Test”).
You can estimate the remaining VEC model coefficients using ordinary least squares
(OLS).

Following from “Test for Cointegration Using the Engle-Granger Test”, load the
Data_Canada data set. Run the Engle-Granger cointegration test on the small-term,
medium-term, and long-term interest rate series.

load Data_Canada

Y = Data(:,3:end); % Interest rate data

[~,~,~,~,reg] = egcitest(Y,'test','t2');

c0 = reg.coeff(1);

b = reg.coeff(2:3);

beta = [1;-b];

Suppose that a model selection procedure indicates the adequacy of q = 2 lags in a
VEC(q) model. Subsequently, the model is

Because you estimated c0 and = [1; -b] previously, you can conditionally estimate ,
B1, B2, and c1 by:

1 Forming the required lagged differences
2 Regress the first difference of the series onto the q lagged differences and the

estimated cointegration term.

Form the lagged difference series.

q = 2;

[numObs,numDims] = size(Y);

tBase = (q+2):numObs; % Commensurate time base, all lags

T = length(tBase); % Effective sample size

YLags = lagmatrix(Y,0:(q+1)); % Y(t-k) on observed time base

LY = YLags(tBase,(numDims+1):2*numDims); % Y(t-1) on commensurate time base

 Estimate VEC Model Parameters Using egcitest

7-127

Form multidimensional differences so that the numDims-wide block of columns in
DelatYLags contains (1-L)Y(t-k+1).

DeltaYLags = zeros(T,(q+1)*numDims);

for k = 1:(q+1)

 DeltaYLags(:,((k-1)*numDims+1):k*numDims) = ...

 YLags(tBase,((k-1)*numDims+1):k*numDims) ...

 - YLags(tBase,(k*numDims+1):(k+1)*numDims);

end

DY = DeltaYLags(:,1:numDims); % (1-L)Y(t)

DLY = DeltaYLags(:,(numDims+1):end); % [(1-L)Y(t-1),...,(1-L)Y(t-q)]

Regress the the first difference of the series onto the q lagged differences and the
estimated cointegration term. Include an intercept in the regression.

X = [(LY*beta-c0),DLY,ones(T,1)];

P = (X\DY)'; % [alpha,B1,...,Bq,c1]

alpha = P(:,1);

B1 = P(:,2:4);

B2 = P(:,5:7);

c1 = P(:,end);

Display the VEC model coefficients.

alpha,b,c0,B1,B2,c1

alpha =

 -0.6336

 0.0595

 0.0269

b =

 2.2209

 -1.0718

c0 =

 -1.2393

7 Multivariate Time Series Models

7-128

B1 =

 0.1649 -0.1465 -0.0416

 -0.0024 0.3816 -0.3716

 0.0815 0.1790 -0.1528

B2 =

 -0.3205 0.9506 -0.9514

 -0.1996 0.5169 -0.5211

 -0.1751 0.6061 -0.5419

c1 =

 0.1516

 0.1508

 0.1503

See Also
egcitest | mvnrnd

Related Examples
• “Test for Cointegration Using the Engle-Granger Test” on page 7-121
• “Simulate and Forecast a VEC Model” on page 7-129

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108
• “Identifying Single Cointegrating Relations” on page 7-116

 Simulate and Forecast a VEC Model

7-129

Simulate and Forecast a VEC Model

This example shows how to generate forecasts for a VEC(q) model several ways:

• Monte Carlo forecast paths using the VEC(q) model directly
• Minimum mean square error (MMSE) forecasts using the VAR model representation

of the VEC(q) model.
• Monte Carlo forecast paths using the VAR(p) model representation of the VEC(q)

model.

This example follows from “Estimate VEC Model Parameters Using egcitest”.

Load Data and Preprocess

Load the Data_Canada data set. Extract the interest rate data.

load Data_Canada

Y = Data(:,3:end);

Estimate VEC(q) Model

Assuming that the interest rate data follows a VEC(2) model, fit the model to the data.

[~,~,~,~,reg] = egcitest(Y,'test','t2');

c0 = reg.coeff(1);

b = reg.coeff(2:3);

beta = [1; -b];

q = 2;

[numObs,numDims] = size(Y);

tBase = (q+2):numObs; % Commensurate time base, all lags

T = length(tBase); % Effective sample size

DeltaYLags = zeros(T,(q+1)*numDims);

YLags = lagmatrix(Y,0:(q+1)); % Y(t-k) on observed time base

LY = YLags(tBase,(numDims+1):2*numDims);

for k = 1:(q+1)

 DeltaYLags(:,((k-1)*numDims+1):k*numDims) = ...

 YLags(tBase,((k-1)*numDims+1):k*numDims) ...

 - YLags(tBase,(k*numDims+1):(k+1)*numDims);

end

DY = DeltaYLags(:,1:numDims); % (1-L)Y(t)

DLY = DeltaYLags(:,(numDims+1):end); % [(1-L)Y(t-1),...,(1-L)Y(t-q)]

X = [(LY*beta-c0),DLY,ones(T,1)];

P = (X\DY)'; % [alpha,B1,...,Bq,c1]

7 Multivariate Time Series Models

7-130

alpha = P(:,1);

C = alpha*beta'; % Error-correction coefficient matrix

B1 = P(:,2:4); % VEC(2) model coefficient

B2 = P(:,5:7); % VEC(2) model coefficient

c1 = P(:,end);

b = (alpha*c0 + c1)'; % VEC(2) model constant offset

res = DY-X*P';

EstCov = cov(res);

Monte Carlo Forecasts Using VEC Model

Specify a 10-period forecast horizon. Set numPaths to generate 1000 paths. Because q,
the degree of the VEC model, is 2, reserve three presample observations for .

forecastHorizon = 10;

numPaths = 1000;

psSize = 3;

PSY = repmat(Y(end-(psSize-1):end,:),1,1,numPaths); % Presample

YSimVEC = zeros(forecastHorizon,numDims,numPaths); % Preallocate forecasts

YSimVEC = [PSY; YSimVEC];

Generate Monte Carlo forecasts by adding the simulated innovations to the estimated
VEC(2) model.

rng('default'); % For reproducibility

for p = 1:numPaths

 for t = (1:forecastHorizon) + psSize;

 eps = mvnrnd([0 0 0],EstCov);

 YSimVEC(t,:,p) = YSimVEC(t-1,:,p) + (C*YSimVEC(t-1,:,p)')'...

 + (YSimVEC(t-1,:,p) - YSimVEC(t - 2,:,p))*B1'...

 + (YSimVEC(t-2,:,p) - YSimVEC(t - 3,:,p))*B2'...

 + b + eps;

 end

end

YSimVEC is a 13-by-3-by-1000 numeric array. Its rows correspond to presample and
forecast periods, columns correspond to the time series, and the pages correspond to a
draw.

Compute the mean of the forecasts for each period and time series over all paths.
Construct 95% percentile forecast intervals for each period and time series.

FMCVEC = mean(YSimVEC((psSize + 1):end,:,:),3);

 Simulate and Forecast a VEC Model

7-131

CIMCVEC = quantile(YSimVEC((psSize + 1):end,:,:),[0.25,0.975],3);

FMCVEC is a 10-by-3 numeric matrix containing the Monte Carlo forecasts for each period
(row) and time series (column). CIMCVEC is a 10-by-3-by-2 numeric array containing the
2.5% and 97.5% percentiles (pages) of the draws for each period (row) and time series
(column).

Plot the effective-sample observations, the mean forecasts, and the 95% percentile
confidence intervals.

fDates = dates(end) + (0:forecastHorizon)';

figure;

h1 = plot([dates; fDates(2:end)],[Y; FMCVEC],'LineWidth',2);

h2 = gca;

hold on

h3 = plot(repmat(fDates,1,3),[Y(end,:,:); CIMCVEC(:,:,1)],'--',...

 'LineWidth',2);

h3(1).Color = h1(1).Color;

h3(2).Color = h1(2).Color;

h3(3).Color = h1(3).Color;

h4 = plot(repmat(fDates,1,3),[Y(end,:,:); CIMCVEC(:,:,2)],'--',...

 'LineWidth',2);

h4(1).Color = h1(1).Color;

h4(2).Color = h1(2).Color;

h4(3).Color = h1(3).Color;

patch([fDates(1) fDates(1) fDates(end) fDates(end)],...

 [h2.YLim(1) h2.YLim(2) h2.YLim(2) h2.YLim(1)],'b','FaceAlpha',0.1)

xlabel('Year')

ylabel('Percent')

title('{\bf VEC Model Monte Carlo Forecasts}')

axis tight

grid on

legend(h1,DataTable.Properties.VariableNames(3:end),'Location','Best');

7 Multivariate Time Series Models

7-132

The plot suggests that INT_S has lower forecast accuracy that the other two series
because its confidence bounds are the widest.

MMSE Forecasts Using VAR(p) Representation

Compute the autoregressive coefficient matrices of the equivalent VAR(3) model to the
VEC(2) model (i.e., the coefficients of , , and).

A = vec2var({B1 B2},C);

A is a 1-by-3 row cell vector. A{j} is the autoregressive coefficient matrix for lag term
j. The constant offset (b) of the VEC(2) model and the constant offset of the equivalent
VAR(3) model are equal.

 Simulate and Forecast a VEC Model

7-133

Create a VAR(3) model object.

VAR3 = vgxset('AR',A,'a',b,'Q',EstCov);

Forecast over a 10 period horizon. Compute 95% individual, Wald-type confidence
intervals for each series.

[MMSEF,CovF] = vgxpred(VAR3,forecastHorizon,[],Y);

var = cellfun(@diag,CovF,'UniformOutput',false);

CIF = zeros(forecastHorizon,numDims,2); % Preallocation

for j = 1:forecastHorizon

 stdev = sqrt(var{j});

 CIF(j,:,1) = MMSEF(j,:) - 1.96*stdev';

 CIF(j,:,2) = MMSEF(j,:) + 1.96*stdev';

end

The confidence intervals do not account for the correlation between the forecasted series
at a particular time.

MMSEF is a 10-by-3 numeric matrix of the MMSE forecasts for the VAR(3) model. Rows
correspond to forecast periods and columns to time series. CovF is a 10-by-1 cell vector of
forecast covariance matrices, in which each row corresponds to a forecast period.

Plot the effective-sample observations, the MMSE forecasts, and the 95% Wald
confidence intervals.

figure;

h1 = plot([dates; fDates(2:end)],[Y; MMSEF],'LineWidth',2);

h2 = gca;

hold on

h3 = plot(repmat(fDates,1,3),[Y(end,:,:); CIF(:,:,1)],'--',...

 'LineWidth',2);

h3(1).Color = h1(1).Color;

h3(2).Color = h1(2).Color;

h3(3).Color = h1(3).Color;

h4 = plot(repmat(fDates,1,3),[Y(end,:,:); CIF(:,:,2)],'--',...

 'LineWidth',2);

h4(1).Color = h1(1).Color;

h4(2).Color = h1(2).Color;

h4(3).Color = h1(3).Color;

patch([fDates(1) fDates(1) fDates(end) fDates(end)],...

 [h2.YLim(1) h2.YLim(2) h2.YLim(2) h2.YLim(1)],'b','FaceAlpha',0.1)

xlabel('Year')

ylabel('Percent')

7 Multivariate Time Series Models

7-134

title('{\bf VAR Model MMSE Forecasts}')

axis tight

grid on

legend(h1,DataTable.Properties.VariableNames(3:end),'Location','Best');

The MMSE forecasts are very close to the VEC(2) model Monte Carlo forecast means.
However, the confidence bounds are wider.

Monte Carlo Forecasts Using VAR(p) Representation

Simulate 1000 paths of the VAR(3) model into the forecast horizon. Use the observations
as presample data.

YSimVAR = vgxsim(VAR3,forecastHorizon,[],Y,[],numPaths);

 Simulate and Forecast a VEC Model

7-135

YSimVAR is a 10-by-3-by-1000 numeric array similar to YSimVEC.

Compute the mean of the forecasts for each period and time series over all paths.
Construct 95% percentile forecast intervals for each period and time series.

FMCVAR = mean(YSimVAR,3);

CIMCVAR = quantile(YSimVAR,[0.25,0.975],3);

FMCVAR is a 10-by-3 numeric matrix containing the Monte Carlo forecasts for each period
and time series. CIMCVAR is a 10-by-3-by-2 numeric array containing the 2.5% and 97.5%
percentiles of the draws for each period and time series.

Plot the effective-sample observations, the mean forecasts, and the 95% percentile
confidence intervals.

figure;

h1 = plot([dates; fDates(2:end)],[Y; FMCVAR],'LineWidth',2);

h2 = gca;

hold on

h3 = plot(repmat(fDates,1,3),[Y(end,:,:); CIMCVAR(:,:,1)],'--',...

 'LineWidth',2);

h3(1).Color = h1(1).Color;

h3(2).Color = h1(2).Color;

h3(3).Color = h1(3).Color;

h4 = plot(repmat(fDates,1,3),[Y(end,:,:); CIMCVAR(:,:,2)],'--',...

 'LineWidth',2);

h4(1).Color = h1(1).Color;

h4(2).Color = h1(2).Color;

h4(3).Color = h1(3).Color;

patch([fDates(1) fDates(1) fDates(end) fDates(end)],...

 [h2.YLim(1) h2.YLim(2) h2.YLim(2) h2.YLim(1)],'b','FaceAlpha',0.1)

xlabel('Year')

ylabel('Percent')

title('{\bf VAR Representation Monte Carlo Forecasts}')

axis tight

grid on

legend(h1,DataTable.Properties.VariableNames(3:end),'Location','Best');

7 Multivariate Time Series Models

7-136

All sets of mean forecasts are very close. Both the VAR(3) and VEC(2) sets of Monte
Carlo forecasts are almost equivalent.

See Also
egcitest | mvnrnd | vec2var | vgxpred | vgxset | vgxsim

Related Examples
• “Test for Cointegration Using the Engle-Granger Test” on page 7-121
• “Estimate VEC Model Parameters Using egcitest” on page 7-126

 Simulate and Forecast a VEC Model

7-137

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108
• “Identifying Single Cointegrating Relations” on page 7-116

7 Multivariate Time Series Models

7-138

Generate VEC Model Impulse Responses

This example shows how to generate impulse responses for this VEC(3) model ([74], Ch.
6.7):

 is a 2 dimensional time series. . is a 2 dimensional series of mean
zero, Gaussian innovations with covariance matrix

Specify the VEC(3) model autoregressive coefficient matrices , , and , the error-
correction coefficient matrix , and the innovations covariance matrix .

B1 = [0.24 -0.08;

 0.00 -0.31];

B2 = [0.00 -0.13;

 0.00 -0.37];

B3 = [0.20 -0.06;

 0.00 -0.34];

C = [-0.07; 0.17]*[1 -4];

Sigma = [2.61 -0.15;

 -0.15 2.31]*1e-5;

Compute the autoregressive coefficient matrices that compose the VAR(4) model that is
equivalent to the VEC(3) model.

B = {B1; B2; B3};

A = vec2var(B,C);

A is a 4-by-1 cell vector containing the 2-by-2, VAR(4) model autoregressive coefficient
matrices. Cell A{j} contains the coefficient matrix for lag j in difference-equation
notation. The VAR(4) is in terms of rather than .

 Generate VEC Model Impulse Responses

7-139

Compute the forecast error impulse responses (FEIR) for the VAR(4) representation.
That is, accept the default identity matrix for the innovations covariance. Specify to
return the impulse responses for the first 20 periods.

numObs = 20;

IR = cell(2,1); % Preallocation

IR{1} = armairf(A,[],'NumObs',numObs);

To compute impulse responses, armairf filters an innovation standard deviation shock
from one series to itself and all other series. In this case, the magnitude of the shock is 1
for each series.

Compute orthogonalized impulse responses by supplying the innovations covariance
matrix. Specify to return the impulse responses for the first 20 periods.

IR{2} = armairf(A,[],'InnovCov',Sigma,'NumObs',numObs);

For orthogonalized impulse responses, the innovations covariance governs the magnitude
of the filtered shock.

Plot the FEIR and the orthogonalized impulse responses for all series.

type = {'FEIR','Orthogonalized'};

for j = 1:2;

 figure;

 imp = IR{j};

 subplot(2,2,1);

 plot(imp(:,1,1))

 title(sprintf('%s: y_{1,t}',type{j}));

 ylabel('y_{1,t}');

 xlabel('Period');

 subplot(2,2,2);

 plot(imp(:,1,2))

 title(sprintf('%s: y_{1,t} \\rightarrow y_{2,t}',type{j}));

 ylabel('y_{2,t}');

 xlabel('Period');

 subplot(2,2,3);

 plot(imp(:,2,1))

 title(sprintf('%s: y_{2,t} \\rightarrow y_{1,t}',type{j}));

 ylabel('y_{1,t}');

 xlabel('Period');

 subplot(2,2,4);

 plot(imp(:,2,2))

7 Multivariate Time Series Models

7-140

 title(sprintf('%s: y_{2,t}',type{j}));

 ylabel('y_{2,t}');

 xlabel('Period');

end

 Generate VEC Model Impulse Responses

7-141

Because the innovations covariance is almost diagonal, the FEIR and orthogonalized
impulse responses have similar dynamic behaviors ([74], Ch. 6.7). However, the scale of
the plots are markedly different.

See Also
armairf | vec2var

Related Examples
• “Generate Impulse Responses for a VAR model” on page 7-42
• “Simulate and Forecast a VEC Model” on page 7-129

7 Multivariate Time Series Models

7-142

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108

 Identifying Multiple Cointegrating Relations

7-143

Identifying Multiple Cointegrating Relations

The Johansen test for cointegration addresses many of the limitations of the Engle-
Granger method. It avoids two-step estimators and provides comprehensive testing
in the presence of multiple cointegrating relations. Its maximum likelihood approach
incorporates the testing procedure into the process of model estimation, avoiding
conditional estimates. Moreover, the test provides a framework for testing restrictions on
the cointegrating relations B and the adjustment speeds A in the VEC model.

At the core of the Johansen method is the relationship between the rank of the impact
matrix C = AB′ and the size of its eigenvalues. The eigenvalues depend on the form of
the VEC model, and in particular on the composition of its deterministic terms (see “The
Role of Deterministic Terms” on page 7-110). The method infers the cointegration rank
by testing the number of eigenvalues that are statistically different from 0, then conducts
model estimation under the rank constraints. Although the method appears to be very
different from the Engle-Granger method, it is essentially a multivariate generalization
of the augmented Dickey-Fuller test for unit roots. See, e.g., [35].

The Johansen test is implemented in Econometrics Toolbox by the function jcitest. For
an example, see “Test for Cointegration Using the Johansen Test” on page 7-144.

See Also
jcitest

Related Examples
• “Test for Cointegration Using the Engle-Granger Test” on page 7-121
• “Estimate VEC Model Parameters Using jcitest” on page 7-147
• “Compare Approaches to Cointegration Analysis” on page 7-150

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108
• “Identifying Multiple Cointegrating Relations” on page 7-143

7 Multivariate Time Series Models

7-144

Test for Cointegration Using the Johansen Test

This example shows how to assess whether a multivariate time series has multiple
cointegrating relations using the Johansen test.

Load Data_Canada into the MATLAB® Workspace. The data set contains the term
structure of Candian interest rates [75]. Extract the short-term, medium-term, and long-
term interest rate series.

load Data_Canada

Y = Data(:,3:end); % Interest rate data

To illustrate the input and output structure of jcitest when conducting multiple
tests, test for the cointegration rank using the default H1 model and two different lag
structures.

[h,pValue,stat,cValue] = jcitest(Y,'model','H1','lags',1:2);

Results Summary (Test 1)

Data: Y

Effective sample size: 39

Model: H1

Lags: 1

Statistic: trace

Significance level: 0.05

r h stat cValue pValue eigVal

--

0 1 35.3442 29.7976 0.0104 0.3979

1 1 15.5568 15.4948 0.0490 0.2757

2 0 2.9796 3.8415 0.0843 0.0736

Results Summary (Test 2)

Data: Y

Effective sample size: 38

Model: H1

Lags: 2

Statistic: trace

 Test for Cointegration Using the Johansen Test

7-145

Significance level: 0.05

r h stat cValue pValue eigVal

--

0 0 25.8188 29.7976 0.1346 0.2839

1 0 13.1267 15.4948 0.1109 0.2377

2 0 2.8108 3.8415 0.0937 0.0713

The default "trace" test assesses null hypotheses of cointegration rank less than
or equal to r against the alternative , where n is the dimension of the data. The
summaries show that the first test rejects a cointegration rank of 0 (no cointegration)
and just barely rejects a cointegration rank of 1, but fails to reject a cointegration rank
of 2. The inference is that the data exhibit 1 or 2 cointegrating relationships. With
an additional lag in the model, the second test fails to reject any of the cointegration
ranks, providing little by way of inference. It is important to determine a reasonable lag
length for the VEC model (as well as the general form of the model) before testing for
cointegration.

Because the Johansen method, by its nature, tests multiple rank specifications for each
specification of the remaining model parameters, jcitest returns the results in the
form of tabular arrays, and indexes by null rank and test number.

Display the test results, h.

h

h =

 r0 r1 r2

 _____ _____ _____

 t1 true true false

 t2 false false false

Column headers indicate tests r0, r1, and r2, respectively, of , , and
against . Row headers t1 and t2 indicate the two separate tests (two separate lag
structures) specified by the input parameters.

Access the result for the second test at null rank useing tabular array indexing.

7 Multivariate Time Series Models

7-146

h20 = h.r0(2)

h20 =

 0

See Also
jcitest

Related Examples
• “Estimate VEC Model Parameters Using jcitest” on page 7-147
• “Compare Approaches to Cointegration Analysis” on page 7-150

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108
• “Identifying Multiple Cointegrating Relations” on page 7-143

 Estimate VEC Model Parameters Using jcitest

7-147

Estimate VEC Model Parameters Using jcitest
In addition to testing for multiple cointegrating relations, jcitest produces maximum
likelihood estimates of VEC model coefficients under the rank restrictions on B.
Estimation information is returned in an optional fifth output argument, and can be
displayed by setting an optional input parameter. For example, the following estimates a
VEC(2) model of the data, and displays the results under each of the rank restrictions r =
0, r = 1, and r = 2:

load Data_Canada

Y = Data(:,3:end); % Interest rate data

[~,~,~,~,mles] = jcitest(Y,'model','H1','lags',2,...

 'display','params');

Parameter Estimates (Test 1)

r = 0

B1 =

 -0.1848 0.5704 -0.3273

 0.0305 0.3143 -0.3448

 0.0964 0.1485 -0.1406

B2 =

 -0.6046 1.6615 -1.3922

 -0.1729 0.4501 -0.4796

 -0.1631 0.5759 -0.5231

c1 =

 0.1420

 0.1517

 0.1508

r = 1

A =

 -0.6259

 -0.2261

 -0.0222

B =

7 Multivariate Time Series Models

7-148

 0.7081

 1.6282

 -2.4581

B1 =

 0.0579 1.0824 -0.8718

 0.1182 0.4993 -0.5415

 0.1050 0.1667 -0.1600

B2 =

 -0.5462 2.2436 -1.7723

 -0.1518 0.6605 -0.6169

 -0.1610 0.5966 -0.5366

c0 =

 2.2351

c1 =

 -0.0366

 0.0872

 0.1444

r = 2

A =

 -0.6259 0.1379

 -0.2261 -0.0480

 -0.0222 0.0137

B =

 0.7081 -2.4407

 1.6282 6.2883

 -2.4581 -3.5321

B1 =

 0.2438 0.6395 -0.6729

 0.0535 0.6533 -0.6107

 0.1234 0.1228 -0.1403

B2 =

 -0.3857 1.7970 -1.4915

 -0.2076 0.8158 -0.7146

 -0.1451 0.5524 -0.5089

 Estimate VEC Model Parameters Using jcitest

7-149

c0 =

 2.0901

 -3.0289

c1 =

 -0.0104

 0.0137

 0.1528

mles is a tabular array of structure arrays, with each structure containing information
for a particular test under a particular rank restriction. Since both tabular arrays and
structure arrays use similar indexing, you can access the tabular array and then the
structure using dot notation. For example, to access the rank 2 matrix of cointegrating
relations:

B = mles.r2.paramVals.B

B =

 0.7081 -2.4407

 1.6282 6.2883

 -2.4581 -3.5321

See Also
jcitest

Related Examples
• “Test for Cointegration Using the Johansen Test” on page 7-144
• “Compare Approaches to Cointegration Analysis” on page 7-150

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108
• “Identifying Single Cointegrating Relations” on page 7-116

7 Multivariate Time Series Models

7-150

Compare Approaches to Cointegration Analysis

Comparing inferences and estimates from the Johansen and Engle-Granger approaches
can be challenging, for a variety of reasons. First of all, the two methods are essentially
different, and may disagree on inferences from the same data. The Engle-Granger two-
step method for estimating the VEC model, first estimating the cointegrating relation
and then estimating the remaining model coefficients, differs from Johansen's maximum
likelihood approach. Secondly, the cointegrating relations estimated by the Engle-
Granger approach may not correspond to the cointegrating relations estimated by the
Johansen approach, especially in the presence of multiple cointegrating relations. It is
important, in this context, to remember that cointegrating relations are not uniquely
defined, but depend on the decomposition of the impact matrix.

Nevertheless, the two approaches should provide generally comparable results, if both
begin with the same data and seek out the same underlying relationships. Properly
normalized, cointegrating relations discovered by either method should reflect the
mechanics of the data-generating process, and VEC models built from the relations
should have comparable forecasting abilities.

As the following shows in the case of the Canadian interest rate data, Johansen's H1*
model, which is the closest to the default settings of egcitest, discovers the same
cointegrating relation as the Engle-Granger test, assuming a cointegration rank of 2:

load Data_Canada

Y = Data(:,3:end); % Interest rate data

[~,~,~,~,reg] = egcitest(Y,'test','t2');

c0 = reg.coeff(1);

b = reg.coeff(2:3);

beta = [1; -b];

[~,~,~,~,mles] = jcitest(Y,'model','H1*');

BJ2 = mles.r2.paramVals.B;

c0J2 = mles.r2.paramVals.c0;

% Normalize the 2nd cointegrating relation with respect to

% the 1st variable, to make it comparable to Engle-Granger:

BJ2n = BJ2(:,2)/BJ2(1,2);

c0J2n = c0J2(2)/BJ2(1,2);

% Plot the normalized Johansen cointegrating relation together

% with the original Engle-Granger cointegrating relation:

 Compare Approaches to Cointegration Analysis

7-151

h = gca;

COrd = h.ColorOrder;

plot(dates,Y*beta-c0,'LineWidth',2,'Color',COrd(4,:))

hold on

plot(dates,Y*BJ2n+c0J2n,'--','LineWidth',2,'Color',COrd(5,:))

legend('Engle-Granger OLS','Johansen MLE','Location','NW')

title('{\bf Cointegrating Relation}')

axis tight

grid on

hold off

Results Summary (Test 1)

Data: Y

Effective sample size: 40

Model: H1*

Lags: 0

Statistic: trace

Significance level: 0.05

r h stat cValue pValue eigVal

--

0 1 38.8360 35.1929 0.0194 0.4159

1 0 17.3256 20.2619 0.1211 0.2881

2 0 3.7325 9.1644 0.5229 0.0891

7 Multivariate Time Series Models

7-152

See Also
jcitest

Related Examples
• “Estimate VEC Model Parameters Using jcitest” on page 7-147
• “Test for Cointegration Using the Johansen Test” on page 7-144

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108

 Compare Approaches to Cointegration Analysis

7-153

• “Identifying Single Cointegrating Relations” on page 7-116

7 Multivariate Time Series Models

7-154

Testing Cointegrating Vectors and Adjustment Speeds

A separate Econometrics Toolbox function, jcontest, uses the Johansen framework
to test linear constraints on cointegrating relations B and adjustment speeds A, and
estimates VEC model parameters under the additional constraints. Constraint testing
allows you to assess the validity of relationships suggested by economic theory.

Constraints imposed by jcontest take one of two forms. Constraints of the form R′A = 0
or R′B = 0 specify particular combinations of the variables to be held fixed during testing
and estimation. These constraints are equivalent to parameterizations A = Hφ or B = Hφ,
where H is the orthogonal complement of R (in MATLAB, null(R')) and φ is a vector
of free parameters. The second constraint type specifies particular vectors in the column
space of A or B. The number of constraints that jcontest can impose is restricted by the
rank of the matrix being tested, which can be inferred by first running jcitest.

See Also
jcitest | jcontest

Related Examples
• “Test Cointegrating Vectors” on page 7-155
• “Test Adjustment Speeds” on page 7-158

More About
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108
• “Identifying Multiple Cointegrating Relations” on page 7-143

 Test Cointegrating Vectors

7-155

Test Cointegrating Vectors

Tests on B answer questions about the space of cointegrating relations. The column
vectors in B, estimated by jcitest, do not uniquely define the cointegrating relations.
Rather, they estimate a space of cointegrating relations, given by the span of the vectors.
Tests on B allow you to determine if other potentially interesting relations lie in that
space. When constructing constraints, interpret the rows and columns of the n-by- r
matrix B as follows:

• Row i of B contains the coefficients of variable in each of the r cointegrating
relations.

• Column j of B contains the coefficients of each of the n variables in cointegrating
relation j.

One application of jcontest is to pretest variables for their order of integration. At
the start of any cointegration analysis, trending variables are typically tested for the
presence of a unit root. These pretests can be carried out with combinations of standard
unit root and stationarity tests such as adftest, pptest, kpsstest, or lmctest.
Alternatively, jcontest lets you carry out stationarity testing within the Johansen
framework. To do so, specify a cointegrating vector that is 1 at the variable of interest
and 0 elsewhere, and then test to see if that vector is in the space of cointegrating
relations. The following tests all of the variables in Y a single call:

load Data_Canada

Y = Data(:,3:end); % Interest rate data

[h0,pValue0] = jcontest(Y,1,'BVec',{[1 0 0]',[0 1 0]',[0 0 1]'})

h0 =

 1 1 1

pValue0 =

 1.0e-03 *

 0.3368 0.1758 0.1310

The second input argument specifies a cointegration rank of 1, and the third and fourth
input arguments are a parameter/value pair specifying tests of specific vectors in the

7 Multivariate Time Series Models

7-156

space of cointegrating relations. The results strongly reject the null of stationarity for
each of the variables, returning very small p-values.

Another common test of the space of cointegrating vectors is to see if certain
combinations of variables suggested by economic theory are stationary. For example,
it may be of interest to see if interest rates are cointegrated with various measures of
inflation (and, via the Fisher equation, if real interest rates are stationary). In addition
to the interest rates already examined, Data_Canada.mat contains two measures of
inflation, based on the CPI and the GDP deflator, respectively. To demonstrate the test
procedure (without any presumption of having identified an adequate model), we first
run jcitest to determine the rank of B, then test the stationarity of a simple spread
between the CPI inflation rate and the short-term interest rate:

y1 = Data(:,1); % CPI-based inflation rate

YI = [y1,Y];

% Test if inflation is cointegrated with interest rates:

[h,pValue] = jcitest(YI);

% Test if y1 - y2 is stationary:

[hB,pValueB] = jcontest(YI,1,'BCon',[1 -1 0 0]')

Results Summary (Test 1)

Data: YI

Effective sample size: 40

Model: H1

Lags: 0

Statistic: trace

Significance level: 0.05

r h stat cValue pValue eigVal

--

0 1 58.0038 47.8564 0.0045 0.5532

1 0 25.7783 29.7976 0.1359 0.3218

2 0 10.2434 15.4948 0.2932 0.1375

3 1 4.3263 3.8415 0.0376 0.1025

hB =

 1

 Test Cointegrating Vectors

7-157

pValueB =

 0.0242

The first test provides evidence of cointegration, and fails to reject a cointegration rank r
= 1. The second test, assuming r = 1, rejects the hypothesized cointegrating relation. Of
course, reliable economic inferences would need to include proper model selection, with
corresponding settings for the 'model' and other default parameters.

See Also
jcitest | jcontest

Related Examples
• “Test Adjustment Speeds” on page 7-158

More About
• “Testing Cointegrating Vectors and Adjustment Speeds” on page 7-154
• “Cointegration and Error Correction Analysis” on page 7-108

7 Multivariate Time Series Models

7-158

Test Adjustment Speeds

Tests on A answer questions about common driving forces in the system. When
constructing constraints, interpret the rows and columns of the n-by- r matrix A as
follows:

• Row i of A contains the adjustment speeds of variable to disequilibrium in each of
the r cointegrating relations.

• Column j of A contains the adjustment speeds of each of the n variables to
disequilibrium in cointegrating relation j.

For example, an all-zero row in A indicates a variable that is weakly exogenous with
respect to the coefficients in B. Such a variable may affect other variables, but does not
adjust to disequilibrium in the cointegrating relations. Similarly, a standard unit vector
column in A indicates a variable that is exclusively adjusting to disequilibrium in a
particular cointegrating relation.

To demonstrate, we test for weak exogeneity of the inflation rate with respect to interest
rates:

load Data_Canada

Y = Data(:,3:end); % Interest rate data

y1 = Data(:,1); % CPI-based inflation rate

YI = [y1,Y];

[hA,pValueA] = jcontest(YI,1,'ACon',[1 0 0 0]')

hA =

 0

pValueA =

 0.3206

The test fails to reject the null hypothesis. Again, the test is conducted with default
settings. Proper economic inference would require a more careful analysis of model and
rank specifications.

 Test Adjustment Speeds

7-159

Constrained parameter estimates are accessed via a fifth output argument from
jcontest. For example, the constrained, rank 1 estimate of A is obtained by referencing
the fifth output with dot (.) indexing:

[~,~,~,~,mles] = jcontest(YI,1,'ACon',[1 0 0 0]');

Acon = mles.paramVals.A

Acon =

 0

 0.1423

 0.0865

 0.2862

The first row of A is 0, as specified by the constraint.

See Also
jcitest | jcontest

Related Examples
• “Test Cointegrating Vectors” on page 7-155

More About
• “Testing Cointegrating Vectors and Adjustment Speeds” on page 7-154
• “Cointegration and Error Correction Analysis” on page 7-108

8

State-Space Models

• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8
• “Explicitly Create State-Space Model Containing Known Parameter Values” on page

8-17
• “Create State Space Model with Unknown Parameters” on page 8-20
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Implicitly Create State-Space Model Containing Regression Component” on page

8-28
• “Implicitly Create Diffuse State-Space Model Containing Regression Component” on

page 8-30
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Implicitly Create Time-Varying Diffuse State-Space Model” on page 8-35
• “Create State-Space Model with Random State Coefficient” on page 8-38
• “Estimate Time-Invariant State-Space Model” on page 8-41
• “Estimate Time-Varying State-Space Model” on page 8-45
• “Estimate Time-Varying Diffuse State-Space Model” on page 8-50
• “Estimate State-Space Model Containing Regression Component” on page 8-55
• “Filter States of State-Space Model” on page 8-58
• “Filter Time-Varying State-Space Model” on page 8-62
• “Filter Time-Varying Diffuse State-Space Model” on page 8-68
• “Filter States of State-Space Model Containing Regression Component” on page

8-76
• “Smooth States of State-Space Model” on page 8-80
• “Smooth Time-Varying State-Space Model” on page 8-84
• “Smooth Time-Varying Diffuse State-Space Model” on page 8-91

8 State-Space Models

8-2

• “Smooth States of State-Space Model Containing Regression Component” on page
8-99

• “Simulate States and Observations of Time-Invariant State-Space Model” on page
8-103

• “Simulate Time-Varying State-Space Model” on page 8-107
• “Simulate States of Time-Varying State-Space Model Using Simulation Smoother” on

page 8-112
• “Estimate Random Parameter of State-Space Model” on page 8-116
• “Forecast State-Space Model Using Monte-Carlo Methods” on page 8-125
• “Forecast State-Space Model Observations” on page 8-133
• “Forecast Observations of State-Space Model Containing Regression Component” on

page 8-138
• “Forecast Time-Varying State-Space Model” on page 8-143
• “Forecast State-Space Model Containing Regime Change in the Forecast Horizon” on

page 8-149
• “Forecast Time-Varying Diffuse State-Space Model” on page 8-156
• “Compare Simulation Smoother to Smoothed States” on page 8-162
• “Rolling-Window Analysis of Time-Series Models” on page 8-168
• “Assess State-Space Model Stability Using Rolling Window Analysis” on page 8-172
• “Choose State-Space Model Specification Using Backtesting” on page 8-181

 What Are State-Space Models?

8-3

What Are State-Space Models?

In this section...

“Definitions” on page 8-3
“State-Space Model Creation” on page 8-6

Definitions

• “State-Space Model” on page 8-3
• “Diffuse State-Space Model” on page 8-4
• “Time-Invariant State-Space Models” on page 8-5
• “Time-Varying State-Space Model” on page 8-5

State-Space Model

A state-space model is a discrete-time, stochastic model that contains two sets of
equations:

• One describing how a latent process transitions in time (the state equation)
• Another describing how an observer measures the latent process at each period (the

observation equation)

Symbolically, you can write a linear, multivariate, time-varying, Gaussian state-space
model using the following system of equations

x u

y Z

A x B

C x D

t t t t t

t t t t t t

= +

= +-

-1

b e ,

for t = 1,...,T.

•
x x x

t t tm
t

= È
Î

˘
˚
¢1,..., is an mt-dimensional state vector describing the dynamics of some,

possibly unobservable, phenomenon at period t. The initial state distribution (x0) is
Gaussian with mean μ0 and covariance matrix Σ0.

8 State-Space Models

8-4

•
y y yt t tn

t

= È
Î

˘
˚
¢1,..., is an nt-dimensional observation vector describing how the states

are measured by observers at period t.
• At is the mt-by-mt – 1 state-transition matrix describing how the states at time t

transition to the states at period t – 1.
• Bt is the mt-by-kt state-disturbance-loading matrix describing how the states at period

t combine with the innovations at period t.
• Ct is the nt-by-mt measurement-sensitivity matrix describing how the observations at

period t relate to the states at period t.
• Dt is the nt-by-ht observation-innovation matrix describing how the observations at

period t combine with the observation errors at period t.
• The matrices At, Bt, Ct, and Dt are referred to as coefficient matrices, and might

contain unknown parameters.
•

u u ut t tk
t

= ¢È
Î

˘
˚1,..., is a kt-dimensional, Gaussian, white-noise, unit-variance vector of

state disturbances at period t.
•

e e et t th
t

= ¢È
Î

˘
˚1, ..., is an ht-dimensional, Gaussian, white-noise, unit-variance vector of

observation innovations at period t.
• εt and ut are uncorrelated.
• For time-invariant state-space models,

• Z z z z
t t t td

= []1 2
L is row t of a T-by-d matrix of predictors Z. Each column of

Z corresponds to a predictor, and each successive row to a successive period. If the
observations are multivariate, then all predictors deflate each observation.

• β is a d-by-n matrix of regression coefficients for Zt.

To write a time-invariant state-space model, drop the t subscripts of all coefficient
matrices and dimensions.

Diffuse State-Space Model

A diffuse state-space model is a state-space model that can contain at least one state with
an infinite initial variance, called a diffuse state. In addition to having an infinite initial
variance, all diffuse states are uncorrelated with all other states in the model. There are
several motivations for using diffuse state-space models:

 What Are State-Space Models?

8-5

• The study of very early starting points of some nonstationary systems, such as
random walk process, leads to initial distribution variances that approach infinity.

• An infinite variance specification for an initial state distribution indicates complete
ignorance, or no prior knowledge, of the diffuse states. The advantage of this
specification is that the analysis of these states is more objective. That is, the
observations, rather than additional distribution assumptions, aid in understanding
the diffuse states. The disadvantage is that posterior distributions of the states might
be improper, and the likelihood function is unbounded. However, with enough data
and an identifiable, Gaussian state-space model, the filtered and smoothed states, and
a likelihood based on them, can be computed using the diffuse Kalman filter.

• Represent a static, initial state as unknown parameter by attributing to it an infinite
variance.

Time-Invariant State-Space Models

In a time-invariant state-space model:

• The coefficient matrices are equivalent for all periods.
• The number of states, state disturbances, observations, and observation innovations

are the same for all periods.

For example, for all t, the following system of equations

x

x

x

x

t

t

t

t

1

2

1

2

1 1

2 1

0

0

0 5 0

0 2

,

,

,

,

.È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙
È

Î
Í
Í

˘

˚
˙
˙

+
È

Î

-

-

f

f ÍÍ
˘

˚
˙

È

Î
Í
Í

˘

˚
˙
˙

[]
È

Î
Í
Í

˘

˚
˙
˙

+=

u

u

y
x

x

t

t

t

t

t
t

1

2

3

1

2

1 0 2

,

,

,

,

.f e

represents a time-invariant state-space model.

Time-Varying State-Space Model

In a time-varying state-space model:

• The coefficient matrices might change from period to period.
• The number of states, state disturbances, observations, and observation innovations

might change from period to period. For example, this might happen if there is a
regime shift or one of the states or observations cannot be measured during the
sampling time frame. Also, you can model seasonality using time-varying models.

8 State-Space Models

8-6

To illustrate a regime shift, suppose, for t = 1,..,10

x

x

x

x

t

t

t

t

1

2

1

2

1 1

2 1

0

0

0 5 0

0 2

,

,

,

,

.È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙
È

Î
Í
Í

˘

˚
˙
˙

+
È

Î

-

-

f

f ÍÍ
˘

˚
˙

È

Î
Í
Í

˘

˚
˙
˙

[]
È

Î
Í
Í

˘

˚
˙
˙

+=

u

u

y
x

x

t

t

t

t

t
t

1

2

3

1

2

1 0 2

,

,

,

,

.

,

f e

for t = 11

x
x

x
u

y x

t

t

t

t

t t t

1

1 1

2 1
1

1

4

5

0 0 5

0 2

,

,

,
,

,

.

.

,
= []

È

Î
Í
Í

˘

˚
˙
˙

+

+=

-

-
f

f e

and for t = 12,..,T

x u

y x

t t

t t t

1 1

1

4

5

0 5

0 2

, ,

,

.

.
.

= +

+=

f

f e

There are three sets of state transition matrices, whereas there are only two sets of the
other coefficient matrices.

State-Space Model Creation

To create a standard or diffuse state-space model, use ssm or dssm, respectively. For
time-invariant models, explicitly specify the parametric form of your state-space model
by supplying the coefficient matrices. For time-variant, complex models, or models that
require constraints, supply a parameter-to-matrix mapping function. The software can
infer the type of state (stationary, the constant one, or nonstationary), but it is best
practice to supply the state type using, for example, the StateType name-value pair
argument.

To filter and smooth the states of a specified ssm or dssm model, the software uses the
standard Kalman filter or the diffuse Kalman filter. To implement either, the software
requires the parameters of the initial state distribution (x0).

 What Are State-Space Models?

8-7

• For stationary states (StateType is 0), the initial means, variances, and covariances
are finite, and the software infers them. However, you can specify other values using
the properties Mean0 and Cov0, and dot notation.

• For states that are the constant one for all periods (StateType is 1), the initial state
means are 1 and covariances are 0.

• For nonstationary or diffuse states (StateType is 2):

• For standard state-space model, the initial state means are 0 and initial state
variance is 1e7 by default. To specify an initial state covariance of Inf, create a
dssm model object instead.

• For diffuse state-space models, the initial state means are 0 and initial state
variance is Inf.

See Also
dssm | esitmate | esitmate | filter | filter | forecast | forecast | smooth | smooth | ssm

Related Examples
• “Explicitly Create State-Space Model Containing Known Parameter Values” on page

8-17
• “Create State Space Model with Unknown Parameters” on page 8-20
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Implicitly Create State-Space Model Containing Regression Component” on page

8-28
• “Implicitly Create Time-Varying State-Space Model” on page 8-32

More About
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-8

What Is the Kalman Filter?

In this section...

“Standard Kalman Filter” on page 8-8
“State Forecasts” on page 8-9
“Filtered States” on page 8-10
“Smoothed States” on page 8-11
“Smoothed State Disturbances” on page 8-12
“Forecasted Observations” on page 8-12
“Smoothed Observation Innovations” on page 8-13
“Kalman Gain” on page 8-14
“Backward Recursion of the Kalman Filter” on page 8-14
“Diffuse Kalman Filter” on page 8-15

Standard Kalman Filter

In the state-space model framework, the Kalman filter estimates the values of a latent,
linear, stochastic, dynamic process based on possibly mismeasured observations. Given
distribution assumptions on the uncertainty, the Kalman filter also estimates model
parameters via maximum likelihood.

Starting with initial values for states (x0|0), the initial state variance-covariance matrix
(P0|0), and initial values for all unknown parameters (θ0), the simple Kalman filter:

1 Estimates, for t = 1,...,T:

a
The 1-step-ahead vector of state forecasts vector for period t (ˆ |xt t-1) and its

variance-covariance matrix (Pt t| -1)
b

The 1-step-ahead vector of observation forecasts for period t (ˆ|yt t-1) and its

estimated variance-covariance matrix (Vt t| -1)
c

The filtered states for period t (ˆ |xt t) and its estimated variance-covariance

matrix (Pt t|)

 What Is the Kalman Filter?

8-9

2 Feeds the forecasted and filtered estimates into the data likelihood function

ln (),..., ln (; � ,),| |p y y y y VT t t t t t
t

T

1 1 1
1

= - -
=
Â f

where f(; � ,)| |y y Vt t t t t- -1 1 is the multivariate normal probability density function with

mean ˆ|yt t-1 and variance Vt t| -1 .
3 Feeds this procedure into an optimizer to maximize the likelihood with respect to the

model parameters.

State Forecasts

s-step-ahead, state forecasts are estimates of the states at period t using all information
(for example, the observed responses) up to period t – s.

The mt-by-1 vector of 1-step-ahead, state forecasts at period t is x xE y yt t t t| | ,...,- -= ()1 1 1 .
The estimated vector of state forecasts is

ˆ ˆ ,| |x A xt t t t t- - -
=1 1 1

where ˆ |xt t- -1 1 is the mt – 1-by-1 filtered state vector at period t – 1.

At period t, the 1-step-ahead, state forecasts have the variance-covariance matrix

P A P A B Bt t t t t t t t| | ,- - -
¢ ¢

= +1 1 1

where Pt t- -1 1| is the estimated variance-covariance matrix of the filtered states at period t
– 1, given all information up to period t – 1.

The corresponding 1-step-ahead forecasted observation is ˆ ˆ ,| |y C xt t t t t- -
=1 1 , and its

variance-covariance matrix is V Var y y y P C D DCt t t t t t t t t t| || ,..., .- - -
¢ ¢= () = +1 1 1 1

8 State-Space Models

8-10

In general, the s-step-ahead, forecasted state vector is x xE y yt t s t t s| | ,...,- -= ()1 . The s-
step-ahead, vector of state forecasts is

ˆ | |x A xt s t j t t

j t

t s

+
= +

+
=

Ê

Ë

Á
Á

ˆ

¯

˜
˜’

1

and the s-step-ahead, forecasted observation vector is

ˆ ˆ .| |y C xt s t t s t s t+ + +
=

Filtered States

State forecasts at period t, updated using all information (for example the observed
responses) up to period t.

The mt-by-1 vector of filtered states at period t is x xE y yt t t t| | ,...,= ()1 . The estimated
vector of filtered states is

ˆ ˆ ˆ ,| |x x Kt t t t t t= +-1 e

where:

• ˆ |xt t-1 is the vector of state forecasts at period t using the observed responses from
periods 1 through t – 1.

• Kt is the mt-by-ht raw Kalman gain matrix for period t.
• ˆ ˆ |e t t t t ty C x= -

-1 is the ht-by-1 vector of estimated observation innovations at period t.

In other words, the filtered states at period t are the forecasted states at period t plus an
adjustment based on the trustworthiness of the observation. Trustworthy observations
have very little corresponding observation innovation variance (for example, the
maximum eigenvalue of DtDt′ is relatively small). Consequently, for a given estimated

observation innovation, the term K
t t
ê has a higher impact on the values of the filtered

states than untrustworthy observations.

 What Is the Kalman Filter?

8-11

At period t, the filtered states have variance-covariance matrix

P P K C Pt t t t t t t t| | | ,= -- -
¢

1 1

where Pt t| -1 is the estimated variance-covariance matrix of the state forecasts at period t,
given all information up to period t – 1.

Smoothed States

Smoothed states are estimated states at period t, which are updated using all available
information (for example, all of the observed responses).

The mt-by-1 vector of smoothed states at period t is x E x y yt T t T| (| ,...,)= 1 . The estimated
vector of smoothed states is

ˆ ˆ ,| | |x x P rt T t t t t t= +
- -1 1

where:

• ˆ |xt t-1 are the state forecasts at period t using the observed responses from periods 1 to
t – 1.

• Pt t| -1 is the estimated variance-covariance matrix of the state forecasts, given all
information up to period t – 1.

•
r A CK C Vt

s t

T

j t

s

t t t s s s s= -()
È

Î

Í
Í

˘

˚

˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂= =

-
¢

-
-Â ’

1

1
1

| ,n where,

• Kt is the mt-by-ht raw Kalman gain matrix for period t.
•

V P C D DCt t t t t t t t| |- -
¢ ¢

= +1 1 , which is the estimated variance-covariance matrix of the
forecasted observations.

•
n t t t ty y= -

-
ˆ | 1 , which is the difference between the observation and its forecast at

period t.

8 State-Space Models

8-12

Smoothed State Disturbances

Smoothed state disturbances are estimated, state disturbances at period t, which are
updated using all available information (for example, all of the observed responses).

The kt-by-1 vector of smoothed, state disturbances at period t is u uE y yt T t T| | ,...,= ()1 .
The estimated vector of smoothed, state disturbances is

ˆ ,|u B rt T t t=
¢

where rt is the variable in the formula to estimate the smoothed states.

At period t, the smoothed state disturbances have variance-covariance matrix

U I B N Bt T t t t| ,= -
¢

where Nt is the variable in the formula to estimate the variance-covariance matrix of the
smoothed states.

The software computes smoothed estimates using backward recursion of the Kalman
filter.

Forecasted Observations

s-step-ahead, forecasted observations are estimates of the observations at period t using
all information (for example, the observed responses) up to period t – s.

The nt-by-1 vector of 1-step-ahead, forecasted observations at period t is
y yE y yt t t t| | ,...,- -= ()1 1 1 . The estimated vector of forecasted observations is

ˆ ˆ ,| |y C xt t t t t- -
=1 1

where ˆ |xt t-1 is the mt-by-1 estimated vector of state forecasts at period t.

At period t, the 1-step-ahead, forecasted observations have variance-covariance matrix

 What Is the Kalman Filter?

8-13

V Var y y y P C D DCt t t t t t t t t t| || ,..., .- - -
¢ ¢= () = +1 1 1 1

where Pt t| -1 is the estimated variance-covariance matrix of the state forecasts at period t,
given all information up to period t – 1.

In general, the s-step-ahead, vector of state forecasts is x xE y yt t s t t s| | ,...,- -= ()1 . The s-
step-ahead, forecasted observation vector is

ˆ ˆ .| |y C xt s t t s t s t+ + +
=

Smoothed Observation Innovations

Smoothed observation innovations are estimated, observation innovations at period
t, which are updated using all available information (for example, all of the observed
responses).

The ht-by-1 vector of smoothed, observation innovations at period t is
e et T t TE y y| | ,...,= ()1 . The estimated vector of smoothed, observation innovations is

ˆ ,|e nt t t t t t t tD V D K r= -
¢

-
- ¢ ¢

+1
1

1

where:

• rt and νt are the variables in the formula to estimate the smoothed states.
• Kt is the mt-by-ht raw Kalman gain matrix for period t.
•

V P C D DCt t t t t t t t| |- -
¢ ¢

= +1 1 , which is the estimated variance-covariance matrix of the
forecasted observations.

At period t, the smoothed observation innovations have variance-covariance matrix

E I D V K N K D
t T t t t t t t t| | .= - -()¢

-
- ¢

+1
1

1

The software computes smoothed estimates using backward recursion of the Kalman
filter.

8 State-Space Models

8-14

Kalman Gain

• The raw Kalman gain is a matrix that indicates how much to weigh the observations
during recursions of the Kalman filter.

The raw Kalman gain is an mt -by-ht matrix computed using

K CP C P C D Dt t t t t t t t t t= +()-
¢

-
¢ ¢

-

| | ,1 1

1

where Pt t| -1 is the estimated variance-covariance matrix of the state forecasts, given
all information up to period t – 1.

The value of the raw Kalman gain determines how much weight to put on the
observations. For a given estimated observation innovation, if the maximum
eigenvalue of DtDt′ is relatively small, then the raw Kalman gain imparts a
relatively large weight on the observations. If the maximum eigenvalue of DtDt′
is relatively large, then the raw Kalman gain imparts a relatively small weight
on the observations. Consequently, the filtered states at period t are close to the
corresponding state forecasts.

• Consider obtaining the 1-step-ahead state forecasts for period t + 1 using all
information up to period t. The adjusted Kalman gain (Kadj t,) is the amount of

weight put on the estimated observation innovation for period t (ê
t
) as compared to

the 2-step-ahead state forecast (ˆ |xt t+ -1 1).

That is,

ˆ ˆ ˆ ˆ ˆ ˆ .| | | | ,x A x x A K x KAt t t t t t t t t t t t t adj t t+ - + -= + += =1 1 1 1e e

Backward Recursion of the Kalman Filter

Backward recursion of the Kalman filter estimates smoothed states, state disturbances,
and observation innovations.

The software estimates the smoothed values by:

1 Setting rT + 1 = 0, and NT + 1 to an mT-by-mT matrix of 0s

 What Is the Kalman Filter?

8-15

2 For t = T,...,1, it recursively computes:

a rt (see “Smoothed States” on page 8-11)
b ˆ |xt T , which is the matrix of smoothed states

c Nt (see “Smoothed States” on page 8-11)
d Pt T| , which is the estimated variance-covariance matrix of the smoothed states

e ˆ |ut T , which is the matrix of smoothed state disturbances

f U t T| , which is the estimated variance-covariance matrix of the smoothed state
disturbances

g ˆ|e t T , which is the matrix of smoothed observation innovations

h Et T| , which is the estimated variance-covariance matrix of the smoothed
observation innovations

Diffuse Kalman Filter

Consider a state-space model written so that the m diffuse states (xd) are segregated from
the n stationary states (xs). That is, the moments of the initial distributions are

m
m

m0
0

0
0

0

0

0

0
= =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙

d

s

d

s

and S
S

S
.

• μd0 is an m-vector of zeros
• μs0 is an n-vector of real numbers
• Σd0 = κIm, where Im is the m-by-m identity matrix and κ is a positive real number.
• Σs0 is an n-by-n positive definite matrix.
• The diffuse states are uncorrelated with each other and the stationary states.

One way to analyze such a model is by setting κ to a relatively large, positive real
number, and then implement the standard Kalman filter (see ssm). This treatment is

8 State-Space Models

8-16

an approximation to an analysis that treats the diffuse states as if their initial state
covariance approaches infinity.

The diffuse Kalman filter or exact-inital Kalman filter [33] treats the diffuse states by
taking κ to ∞. The diffuse Kalman filter filters in two stages: the first stage initializes
the model so that it can subsequently be filtered using the standard Kalman filter,
which is the second stage. The initialization stage mirrors the standard Kalman filter.
It sets all initial filtered states to zero, and then augments that vector of initial filtered
states with the identity matrix, which composes an (m + n)-by-(m + n + 1) matrix. After
a sufficient number of periods, the precision matrices become nonsingular. That is, the
diffuse Kalman filter uses enough periods at the beginning of the series to initialize the
model. You can consider this period as presample data.

The second stage commences when the precision matrices are nonsingular. Specifically,
the initialization stage returns a vector of filtered states and their precision matrix.
Then, the standard Kalman filter uses those estimates and the remaining data to filter,
smooth, and estimate parameters. For more details, see dssm and [33], Sec. 5.2.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
dssm | esitmate | esitmate | filter | filter | forecast | forecast | smooth | smooth | ssm

More About
• “What Are State-Space Models?” on page 8-3

 Explicitly Create State-Space Model Containing Known Parameter Values

8-17

Explicitly Create State-Space Model Containing Known Parameter
Values

This example shows how to create a time-invariant, state-space model containing known
parameter values using ssm.

Define a state-space model containing two independent, AR(1) states with Gaussian
disturbances that have standard deviations 0.1 and 0.3, respectively. Specify that the
observation is the deterministic sum of the two states. Symbolically, the equation is

Specify the state-transition coefficient matrix.

A = [0.5 0; 0 -0.2];

Specify the state-disturbance-loading coefficient matrix.

B = [0.1 0; 0 0.3];

Specify the measurement-sensitivity coefficient matrix.

C = [1 1];

Define the state-space model using ssm.

Mdl = ssm(A,B,C)

Mdl =

State-space model type: ssm

State vector length: 2

Observation vector length: 1

State disturbance vector length: 2

8 State-Space Models

8-18

Observation innovation vector length: 0

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations:

x1(t) = (0.50)x1(t-1) + (0.10)u1(t)

x2(t) = -(0.20)x2(t-1) + (0.30)u2(t)

Observation equation:

y1(t) = x1(t) + x2(t)

Initial state distribution:

Initial state means

 x1 x2

 0 0

Initial state covariance matrix

 x1 x2

 x1 0.01 0

 x2 0 0.09

State types

 x1 x2

 Stationary Stationary

Mdl is an ssm model containing unknown parameters. A detailed summary of Mdl prints
to the Command Window. By defualt, the software sets the initial state means and
covariance matrix using the stationary distributions.

It is good practice to verify that the state and observations equations are correct. If the
equations are not correct, then it might help to expand the state-space equation by hand.

Simulate states or observations from Mdl using simulate, or forecast states or
observations using forecast.

See Also
disp | estimate | ssm

 Explicitly Create State-Space Model Containing Known Parameter Values

8-19

Related Examples
• “Explicitly Create State-Space Model Containing Unknown Parameters” on page

8-20
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Estimate Time-Invariant State-Space Model” on page 8-41
• “Create State-Space Model with Random State Coefficient” on page 8-38

More About
• “What Are State-Space Models?” on page 8-3

8 State-Space Models

8-20

Create State Space Model with Unknown Parameters

In this section...

“Explicitly Create State-Space Model Containing Unknown Parameters” on page
8-20
“Implicitly Create Time-Invariant State-Space Model” on page 8-22

Explicitly Create State-Space Model Containing Unknown Parameters

This example shows how to create a time-invariant, state-space model containing
unknown parameter values using ssm.

Define a state-space model containing two dependent MA(1) states, and an additive-error
observation model. Symbolically, the equation is

Note that the states and are the two dependent MA(1) processes. The states
 and help construct the lag-one, MA effects. For example, picks up the first

disturbance (), and picks up . In all, ,
which is an MA(1) with as an input.

Specify the state-transition coefficient matrix. Use NaN values to indicate unknown
parameters.

A = [0 NaN NaN 0; 0 0 0 0; 0 0 0 NaN; 0 0 0 0];

Specify the state-disturbance-loading coefficient matrix.

B = [NaN 0; 1 0; 0 NaN; 0 1];

 Create State Space Model with Unknown Parameters

8-21

Specify the measurement-sensitivity coefficient matrix.

C = [1 0 0 0; 0 0 1 0];

Specify the observation-innovation coefficient matrix.

D = [NaN 0; 0 NaN];

Use ssm to define the state-space model.

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 4

Observation vector length: 2

State disturbance vector length: 2

Observation innovation vector length: 2

Sample size supported by model: Unlimited

Unknown parameters for estimation: 7

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x2(t-1) + (c2)x3(t-1) + (c4)u1(t)

x2(t) = u1(t)

x3(t) = (c3)x4(t-1) + (c5)u2(t)

x4(t) = u2(t)

Observation equations:

y1(t) = x1(t) + (c6)e1(t)

y2(t) = x3(t) + (c7)e2(t)

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

8 State-Space Models

8-22

State types are not specified.

Mdl is an ssm model containing unknown parameters. A detailed summary of Mdl prints
to the Command Window. It is good practice to verify that the state and observations
equations are correct.

Pass Mdl and data to estimate to estimate the unknown parameters.

Implicitly Create Time-Invariant State-Space Model

This example shows how to create a time-invariant state-space model by passing a
parameter-mapping function describing the model to ssm (that is, implicitly create a
state-space model). The state model is AR(1) model. The states are observed with bias,
but without random error. Set the initial state mean and variance, and specify that the
state is stationary.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = timeInvariantParamMap(params)

% Time-invariant state-space model parameter mapping function example. This

% function maps the vector params to the state-space matrices (A, B, C, and

% D), the initial state value and the initial state variance (Mean0 and

% Cov0), and the type of state (StateType). The state model is AR(1)

% without observation error.

 varu1 = exp(params(2)); % Positive variance constraint

 A = params(1);

 B = sqrt(varu1);

 C = params(3);

 D = [];

 Mean0 = 0.5;

 Cov0 = 100;

 StateType = 0;

end

Save this code as a file named timeInvariantParamMap to a folder on your MATLAB®
path.

 Create State Space Model with Unknown Parameters

8-23

Create the state-space model by passing the function timeInvariantParamMap as a
function handle to ssm.

Mdl = ssm(@timeInvariantParamMap);

The software implicitly defines the state-space model. Usually, you cannot verify state-
space models that you implicitly define.

Mdl is an ssm model object containing unknown parameters. You can estimate the
unknown parameters by passing Mdl and response data to estimate.

See Also
disp | estimate | ssm

Related Examples
• “Explicitly Create State-Space Model Containing Known Parameter Values” on page

8-17
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Create State-Space Model with Random State Coefficient” on page 8-38

More About
• “What Are State-Space Models?” on page 8-3

8 State-Space Models

8-24

Create State-Space Model Containing ARMA State

This example shows how to create an stationary ARMA model subject to measurement
error using ssm.

To explicitly create a state-space model, it is helpful to write the state and observation
equations in matrix form. In this example, the state of interest is the ARMA(2,1) process

where is Gaussian with mean 0 and known standard deviation 0.5.

The variables , , and are in the state-space model framework. Therefore, the
terms , , and require "dummy states" to be included in the model.

Subsequently, the state equation is

Note that:

• c corresponds to a state () that is always 1.
• , and has the term .
• has the term . ssm puts state disturbances as Gaussian random variables

with mean 0 and variance 1. Therefore, the factor 0.5 is the standard deviation of the
state disturbance.

• , and has the term .

The observation equation is unbiased for the ARMA(2,1) state process. The observation
innovations are Gaussian with mean 0 and known standard deviation 0.1. Symbolically,
the observation equation is

 Create State-Space Model Containing ARMA State

8-25

You can include a measurement-sensitivity factor (a bias) by replacing 1 in the row
vector by a scalar or unknown parameter.

Define the state-transition coefficient matrix. Use NaN values to indicate unknown
parameters.

A = [NaN NaN NaN NaN; 0 1 0 0; 1 0 0 0; 0 0 0 0];

Define the state-disturbance-loading coefficient matrix.

B = [0.5; 0; 0; 1];

Define the measurement-sensitivity coefficient matrix.

C = [1 0 0 0];

Define the observation-innovation coefficient matrix.

D = 0.1;

Use ssm to create the state-space model. Set the initial-state mean (Mean0) to a vector
of zeros and covariance matrix (Cov0) to the identity matrix, except set the mean and
variance of the constant state to 1 and 0, respectively. Specify the type of initial state
distributions (StateType) by noting that:

• is a stationary, ARMA(2,1) process.
• is the constant 1 for all periods.
• is the lagged ARMA process, so it is stationary.
• is a white-noise process, so it is stationary.

Mean0 = [0; 1; 0; 0];

Cov0 = eye(4);

Cov0(2,2) = 0;

StateType = [0; 1; 0; 0];

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType);

Mdl is an ssm model. You can use dot notation to access its properties. For example, print
A by entering Mdl.A.

Use disp to verify the state-space model.

disp(Mdl)

State-space model type: ssm

8 State-Space Models

8-26

State vector length: 4

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

Unknown parameters for estimation: 4

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c2)x2(t-1) + (c3)x3(t-1) + (c4)x4(t-1) + (0.50)u1(t)

x2(t) = x2(t-1)

x3(t) = x1(t-1)

x4(t) = u1(t)

Observation equation:

y1(t) = x1(t) + (0.10)e1(t)

Initial state distribution:

Initial state means

 x1 x2 x3 x4

 0 1 0 0

Initial state covariance matrix

 x1 x2 x3 x4

 x1 1 0 0 0

 x2 0 0 0 0

 x3 0 0 1 0

 x4 0 0 0 1

State types

 x1 x2 x3 x4

 Stationary Constant Stationary Stationary

 Create State-Space Model Containing ARMA State

8-27

If you have a set of responses, you can pass them and Mdl to estimate to estimate the
parameters.

See Also
disp | estimate | ssm

Related Examples
• “Explicitly Create State-Space Model Containing Known Parameter Values” on page

8-17
• “Explicitly Create State-Space Model Containing Unknown Parameters” on page

8-20
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Estimate Time-Invariant State-Space Model” on page 8-41
• “Create State-Space Model with Random State Coefficient” on page 8-38

More About
• “What Are State-Space Models?” on page 8-3

8 State-Space Models

8-28

Implicitly Create State-Space Model Containing Regression
Component

This example shows how to implicitly create a state-space model that contains a
regression component in the observation equation. The state model is an ARMA(1,1).

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state. Specify the regression
component by deflating the observations within the function. Symbolically, the model is:

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType,DeflateY] = regressionParamMap(params,y,z)

% State-space model with a regression component parameter mapping function

% example. This function maps the vector params to the state-space matrices

% (A, B, C, and D), the initial state value and the initial state variance

% (Mean0 and Cov0), and the type of state (StateType). The state model is

% an ARMA(1,1).

 varu1 = exp(params(3)); % Positive variance constraint

 vare1 = exp(params(4));

 A = [params(1) params(2); 0 0];

 B = [sqrt(varu1); 1];

 C = [1 0];

 D = sqrt(vare1);

 Mean0 = [0.5 0.5];

 Cov0 = eye(2);

 StateType = [0 0];

 DeflateY = y - params(5)*z;

end

Save this code as a file named regressionParamMap on your MATLAB® path.

Create the state-space model by passing the function regressionParamMap as a
function handle to ssm.

 Implicitly Create State-Space Model Containing Regression Component

8-29

Mdl = ssm(@(params)regressionParamMap(params,y,z));

ssm implicitly creates the state-space model. Usually, you cannot verify implicitly defined
state-space models.

Before creating the model, ensure that the data y and z exist in your workspace.

See Also
disp | estimate | ssm

Related Examples
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Estimate State-Space Model Containing Regression Component” on page 8-55
• “Create State-Space Model with Random State Coefficient” on page 8-38

More About
• “What Are State-Space Models?” on page 8-3

8 State-Space Models

8-30

Implicitly Create Diffuse State-Space Model Containing Regression
Component

This example shows how to implicitly create a diffuse state-space model that contains
a regression component in the observation equation. The state model contains an
ARMA(1,1) state and random walk.

Write a function that specifies how the parameters in params map to the state-space
model matrices, to the initial state values, and to the type of state. Specify the regression
component by deflating the observations within the function. Symbolically, the model is:

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType,DeflateY] = diffuseRegressionParamMap(params,y,z)

% Diffuse state-space model with a regression component parameter mapping

% function example. This function maps the vector params to the state-space

% matrices (A, B, C, and D) and indicates the type of states (StateType).

% The state model contains an ARMA(1,1) model and a random walk.

 varu1 = exp(params(3)); % Positive variance constraint

 vare1 = exp(params(5));

 A = [params(1) params(2); 0 0];

 B = [sqrt(varu1) 0; 1 0];

 C = [varu1 0];

 D = sqrt(vare1);

 Mean0 = []; % Let software infer Mean0

 Cov0 = []; % Let software infer Cov0

 StateType = [0 0 2];

 DeflateY = y - params(6)*z;

end

Save this code as a file named diffuseRegressionParamMap.m to a folder on your
MATLAB® path.

 Implicitly Create Diffuse State-Space Model Containing Regression Component

8-31

Create the diffuse state-space model by passing diffuseRegressionParamMap as a
function handle to dssm.

Mdl = dssm(@(params)diffuseRegressionParamMap(params,y,z));

dssm implicitly creates the diffuse state-space model. Usually, you cannot verify
implicitly defined state-space models.

Before creating the model, ensure that the variables y and z exist in your workspace.

See Also
dssm

More About
• “What Are State-Space Models?” on page 8-3

8 State-Space Models

8-32

Implicitly Create Time-Varying State-Space Model

This example shows how to create a time-varying, state-space model by passing a
parameter-mapping function describing the model to ssm (i.e., implicitly create a state-
space model).

Suppose that from periods 1 through 10, the state model are stationary AR(2) and MA(1)
models, respectively, and the observation model is the sum of the two states. From
periods 11 through 20, the state model only includes the first AR(2) model.

Symbolically, the models are:

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = timeVariantParamMap(params)

% Time-variant state-space model parameter mapping function example. This

% function maps the vector params to the state-space matrices (A, B, C, and

 Implicitly Create Time-Varying State-Space Model

8-33

% D), the initial state value and the initial state variance (Mean0 and

% Cov0), and the type of state (StateType). From periods 1 through 10, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods 11 through 20, the state model is

% just the AR(2) model.

 varu11 = exp(params(3)); % Positive variance constraints

 vare11 = exp(params(6));

 vare12 = exp(params(8));

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(4); 0 0 0 0]};

 B1 = {[sqrt(varu11) 0; 0 0; 0 1; 0 1]};

 C1 = {params(5)*[1 0 1 0]};

 D1 = {sqrt(vare11)};

 Mean0 = [0.5 0.5 0 0];

 Cov0 = eye(4);

 StateType = [0 0 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[sqrt(varu11); 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[sqrt(varu11); 0]};

 C3 = {params(7)*[1 0]};

 D3 = {sqrt(vare12)};

 A = [repmat(A1,10,1);A2;repmat(A3,9,1)];

 B = [repmat(B1,10,1);B2;repmat(B3,9,1)];

 C = [repmat(C1,10,1);repmat(C3,10,1)];

 D = [repmat(D1,10,1);repmat(D3,10,1)];

end

Save this code as a file named timeVariantParamMap.m on your MATLAB® path.

Create the state-space model by passing the function timeVariantParamMap as a
function handle to ssm.

Mdl = ssm(@timeVariantParamMap);

ssm implicitly creates the state-space model. Usually, you cannot verify implicitly created
state-space models.

Mdl is an ssm model object containing unknown parameters. You can estimate the
unknown parameters by passing Mdl and response data to estimate.

See Also
disp | estimate | ssm

8 State-Space Models

8-34

Related Examples
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Estimate Time-Varying State-Space Model” on page 8-45
• “Create State-Space Model with Random State Coefficient” on page 8-38

More About
• “What Are State-Space Models?” on page 8-3

 Implicitly Create Time-Varying Diffuse State-Space Model

8-35

Implicitly Create Time-Varying Diffuse State-Space Model

This example shows how to create a diffuse state-space model in which one of the state
variables drops out of the model after a certain period.

Suppose that a latent process comprises an AR(2) and an MA(1) model. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Consequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

The latent processes are measured using

for the first 25 periods, and

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

Together, the latent process and observation equations make up a state-space model. If
the coefficients are unknown parameters, the state-space model is

for the first 25 periods,

8 State-Space Models

8-36

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = diffuseAR2MAParamMap(params,T)

%diffuseAR2MAParamMap Time-variant diffuse state-space model parameter

%mapping function

%

% This function maps the vector params to the state-space matrices (A, B,

% C, and D) and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model. The AR(2) model is diffuse.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = [];

 Cov0 = [];

 StateType = [2 2 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 Implicitly Create Time-Varying Diffuse State-Space Model

8-37

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named diffuseAR2MAParamMap on your MATLAB® path.

Create the diffuse state-space model by passing the function diffuseAR2MAParamMap
as a function handle to dssm. This example uses 50 observations.

T = 50;

Mdl = dssm(@(params)diffuseAR2MAParamMap(params,T));

dssm implicitly creates the diffuse state-space model. Usually, you cannot verify diffuse
state-space models that are implicitly created.

dssm contains unknown parameters. You can simulate data and then estimate
parameters using estimate.

See Also
dssm | esitmate | filter

Related Examples
• “Estimate Time-Varying Diffuse State-Space Model” on page 8-50
• “Filter Time-Varying Diffuse State-Space Model” on page 8-68

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-38

Create State-Space Model with Random State Coefficient

This example shows how to create a time-varying, state-space model containing a
random, state coefficient.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state. Symbolically, the model is

 is a random coefficient.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D] = randomCoeffParamMap(c)

% State-space model parameter-to-matrix mapping function with a random

% coefficient example. There are two states: one is a random walk with

% disturbance variance 1, and the other is a first-order Markov model with

% a random coefficient and an unknown variance. The observation equation

% is the sum of the two states, and the innovation has variance 1.

A = diag([1,c(1)*rand]);

B = [1 0; 0 c(2)];

C = [1,1];

D = 1;

end

Create the state-space model by passing randomCoeffParamMap as a function handle to
ssm.

rng('default'); % For reproducibility

Mdl = ssm(@randomCoeffParamMap);

ssm implicitly creates the ssm model Mdl.

Display Mdl using disp. Specify initial parameters values.

 Create State-Space Model with Random State Coefficient

8-39

disp(Mdl,[3; 5])

State-space model type: ssm

State vector length: 2

Observation vector length: 1

State disturbance vector length: 2

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations:

x1(t) = x1(t-1) + u1(t)

x2(t) = (0.38)x2(t-1) + (5)u2(t)

Observation equation:

y1(t) = x1(t) + x2(t) + e1(t)

Initial state distribution:

Initial state means

 x1 x2

 0 0

Initial state covariance matrix

 x1 x2

 x1 1e+07 0

 x2 0 1e+07

State types

 x1 x2

 Diffuse Diffuse

disp sets the parameters to their initial values, or functions of their initial values. In
this case, the first parameter is the initial values times a random number.

See Also
disp | ssm

8 State-Space Models

8-40

Related Examples
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Estimate State-Space Model Containing Regression Component” on page 8-55

More About
• “What Are State-Space Models?” on page 8-3

 Estimate Time-Invariant State-Space Model

8-41

Estimate Time-Invariant State-Space Model

This example shows how to generate data from a known model, specify a state-space
model containing unknown parameters corresponding to the data generating process,
and then fits the state-space model to the data.

Suppose that a latent process is this AR(1) process

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error as
indicated in the equation

where is Gaussian with mean 0 and standard deviation 0.1.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.1*randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients and variances are unknown parameters, the state-space
model is

Specify the state-transition coefficient matrix. Use NaN values for unknown parameters.

A = NaN;

8 State-Space Models

8-42

Specify the state-disturbance-loading coefficient matrix.

B = NaN;

Specify the measurement-sensitivity coefficient matrix.

C = 1;

Specify the observation-innovation coefficient matrix

D = NaN;

Specify the state-space model using the coefficient matrices. Also, specify the initial state
mean, variance, and distribution (which is stationary).

Mean0 = 0;

Cov0 = 10;

StateType = 0;

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType);

Mdl is an ssm model. Verify that the model is correctly specified using the display in the
Command Window.

Pass the observations to estimate to estimate the parameter. Set a starting value for the
parameter to params0. and must be positive, so set the lower bound constraints
using the 'lb' name-value pair argument. Specify that the lower bound of is -Inf.

params0 = [0.9; 0.5; 0.1];

EstMdl = estimate(Mdl,y,params0,'lb',[-Inf; 0; 0])

Method: Maximum likelihood (fmincon)

Sample size: 100

Logarithmic likelihood: -140.532

Akaike info criterion: 287.064

Bayesian info criterion: 294.879

 | Coeff Std Err t Stat Prob

 c(1) | 0.45425 0.19870 2.28612 0.02225

 c(2) | 0.89013 0.30359 2.93205 0.00337

 c(3) | 0.38750 0.57857 0.66976 0.50302

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.52989 0.35621 4.29496 0.00002

EstMdl =

 Estimate Time-Invariant State-Space Model

8-43

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.45)x1(t-1) + (0.89)u1(t)

Observation equation:

y1(t) = x1(t) + (0.39)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 10

State types

 x1

 Stationary

EstMdl is an ssm model. The results of the estimation appear in the Command Window,
contain the fitted state-space equations, and contain a table of parameter estimates, their
standard errors, t statistics, and p-values.

You can use or display, for example the fitted state-transition matrix using dot notation.

EstMdl.A

8 State-Space Models

8-44

ans =

 0.4543

Pass EstMdl to forecast to forecast observations, or to simulate to conduct a Monte
Carlo study.

See Also
estimate | forecast | simulate | ssm

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Estimate Time-Varying State-Space Model” on page 8-45
• “Estimate State-Space Model Containing Regression Component” on page 8-55

 Estimate Time-Varying State-Space Model

8-45

Estimate Time-Varying State-Space Model
This example shows how to:

1 Generate data from a known model.
2 Create a time-varying, state-space model containing unknown parameters

corresponding to the data generating process.
3 Fit the state-space model to the data.

Suppose that an AR(2) and an MA(1) model comprise a latent process. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Subsequently, the state equation for the first 25 periods is

For the last 25 periods, the state equation is

where and are Gaussian with mean 0 and standard deviation 1.

Generate a random series of 50 observations from and , assuming that the series
starts at 1.5 and 1, respectively.

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are missing.

Suppose further that the latent processes are measured using

for the first 25 periods, and

for the last 25 periods. is Gaussian with mean 0 and standard deviation 1.

8 State-Space Models

8-46

Generate observations using the random latent state process (x) and the observation
equation.

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients are unknown parameters, the state-space model is

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = AR2MAParamMap(params,T)

%AR2MAParamMap Time-variant state-space model parameter mapping function

%

% This function maps the vector params to the state-space matrices (A, B,

% C, and D), the initial state value and the initial state variance (Mean0

% and Cov0), and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 Estimate Time-Varying State-Space Model

8-47

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = ones(4,1);

 Cov0 = 10*eye(4);

 StateType = [0 0 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code in a file named AR2MAParamMap and put it in your MATLAB® path.

Create the state-space model by passing the function AR2MAParamMap as a function
handle to ssm.

Mdl = ssm(@(params)AR2MAParamMap(params,T));

ssm implicitly defines the state-space model. Usually, you cannot verify implicitly defined
state-space models.

Pass the observed responses (y) to estimate to estimate the parameters. Specify
positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0)

Method: Maximum likelihood (fminunc)

Sample size: 50

Logarithmic likelihood: -114.957

Akaike info criterion: 239.913

Bayesian info criterion: 249.473

 | Coeff Std Err t Stat Prob

 c(1) | 0.47870 0.26634 1.79733 0.07229

 c(2) | 0.00809 0.27179 0.02975 0.97626

 c(3) | 0.55735 0.80958 0.68844 0.49118

 c(4) | 1.62679 0.41622 3.90848 0.00009

 c(5) | 1.90021 0.49563 3.83391 0.00013

8 State-Space Models

8-48

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81229 0.46815 -1.73511 0.08272

 x(2) | -0.31449 0.45918 -0.68490 0.49341

EstMdl =

State-space model type: ssm

State vector length: Time-varying

Observation vector length: 1

State disturbance vector length: Time-varying

Observation innovation vector length: 1

Sample size supported by model: 50

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations of period 1, 2, 3,..., 25:

x1(t) = (0.48)x1(t-1) + (8.09e-03)x2(t-1) + u1(t)

x2(t) = x1(t-1)

x3(t) = (0.56)x4(t-1) + u2(t)

x4(t) = u2(t)

State equations of period 26:

x1(t) = (0.48)x1(t-1) + (8.09e-03)x2(t-1) + u1(t)

x2(t) = x1(t-1)

State equations of period 27, 28, 29,..., 50:

x1(t) = (0.48)x1(t-1) + (8.09e-03)x2(t-1) + u1(t)

x2(t) = x1(t-1)

Observation equation of period 1, 2, 3,..., 25:

y1(t) = (1.63)x1(t) + (1.63)x3(t) + e1(t)

Observation equation of period 26, 27, 28,..., 50:

y1(t) = (1.90)x1(t) + e1(t)

Initial state distribution:

 Estimate Time-Varying State-Space Model

8-49

Initial state means

 x1 x2 x3 x4

 1 1 1 1

Initial state covariance matrix

 x1 x2 x3 x4

 x1 10 0 0 0

 x2 0 10 0 0

 x3 0 0 10 0

 x4 0 0 0 10

State types

 x1 x2 x3 x4

 Stationary Stationary Stationary Stationary

The estimated parameters are within 1 standard error of their true values, but the
standard errors are quite high. Likelihood surfaces of state-space models might contain
local maxima. Therefore, it is good practice to try several initial parameter values, or
consider using refine.

See Also
estimate | forecast | refine | simulate | ssm

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Estimate Time-Invariant State-Space Model” on page 8-41
• “Estimate State-Space Model Containing Regression Component” on page 8-55

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-50

Estimate Time-Varying Diffuse State-Space Model
This example shows how to:

1 Generate data from a known model.
2 Create a time-varying, diffuse state-space model containing unknown parameters

corresponding to the data generating process. The diffuse specification indicates
complete ignorance of the true state values.

3 Fit the diffuse state-space model to the data.

Suppose that an AR(2) and an MA(1) model comprise a latent process. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Consequently, the state equation for the first 25 periods is

For the last 25 periods, the state equation is

where and are Gaussian with mean 0 and standard deviation 1.

Generate a random series of 50 observations from and , assuming that the series
starts at 1.5 and 1, respectively.

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are missing.

The latent processes are measured using

for the first 25 periods, and

 Estimate Time-Varying Diffuse State-Space Model

8-51

for the last 25 periods. is Gaussian with mean 0 and standard deviation 1.

Generate observations using the random, latent state process (x) and the observation
equation.

y = 2*nansum(x')' + randn(T,1);

Together, the latent process and observation equations make up a state-space model. If
the coefficients are unknown parameters, the state-space model is

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = diffuseAR2MAParamMap(params,T)

%diffuseAR2MAParamMap Time-variant diffuse state-space model parameter

%mapping function

%

% This function maps the vector params to the state-space matrices (A, B,

% C, and D) and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model. The AR(2) model is diffuse.

8 State-Space Models

8-52

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = [];

 Cov0 = [];

 StateType = [2 2 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code in a file named diffuseAR2MAParamMap on your MATLAB® path.

Create the state-space model by passing the function diffuseAR2MAParamMap as a
function handle to dssm.

Mdl = dssm(@(params)diffuseAR2MAParamMap(params,T));

dssm implicitly defines the diffuse state-space model. Usually, you cannot verify diffuse
state-space models that are implicitly created.

To estimate the parameters, pass the observed responses (y) to estimate . Specify
positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0)

Method: Maximum likelihood (fminunc)

Effective Sample size: 48

Logarithmic likelihood: -110.313

Akaike info criterion: 230.626

Bayesian info criterion: 240.186

 | Coeff Std Err t Stat Prob

 c(1) | 0.44041 0.27687 1.59069 0.11168

 c(2) | 0.03949 0.29585 0.13349 0.89380

 c(3) | 0.78364 1.49223 0.52515 0.59948

 Estimate Time-Varying Diffuse State-Space Model

8-53

 c(4) | 1.64260 0.66737 2.46133 0.01384

 c(5) | 1.90409 0.49374 3.85648 0.00012

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81932 0.46706 -1.75420 0.07940

 x(2) | -0.29909 0.45939 -0.65107 0.51500

EstMdl =

State-space model type: dssm

State vector length: Time-varying

Observation vector length: 1

State disturbance vector length: Time-varying

Observation innovation vector length: 1

Sample size supported by model: 50

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations of period 1, 2, 3,..., 25:

x1(t) = (0.44)x1(t-1) + (0.04)x2(t-1) + u1(t)

x2(t) = x1(t-1)

x3(t) = (0.78)x4(t-1) + u2(t)

x4(t) = u2(t)

State equations of period 26:

x1(t) = (0.44)x1(t-1) + (0.04)x2(t-1) + u1(t)

x2(t) = x1(t-1)

State equations of period 27, 28, 29,..., 50:

x1(t) = (0.44)x1(t-1) + (0.04)x2(t-1) + u1(t)

x2(t) = x1(t-1)

Observation equation of period 1, 2, 3,..., 25:

y1(t) = (1.64)x1(t) + (1.64)x3(t) + e1(t)

Observation equation of period 26, 27, 28,..., 50:

y1(t) = (1.90)x1(t) + e1(t)

8 State-Space Models

8-54

Initial state distribution:

Initial state means

 x1 x2 x3 x4

 0 0 0 0

Initial state covariance matrix

 x1 x2 x3 x4

 x1 Inf 0 0 0

 x2 0 Inf 0 0

 x3 0 0 1.61 1

 x4 0 0 1 1

State types

 x1 x2 x3 x4

 Diffuse Diffuse Stationary Stationary

The estimated parameters are within one standard error of their true values, but the
standard errors are quite high. Likelihood surfaces of state-space models might contain
local maxima. Therefore, try several initial parameter values, or consider using refine.

See Also
dssm | estimate | refine

Related Examples
• “Implicitly Create Time-Varying Diffuse State-Space Model” on page 8-35
• “Implicitly Create Diffuse State-Space Model Containing Regression Component” on

page 8-30
• “Filter Time-Varying Diffuse State-Space Model” on page 8-68

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

 Estimate State-Space Model Containing Regression Component

8-55

Estimate State-Space Model Containing Regression Component

This example shows how to fit a state-space model that has an observation-equation
regression component.

Suppose that the linear relationship between the change in the unemployment rate and
the nominal gross national product (nGNP) growth rate is of interest. Suppose further
that the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically,
and in state-space form, the model is

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed change in the unemployment rate being deflated by the growth

rate of nGNP ().
• is the Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

Z = [ones(T-1,1) diff(log(gnpn))];

8 State-Space Models

8-56

y = diff(u);

This example proceeds using series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

Specify the coefficient matrices. Use NaN values to indicate unknown parameters.

A = [NaN NaN; 0 0];

B = [1; 1];

C = [1 0];

D = NaN;

Specify the state-space model using ssm. Since is an ARMA(1,1) process, and is
white noise, specify that they are stationary processes.

StateType = [0; 0];

Mdl = ssm(A,B,C,D,'StateType',StateType);

Estimate the model parameters. Specify the regression component and its initial value
for optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Restrict the estimate of to all positive, real numbers, but allow all other
parameters to be unbounded.

params0 = [0.3 0.2 0.1]; % Chosen arbitrarily

EstMdl = estimate(Mdl,y,params0,'Predictors',Z,'Beta0',[0.1 0.1],...

 'lb',[-Inf,-Inf,0,-Inf,-Inf]);

Method: Maximum likelihood (fmincon)

Sample size: 61

Logarithmic likelihood: -99.7245

Akaike info criterion: 209.449

Bayesian info criterion: 220.003

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.34098 0.29608 -1.15164 0.24948

 c(2) | 1.05003 0.41377 2.53771 0.01116

 c(3) | 0.48592 0.36790 1.32079 0.18657

 y <- z(1) | 1.36121 0.22338 6.09358 0

 y <- z(2) | -24.46711 1.60018 -15.29024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.01264 0.44690 2.26592 0.02346

 x(2) | 0.77718 0.58917 1.31912 0.18713

 Estimate State-Space Model Containing Regression Component

8-57

A table of estimates and statistics output to the Command Window. EstMdl is an ssm
model, and you can access its properties using dot notation.

See Also
estimate | forecast | simulate | ssm

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Estimate Time-Invariant State-Space Model” on page 8-41
• “Estimate Time-Varying State-Space Model” on page 8-45

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-58

Filter States of State-Space Model

This example shows how to filter states of a known, time-invariant, state-space model.

Suppose that a latent process is an AR(1). Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D)

 Filter States of State-Space Model

8-59

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

Estimate the filtered states for periods 1 through 100. Plot the true state values and the
estimated, filtered states.

8 State-Space Models

8-60

filteredX = filter(Mdl,y);

figure

plot(1:T,x,'-k',1:T,filteredX,':r','LineWidth',2)

title({'State Values'})

xlabel('Period')

ylabel('State')

legend({'True state values','Filtered state values'})

The true values and filter estimates are approximately the same.

See Also
estimate | filter | smooth | ssm

 Filter States of State-Space Model

8-61

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Smooth States of State-Space Model” on page 8-80

8 State-Space Models

8-62

Filter Time-Varying State-Space Model

This example shows how to generate data from a known model, fit a state-space model to
the data, and then filter the states.

Suppose that a latent process comprises an AR(2) and an MA(1) model. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Subsequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

Assuming that the series starts at 1.5 and 1, respectively, generate a random series of 50
observations from and .

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are NaN values.

Suppose further that the latent processes are measured using

for the first 25 periods, and

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

 Filter Time-Varying State-Space Model

8-63

Use the random latent state process (x) and the observation equation to generate
observations.

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients are unknown parameters, the state-space model is

for the first 25 periods,

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = AR2MAParamMap(params,T)

%AR2MAParamMap Time-variant state-space model parameter mapping function

%

8 State-Space Models

8-64

% This function maps the vector params to the state-space matrices (A, B,

% C, and D), the initial state value and the initial state variance (Mean0

% and Cov0), and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = ones(4,1);

 Cov0 = 10*eye(4);

 StateType = [0 0 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named AR2MAParamMap on your MATLAB® path.

Create the state-space model by passing the function AR2MAParamMap as a function
handle to ssm.

Mdl = ssm(@(params)AR2MAParamMap(params,T));

ssm implicitly creates the state-space model. Usually, you cannot verify an implicitly
defined state-space model.

Pass the observed responses (y) to estimate to estimate the parameters. Specify an
arbitrary set of positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0);

Method: Maximum likelihood (fminunc)

Sample size: 50

Logarithmic likelihood: -114.957

Akaike info criterion: 239.913

 Filter Time-Varying State-Space Model

8-65

Bayesian info criterion: 249.473

 | Coeff Std Err t Stat Prob

 c(1) | 0.47870 0.26634 1.79733 0.07229

 c(2) | 0.00809 0.27179 0.02975 0.97626

 c(3) | 0.55735 0.80958 0.68844 0.49118

 c(4) | 1.62679 0.41622 3.90848 0.00009

 c(5) | 1.90021 0.49563 3.83391 0.00013

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81229 0.46815 -1.73511 0.08272

 x(2) | -0.31449 0.45918 -0.68490 0.49341

EstMdl is an ssm model containing the estimated coefficients. Likelihood surfaces of
state-space models might contain local maxima. Therefore, it is good practice to try
several initial parameter values, or consider using refine.

Filter the states and obtain state forecasts by passing EstMdl and the observed
responses to filter.

[~,~,Output]= filter(EstMdl,y);

Output is a T-by-1 structure array containing the filtered states and state forecasts,
among other things.

Extract the filtered and forecasted states from the cell arrays. Recall that the two,
different states are in positions 1 and 3. The states in positions 2 and 4 help specify the
processes of interest.

stateIndx = [1 3]; % State indices of interest

FilteredStates = NaN(T,numel(stateIndx));

ForecastedStates = NaN(T,numel(stateIndx));

for t = 1:T

 maxInd = size(Output(t).FilteredStates,1);

 mask = stateIndx <= maxInd;

 FilteredStates(t,mask) = Output(t).FilteredStates(stateIndx(mask),1);

 ForecastedStates(t,mask) = Output(t).ForecastedStates(stateIndx(mask),1);

end

Plot the true state values, the filtered states, and the state forecasts together for each
model.

figure

8 State-Space Models

8-66

plot(1:T,x(:,1),'-k',1:T,FilteredStates(:,1),':r',...

 1:T,ForecastedStates(:,1),'--g','LineWidth',2);

title('AR(2) State Values')

xlabel('Period')

ylabel('State Value')

legend({'True state values','Filtered state values','State forecasts'});

figure

plot(1:T,x(:,2),'-k',1:T,FilteredStates(:,2),':r',...

 1:T,ForecastedStates(:,2),'--g','LineWidth',2);

title('MA(1) State Values')

xlabel('Period')

ylabel('State Value')

legend({'True state values','Filtered state values','State forecasts'});

 Filter Time-Varying State-Space Model

8-67

See Also
estimate | filter | forecast | refine | smooth | ssm

Related Examples
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Estimate Time-Varying State-Space Model” on page 8-45
• “Smooth Time-Varying State-Space Model” on page 8-84

8 State-Space Models

8-68

Filter Time-Varying Diffuse State-Space Model

This example shows how to generate data from a known model, fit a diffuse state-space
model to the data, and then filter the states.

Suppose that a latent process comprises an AR(2) and an MA(1) model. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Consequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

Assuming that the series starts at 1.5 and 1, respectively, generate a random series of 50
observations from and .

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are NaN values.

The latent processes are measured using

for the first 25 periods, and

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

 Filter Time-Varying Diffuse State-Space Model

8-69

Use the random latent state process (x) and the observation equation to generate
observations.

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations make up a state-space model. The
coefficients are unknown parameters, the state-space model is

for the first 25 periods,

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = diffuseAR2MAParamMap(params,T)

%diffuseAR2MAParamMap Time-variant diffuse state-space model parameter

%mapping function

%

8 State-Space Models

8-70

% This function maps the vector params to the state-space matrices (A, B,

% C, and D) and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model. The AR(2) model is diffuse.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = [];

 Cov0 = [];

 StateType = [2 2 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named diffuseAR2MAParamMap on your MATLAB® path.

Create the diffuse state-space model by passing the function diffuseAR2MAParamMap
as a function handle to dssm.

Mdl = dssm(@(params)diffuseAR2MAParamMap(params,T));

dssm implicitly creates the diffuse state-space model. Usually, you cannot verify diffuse
state-space models that are implicitly created.

To estimate the parameters, pass the observed responses (y) to estimate. Specify an
arbitrary set of positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0);

Method: Maximum likelihood (fminunc)

Effective Sample size: 48

Logarithmic likelihood: -110.313

Akaike info criterion: 230.626

Bayesian info criterion: 240.186

 Filter Time-Varying Diffuse State-Space Model

8-71

 | Coeff Std Err t Stat Prob

 c(1) | 0.44041 0.27687 1.59069 0.11168

 c(2) | 0.03949 0.29585 0.13349 0.89380

 c(3) | 0.78364 1.49223 0.52515 0.59948

 c(4) | 1.64260 0.66737 2.46133 0.01384

 c(5) | 1.90409 0.49374 3.85648 0.00012

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81932 0.46706 -1.75420 0.07940

 x(2) | -0.29909 0.45939 -0.65107 0.51500

EstMdl is a dssm model containing the estimated coefficients. Likelihood surfaces of
state-space models might contain local maxima. Therefore, try several initial parameter
values, or consider using refine.

Filter the states and obtain state forecasts by passing EstMdl and the observed
responses to filter.

[~,~,Output]= filter(EstMdl,y);

Output is a T-by-1 structure array that contains the filtered states and state forecasts.

Convert Output to a table.

OutputTbl = struct2table(Output);

OutputTbl(1:10,1:5) % Display first ten rows of first five variables

ans =

 LogLikelihood FilteredStates FilteredStatesCov ForecastedStates ForecastedStatesCov

 _____________ ______________ _________________ ________________ ___________________

 [] [] [] [] []

 [] [] [] [] []

 [-2.3218] [4x1 double] [4x4 double] [4x1 double] [4x4 double]

 [-2.4464] [4x1 double] [4x4 double] [4x1 double] [4x4 double]

 [-3.8758] [4x1 double] [4x4 double] [4x1 double] [4x4 double]

 [-2.5212] [4x1 double] [4x4 double] [4x1 double] [4x4 double]

 [-1.9016] [4x1 double] [4x4 double] [4x1 double] [4x4 double]

 [-1.9284] [4x1 double] [4x4 double] [4x1 double] [4x4 double]

 [-2.4110] [4x1 double] [4x4 double] [4x1 double] [4x4 double]

 [-2.6502] [4x1 double] [4x4 double] [4x1 double] [4x4 double]

8 State-Space Models

8-72

The first two rows of the table contain empty cells or zeros, which correspond to the
observations required to initialize the diffuse Kalman filter. That is, SwitchTime is 2.

SwitchTime = 2;

Extract the filtered and forecasted states from the table. Recall that the two different
states are in positions 1 and 3. The states in positions 2 and 4 help to specify the
processes of interest.

stateIdx = [1 3]; % State indices of interest

FilteredStates = NaN(T,numel(stateIdx));

ForecastedStates = NaN(T,numel(stateIdx));

for t = (SwitchTime + 1):T

 maxInd = size(Output(t).FilteredStates,1);

 mask = stateIdx <= maxInd;

 FilteredStates(t,mask) = Output(t).FilteredStates(stateIdx(mask),1);

 ForecastedStates(t,mask) = Output(t).ForecastedStates(stateIdx(mask),1);

end

FilteredStates(1:SwitchTime,:) = 0;

ForecastedStates(1:SwitchTime,:) = 0;

Plot the true state values, the filtered states, and the state forecasts together for each
model.

figure

plot(1:T,x(:,1),'-k',1:T,FilteredStates(:,1),':r',...

 1:T,ForecastedStates(:,1),'--g','LineWidth',2);

title('AR(2) State Values')

xlabel('Period')

ylabel('State Value')

legend({'True state values','Filtered state values','State forecasts'});

figure

plot(1:T,x(:,2),'-k',1:T,FilteredStates(:,2),':r',...

 1:T,ForecastedStates(:,2),'--g','LineWidth',2);

title('MA(1) State Values')

xlabel('Period')

ylabel('State Value')

legend({'True state values','Filtered state values','State forecasts'});

 Filter Time-Varying Diffuse State-Space Model

8-73

8 State-Space Models

8-74

See Also
dssm | esitmate | smooth

Related Examples
• “Implicitly Create Time-Varying Diffuse State-Space Model” on page 8-35
• “Implicitly Create Diffuse State-Space Model Containing Regression Component” on

page 8-30
• “Estimate Time-Varying Diffuse State-Space Model” on page 8-50
• “Smooth Time-Varying Diffuse State-Space Model” on page 8-91

 Filter Time-Varying Diffuse State-Space Model

8-75

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-76

Filter States of State-Space Model Containing Regression
Component

This example shows how to filter states of a time-invariant, state-space model that
contains a regression component.

Suppose that the linear relationship between the change in the unemployment rate and
the nominal gross national product (nGNP) growth rate is of interest. Suppose further
that the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically,
and in state-space form, the model is

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed change in the unemployment rate being deflated by the growth

rate of nGNP ().
• is the Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each series. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

Z = [ones(T-1,1) diff(log(gnpn))];

y = diff(u);

 Filter States of State-Space Model Containing Regression Component

8-77

Though this example removes missing values, the software can accommodate series
containing missing values in the Kalman filter framework.

Specify the coefficient matrices.

A = [NaN NaN; 0 0];

B = [1; 1];

C = [1 0];

D = NaN;

Specify the state-space model using ssm.

Mdl = ssm(A,B,C,D);

Estimate the model parameters. Specify the regression component and its initial value
for optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Restrict the estimate of to all positive, real numbers.

params0 = [0.3 0.2 0.2];

[EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,...

 'Beta0',[0.1 0.2],'lb',[-Inf,-Inf,0,-Inf,-Inf]);

Method: Maximum likelihood (fmincon)

Sample size: 61

Logarithmic likelihood: -99.7245

Akaike info criterion: 209.449

Bayesian info criterion: 220.003

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.34098 0.29608 -1.15164 0.24948

 c(2) | 1.05003 0.41377 2.53771 0.01116

 c(3) | 0.48592 0.36790 1.32080 0.18657

 y <- z(1) | 1.36121 0.22338 6.09358 0

 y <- z(2) | -24.46711 1.60018 -15.29024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.01264 0.44690 2.26592 0.02346

 x(2) | 0.77718 0.58917 1.31912 0.18713

EstMdl is an ssm model, and you can access its properties using dot notation.

Filter the estimated state-space model. EstMdl does not store the data or the regression
coefficients, so you must pass in them in using the name-value pair arguments
'Predictors' and 'Beta', respectively. Plot the estimated, filtered states. Recall that

8 State-Space Models

8-78

the first state is the change in the unemployment rate, and the second state helps build
the first.

filteredX = filter(EstMdl,y,'Predictors',Z,'Beta',estParams(end-1:end));

figure

plot(dates(end-(T-1)+1:end),filteredX(:,1));

xlabel('Period')

ylabel('Change in the unemployment rate')

title('Filtered Change in the Unemployment Rate')

See Also
estimate | filter | smooth | ssm

 Filter States of State-Space Model Containing Regression Component

8-79

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Estimate State-Space Model Containing Regression Component” on page 8-55
• “Smooth States of State-Space Model Containing Regression Component” on page

8-99

8 State-Space Models

8-80

Smooth States of State-Space Model

This example shows how to smooth the states of a known, time-invariant, state-space
model.

Suppose that a latent process is an AR(1) model. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 0.5.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',0.5^2);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.05. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.05*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D)

 Smooth States of State-Space Model

8-81

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

Smooth the states for periods 1 through 100. Plot the true state values and the smoothed
states.

8 State-Space Models

8-82

SmoothedX = smooth(Mdl,y);

figure

plot(1:T,x,'-k',1:T,SmoothedX,':r','LineWidth',2)

title({'State Values'})

xlabel('Period')

ylabel('State')

legend({'True state values','Smoothed state values'})

See Also
estimate | filter | smooth | ssm

 Smooth States of State-Space Model

8-83

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Filter States of State-Space Model” on page 8-58

8 State-Space Models

8-84

Smooth Time-Varying State-Space Model

This example shows how to generate data from a known model, fit a state-space model to
the data, and then smooth the states.

Suppose that a latent process comprises an AR(2) and an MA(1) model. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Subsequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

Assuming that the series starts at 1.5 and 1, respectively, generate a random series of 50
observations from and .

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are NaN values.

Suppose further that the latent processes are measured using

for the first 25 periods, and

 Smooth Time-Varying State-Space Model

8-85

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

Use the random latent state process (x) and the observation equation to generate
observations.

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients are unknown parameters, the state-space model is

for the first 25 periods,

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

8 State-Space Models

8-86

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = AR2MAParamMap(params,T)

%AR2MAParamMap Time-variant state-space model parameter mapping function

%

% This function maps the vector params to the state-space matrices (A, B,

% C, and D), the initial state value and the initial state variance (Mean0

% and Cov0), and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = ones(4,1);

 Cov0 = 10*eye(4);

 StateType = [0 0 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named AR2MAParamMap on your MATLAB® path.

Create the state-space model by passing the function AR2MAParamMap as a function
handle to ssm.

Mdl = ssm(@(params)AR2MAParamMap(params,T));

ssm implicitly creates the state-space model. Usually, you cannot verify an implicitly
defined state-space model.

Pass the observed responses (y) to estimate to estimate the parameters. Specify an
arbitrary set of positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0);

 Smooth Time-Varying State-Space Model

8-87

Method: Maximum likelihood (fminunc)

Sample size: 50

Logarithmic likelihood: -114.957

Akaike info criterion: 239.913

Bayesian info criterion: 249.473

 | Coeff Std Err t Stat Prob

 c(1) | 0.47870 0.26634 1.79733 0.07229

 c(2) | 0.00809 0.27179 0.02975 0.97626

 c(3) | 0.55735 0.80958 0.68844 0.49118

 c(4) | 1.62679 0.41622 3.90848 0.00009

 c(5) | 1.90021 0.49563 3.83391 0.00013

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81229 0.46815 -1.73511 0.08272

 x(2) | -0.31449 0.45918 -0.68490 0.49341

EstMdl is an ssm model containing the estimated coefficients. Likelihood surfaces of
state-space models might contain local maxima. Therefore, it is good practice to try
several initial parameter values, or consider using refine.

Smooth the states and estimate the variance-covariance matrices of the smoothed states
by passing EstMdl and the observed responses to smooth.

[~,~,Output]= smooth(EstMdl,y);

Output is a T-by-1 structure array containing the smoothed states and their variance-
covariance matrices, among other things.

Extract the smoothed states and their variances from the cell arrays. Recall that the two,
different states are in positions 1 and 3. The states in positions 2 and 4 help specify the
processes of interest.

stateIndx = [1 3]; % State Indices of interest

SmoothedStates = NaN(T,numel(stateIndx));

SmoothedStatesCov = NaN(T,numel(stateIndx));

for t = 1:T

 maxInd1 = size(Output(t).SmoothedStates,1);

 maxInd2 = size(Output(t).SmoothedStatesCov,1);

 mask1 = stateIndx <= maxInd1;

 mask2 = stateIndx <= maxInd2;

 SmoothedStates(t,mask1) = ...

8 State-Space Models

8-88

 Output(t).SmoothedStates(stateIndx(mask1),1);

 SmoothedStatesCov(t,mask2) = ...

 diag(Output(t).SmoothedStatesCov(stateIndx(mask2),...

 stateIndx(mask2)));

end

Plot the true state values, the smoothed state values, and their individual 95% Wald-type
confidence intervals for each model.

AR2SSCIlb = SmoothedStates(:,1) - 1.95*sqrt(SmoothedStatesCov(:,1));

AR2SSCIub = SmoothedStates(:,1) + 1.95*sqrt(SmoothedStatesCov(:,1));

AR2SSIntervals = [AR2SSCIlb AR2SSCIub];

MA1SSCIlb = SmoothedStates(:,2) - 1.95*sqrt(SmoothedStatesCov(:,2));

MA1SSCIub = SmoothedStates(:,2) + 1.95*sqrt(SmoothedStatesCov(:,2));

MA1SSIntervals = [MA1SSCIlb MA1SSCIub];

figure

plot(1:T,x(:,1),'-k',1:T,SmoothedStates(:,1),':r',...

 1:T,AR2SSIntervals,'--b','LineWidth',2);

title('AR(2) State Values')

xlabel('Period')

ylabel('State Value')

legend({'True state values','Smoothed state values',...

 '95% Confidence Intervals'});

figure

plot(1:T,x(:,2),'-k',1:T,SmoothedStates(:,2),':r',...

 1:T,MA1SSIntervals,'--b','LineWidth',2);

title('MA(1) State Values')

xlabel('Period')

ylabel('State Value')

legend({'True state values','Smoothed state values',...

 '95% Confidence Intervals'});

 Smooth Time-Varying State-Space Model

8-89

8 State-Space Models

8-90

See Also
estimate | filter | refine | smooth | ssm

Related Examples
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Estimate Time-Varying State-Space Model” on page 8-45
• “Filter Time-Varying State-Space Model” on page 8-62

 Smooth Time-Varying Diffuse State-Space Model

8-91

Smooth Time-Varying Diffuse State-Space Model

This example shows how to generate data from a known model, fit a diffuse state-space
model to the data, and then smooth the states.

Suppose that a latent process comprises an AR(2) and an MA(1) model. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Consequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

Assuming that the series starts at 1.5 and 1, respectively, generate a random series of 50
observations from and

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are NaN values.

The latent processes are measured using

for the first 25 periods, and

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

8 State-Space Models

8-92

Use the random latent state process (x) and the observation equation to generate
observations.

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations make up a state-space model. If
the coefficients are unknown parameters, the state-space model is

for the first 25 periods,

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = diffuseAR2MAParamMap(params,T)

%diffuseAR2MAParamMap Time-variant diffuse state-space model parameter

%mapping function

%

 Smooth Time-Varying Diffuse State-Space Model

8-93

% This function maps the vector params to the state-space matrices (A, B,

% C, and D) and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model. The AR(2) model is diffuse.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = [];

 Cov0 = [];

 StateType = [2 2 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named diffuseAR2MAParamMap on your MATLAB® path.

Create the diffuse state-space model by passing the function diffuseAR2MAParamMap
as a function handle to dssm.

Mdl = dssm(@(params)diffuseAR2MAParamMap(params,T));

dssm implicitly creates the diffuse state-space model. Usually, you cannot verify diffuse
state-space models that are implicitly created.

To estimate the parameters, pass the observed responses (y) to estimate. Specify an
arbitrary set of positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0);

Method: Maximum likelihood (fminunc)

Effective Sample size: 48

Logarithmic likelihood: -110.313

Akaike info criterion: 230.626

Bayesian info criterion: 240.186

8 State-Space Models

8-94

 | Coeff Std Err t Stat Prob

 c(1) | 0.44041 0.27687 1.59069 0.11168

 c(2) | 0.03949 0.29585 0.13349 0.89380

 c(3) | 0.78364 1.49223 0.52515 0.59948

 c(4) | 1.64260 0.66737 2.46133 0.01384

 c(5) | 1.90409 0.49374 3.85648 0.00012

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81932 0.46706 -1.75420 0.07940

 x(2) | -0.29909 0.45939 -0.65107 0.51500

EstMdl is a dssm model containing the estimated coefficients. Likelihood surfaces of
state-space models might contain local maxima. Therefore, try several initial parameter
values, or consider using refine.

Smooth the states and obtain the smoothed state covariance matrix per period by passing
EstMdl and the observed responses to smooth.

[~,~,Output]= smooth(EstMdl,y);

Output is a T-by-1 structure array that contains the smoothed states.

Convert Output to a table.

OutputTbl = struct2table(Output);

OutputTbl(1:10,1:4) % Display first ten rows of first four variables

ans =

 LogLikelihood SmoothedStates SmoothedStatesCov SmoothedStateDisturb

 _____________ ______________ _________________ ____________________

 [] [] [] []

 [] [] [] []

 [-2.3218] [4x1 double] [4x4 double] [2x1 double]

 [-2.4464] [4x1 double] [4x4 double] [2x1 double]

 [-3.8758] [4x1 double] [4x4 double] [2x1 double]

 [-2.5212] [4x1 double] [4x4 double] [2x1 double]

 [-1.9016] [4x1 double] [4x4 double] [2x1 double]

 [-1.9284] [4x1 double] [4x4 double] [2x1 double]

 [-2.4110] [4x1 double] [4x4 double] [2x1 double]

 [-2.6502] [4x1 double] [4x4 double] [2x1 double]

 Smooth Time-Varying Diffuse State-Space Model

8-95

The first two rows of the table contain empty cells or zeros, which correspond to the
observations required to initialize the diffuse Kalman filter. That is, SwitchTime is 2.

SwitchTime = 2;

Extract the smoothed states from Output, and compute their 95% individual, Wald-type
confidence intervals. Recall that the two different states are in positions 1 and 3. The
states in positions 2 and 4 help to specify the processes of interest.

stateIdx = [1 3]; % State indices of interest

SmoothedStates = nan(T,numel(stateIdx));

CI = nan(T,2,numel(stateIdx));

for t = (SwitchTime + 1):T

 maxInd = size(Output(t).SmoothedStates,1);

 mask = stateIdx <= maxInd;

 SmoothedStates(t,mask) = Output(t).SmoothedStates(stateIdx(mask),1);

 CovX = Output(t).SmoothedStatesCov(stateIdx(mask),stateIdx(mask));

 CI(t,:,1) = SmoothedStates(t,1) + 1.96*sqrt(CovX(1,1))*[-1 1];

 if (max(stateIdx(mask)) > 1)

 CI(t,:,2) = SmoothedStates(t,2) + 1.96*sqrt(CovX(2,2))*[-1 1];

 end

end

SmoothedStates(1:SwitchTime,:) = 0;

CI(1:SwitchTime,:,:) = 0;

Plot the true state values, the smoothed states, and the 95% smoothed-state confidence
intervals for each model.

figure

plot(1:T,x(:,1),'b',1:T,SmoothedStates(:,1),'k',1:T,CI(:,:,1),'--r');

title('AR(2) State Values')

xlabel('Period')

ylabel('State Value')

legend({'True state values','Smoothed state values','95% CI'});

figure

plot(1:T,x(:,2),'b',1:T,SmoothedStates(:,2),'k',1:T,CI(:,:,2),'--r');

title('MA(1) State Values')

xlabel('Period')

ylabel('State Value')

legend({'True state values','Smoothed state values','95% CI'});

8 State-Space Models

8-96

 Smooth Time-Varying Diffuse State-Space Model

8-97

See Also
dssm | esitmate | smooth

Related Examples
• “Implicitly Create Time-Varying Diffuse State-Space Model” on page 8-35
• “Implicitly Create Diffuse State-Space Model Containing Regression Component” on

page 8-30
• “Estimate Time-Varying Diffuse State-Space Model” on page 8-50
• “Filter Time-Varying Diffuse State-Space Model” on page 8-68

8 State-Space Models

8-98

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

 Smooth States of State-Space Model Containing Regression Component

8-99

Smooth States of State-Space Model Containing Regression
Component

This example shows how to smooth states of a time-invariant, state-space model that
contains a regression component.

Suppose that the linear relationship between the change in the unemployment rate and
the nominal gross national product (nGNP) growth rate is of interest. Suppose further
that the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically,
and in state-space form, the model is

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed change in the unemployment rate being deflated by the growth

rate of nGNP ().
• is the Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each series. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

Z = [ones(T-1,1) diff(log(gnpn))];

y = diff(u);

8 State-Space Models

8-100

Though this example removes missing values, the software can accommodate series
containing missing values in the Kalman filter framework.

Specify the coefficient matrices.

A = [NaN NaN; 0 0];

B = [1; 1];

C = [1 0];

D = NaN;

Specify the state-space model using ssm.

Mdl = ssm(A,B,C,D);

Estimate the model parameters. Specify the regression component and its initial value
for optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Restrict the estimate of to all positive, real numbers.

params0 = [0.2 0.2 0.1];

[EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,...

 'Beta0',[0.2 0.1],'lb',[-Inf,-Inf,0,-Inf,-Inf]);

Method: Maximum likelihood (fmincon)

Sample size: 61

Logarithmic likelihood: -99.7245

Akaike info criterion: 209.449

Bayesian info criterion: 220.003

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.34098 0.29608 -1.15164 0.24948

 c(2) | 1.05003 0.41377 2.53771 0.01116

 c(3) | 0.48592 0.36790 1.32079 0.18657

 y <- z(1) | 1.36121 0.22338 6.09358 0

 y <- z(2) | -24.46711 1.60018 -15.29024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.01264 0.44690 2.26592 0.02346

 x(2) | 0.77718 0.58917 1.31912 0.18713

EstMdl is an ssm model, and you can access its properties using dot notation.

Smooth the states. EstMdl does not store the data or the regression coefficients, so you
must pass in them in using the name-value pair arguments 'Predictors' and 'Beta',

 Smooth States of State-Space Model Containing Regression Component

8-101

respectively. Plot the smoothed states. Recall that the first state is the change in the
unemployment rate, and the second state helps build the first.

SmoothedX = smooth(EstMdl,y,'Predictors',Z,'Beta',estParams(end-1:end));

figure

plot(dates(end-(T-1)+1:end),SmoothedX(:,1));

xlabel('Period')

ylabel('Change in the unemployment rate')

title('Smoothed Change in the Unemployment Rate')

See Also
estimate | filter | smooth | ssm

8 State-Space Models

8-102

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Estimate State-Space Model Containing Regression Component” on page 8-55
• “Filter States of State-Space Model Containing Regression Component” on page

8-76

 Simulate States and Observations of Time-Invariant State-Space Model

8-103

Simulate States and Observations of Time-Invariant State-Space
Model

This example shows how to simulate states and observations of a known, time-invariant
state-space model.

Suppose that a latent process is an AR(1) model. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D)

8 State-Space Models

8-104

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

Simulate one path each of states and observations. Specify that the paths span 100
periods.

 Simulate States and Observations of Time-Invariant State-Space Model

8-105

[simY,simX] = simulate(Mdl,100);

simY is a 100-by-1 vector of simulated responses. simX is a 100-by-1 vector of simulated
states.

Plot the true state values with the simulated states. Also, plot the observed responses
with the simulated responses.

figure

subplot(2,1,1)

plot(1:T,x,'-k',1:T,simX,':r','LineWidth',2)

title({'True State Values and Simulated States'})

xlabel('Period')

ylabel('State')

legend({'True state values','Simulated state values'})

subplot(2,1,2)

plot(1:T,y,'-k',1:T,simY,':r','LineWidth',2)

title({'Observed Responses and Simulated responses'})

xlabel('Period')

ylabel('Response')

legend({'Observed responses','Simulated responses'})

8 State-Space Models

8-106

By default, simulate simulates one path for each state and observation in the state-
space model. To conduct a Monte Carlo study, specify to simulate a large number of
paths.

See Also
simulate | ssm

Related Examples
• “Explicitly Create State-Space Model Containing Known Parameter Values” on page

8-17
• “Simulate Time-Varying State-Space Model” on page 8-107

 Simulate Time-Varying State-Space Model

8-107

Simulate Time-Varying State-Space Model

This example shows how to generate data from a known model, fit a state-space model to
the data, and then simulate series from the fitted model.

Suppose that a set of latent processes comprises an AR(2) and an MA(1) model. There
are 50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Subsequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

Assuming that the series starts at 1.5 and 1, respectively, generate a random series of 50
observations from and .

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are NaN values.

Suppose further that the latent processes are measured using

for the first 25 periods, and

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

Use the random latent state process (x) and the observation equation to generate
observations.

8 State-Space Models

8-108

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients are unknown parameters, the state-space model is

for the first 25 periods,

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = AR2MAParamMap(params,T)

%AR2MAParamMap Time-variant state-space model parameter mapping function

%

% This function maps the vector params to the state-space matrices (A, B,

% C, and D), the initial state value and the initial state variance (Mean0

% and Cov0), and the type of state (StateType). From periods 1 to T/2, the

 Simulate Time-Varying State-Space Model

8-109

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = ones(4,1);

 Cov0 = 10*eye(4);

 StateType = [0 0 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named AR2MAParamMap on your MATLAB® path.

Create the state-space model by passing the function AR2MAParamMap as a function
handle to ssm.

Mdl = ssm(@(params)AR2MAParamMap(params,T));

ssm implicitly creates the state-space model. Usually, you cannot verify an implicitly
defined state-space model.

Pass the observed responses (y) to estimate to estimate the parameters. Specify an
arbitrary set of positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0);

Method: Maximum likelihood (fminunc)

Sample size: 50

Logarithmic likelihood: -114.957

Akaike info criterion: 239.913

Bayesian info criterion: 249.473

 | Coeff Std Err t Stat Prob

8 State-Space Models

8-110

 c(1) | 0.47870 0.26634 1.79733 0.07229

 c(2) | 0.00809 0.27179 0.02975 0.97626

 c(3) | 0.55735 0.80958 0.68844 0.49118

 c(4) | 1.62679 0.41622 3.90848 0.00009

 c(5) | 1.90021 0.49563 3.83391 0.00013

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81229 0.46815 -1.73511 0.08272

 x(2) | -0.31449 0.45918 -0.68490 0.49341

EstMdl is an ssm model containing the estimated coefficients. Likelihood surfaces of
state-space models might contain local maxima. Therefore, it is good practice to try
several initial parameter values, or consider using refine.

Simulate one path of responses, states, state disturbances, and observation innovations
from Mdl. Specify that each path has T periods of simulated variants.

[Y,X,U,E]= simulate(EstMdl,T);

• Y is a T-by-1 vector of simulated observations.
• X is a T-by-1 cell vector of simulated states. Cells 1 through 25 contain 4-by-1 vectors,

and cells 26 through 50 contain 2-by-1 vectors.
• U is a T-by-1 cell vector of simulated state disturbances. Cells 1 through 25 contain 4-

by-1 vectors, and cells 26 through 50 contain 2-by-1 vectors.
• E is a T-by-1 vector of simulated observation innovations.

Access a cell of the simulated states using cell indexing, for example access cell 5 using
X{5}.

simStatesPeriod5 = X{5}

simStatesPeriod5 =

 -0.8660

 -2.2826

 -0.7071

 0.2177

See Also
estimate | refine | simulate | ssm

 Simulate Time-Varying State-Space Model

8-111

Related Examples
• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Estimate Time-Varying State-Space Model” on page 8-45
• “Simulate States and Observations of Time-Invariant State-Space Model” on page

8-103

8 State-Space Models

8-112

Simulate States of Time-Varying State-Space Model Using
Simulation Smoother

This example generates data from a known model, fits a state-space model to the data,
and then simulates series from the fitted model using the simulation smoother.

Suppose that a latent process comprises an AR(2) and an MA(1) model. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Subsequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

Assuming that the series starts at 1.5 and 1, respectively, generate a random series of 50
observations from and .

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are NaN values.

Suppose further that the latent processes are measured using

for the first 25 periods, and

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

 Simulate States of Time-Varying State-Space Model Using Simulation Smoother

8-113

Use the random latent state process (x) and the observation equation to generate
observations.

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients are unknown parameters, the state-space model is

for the first 25 periods,

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = AR2MAParamMap(params,T)

%AR2MAParamMap Time-variant state-space model parameter mapping function

%

% This function maps the vector params to the state-space matrices (A, B,

8 State-Space Models

8-114

% C, and D), the initial state value and the initial state variance (Mean0

% and Cov0), and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = ones(4,1);

 Cov0 = 10*eye(4);

 StateType = [0 0 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named AR2MAParamMap on your MATLAB® path.

Create the state-space model by passing the function AR2MAParamMap as a function
handle to ssm.

Mdl = ssm(@(params)AR2MAParamMap(params,T));

ssm implicitly creates the state-space model. Usually, you cannot verify an implicitly
defined state-space model.

Simulate one path of states from Mdl using the simulation smoother. Specify that the
parameter-to-matrix mapping function has seven output arguments. Also, specify the
unknown values of the parameters.

simParams = [0.48 0.0081 0.56 1.63 1.9];

X = simsmooth(Mdl,y,'NumOut',7,'Params',simParams);

X is a T-by-1 cell vector of simulated states. Cells 1 through 25 contain 4-by-1 vectors,
and cells 26 through 50 contain 2-by-1 vectors.

Access a cell using cell indexing, for example, access cell 5 using X{5}.

 Simulate States of Time-Varying State-Space Model Using Simulation Smoother

8-115

simStatesPeriod5 = X{5}

simStatesPeriod5 =

 -1.7591

 -1.5404

 -1.5171

 -1.1417

See Also
estimate | refine | simsmooth | simulate | ssm

Related Examples
• “Simulate States and Observations of Time-Invariant State-Space Model” on page

8-103
• “Compare Simulation Smoother to Smoothed States” on page 8-162
• “Estimate Random Parameter of State-Space Model” on page 8-116

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-116

Estimate Random Parameter of State-Space Model

This example shows how to estimate a random, autoregressive coefficient of a state in
a state-space model. That is, this example takes a Bayesian view of state-space model
parameter estimation by using the "zig-zag" estimation method.

Suppose that two states (and) represent the net exports of two countries at the
end of the year.

• is a unit root process with a disturbance variance of .
• is an AR(1) process with an unknown, random coefficient and a disturbance

variance of .
• An observation () is the exact sum of the two net exports. That is, the net exports of

the individual states are unknown.

Symbolically, the true state-space model is

Simulate Data

Simulate 100 years of net exports from:

• A unit root process with a mean zero, Gaussian noise series that has variance .
• An AR(1) process with an autoregressive coefficient of 0.6 and a mean zero, Gaussian

noise series that has variance .
• .
• Create an observation series by summing the two net exports per year.

rng(100); % For reproducibility

T = 150;

sigma1 = 0.1;

sigma2 = 0.2;

phi = 0.6;

u1 = randn(T,1)*sigma1;

x1 = cumsum(u1);

 Estimate Random Parameter of State-Space Model

8-117

Mdl2 = arima('AR',phi,'Variance',sigma2^2,'Constant',0);

x2 = simulate(Mdl2,T,'Y0',0);

y = x1 + x2;

figure;

plot([x1 x2 y])

legend('x_1','x_2','y','Location','Best');

ylabel('Net exports');

xlabel('Period');

The Zig-Zag Estimation Method

Treat as if it is unknown and random, and use the zig-zag method to recover its
distribution. To implement the zig-zag method:

8 State-Space Models

8-118

1. Choose an initial value for in the interval (-1,1), and denote it .

2. Create the true state-space model, that is, an ssm model object that represents the
data-generating process.

3. Use the simulation smoother (simsmooth) to draw a random path from the
distribution of the second smoothed states. Symbolically, .

4. Create another state-space model that has this form

In words, is a static state and is an "observed" series with time varying
coefficient .

5. Use the simulation smoother to draw a random path from the distribution of the
smoothed series. Symbolically, , where encompasses the
structure of the true state-space model and the observations. is static, so you can just
reserve one value ().

6. Repeat steps 2 - 5 many times and store each iteration.

7. Perform diagnostic checks on the simulation series. That is, construct:

• Trace plots to determine the burn in period and whether the Markov chain is mixing
well.

• Autocorrelation plots to determine how many draws need removing to obtain a well-
mixed Markov chain.

8. The remaining series represents draws from the posterior distribution of . You can
compute descriptive statistics, or plot a histogram to determine the qualities of the
distribution.

Estimate Random Coefficient Using Zig-Zag Method

Specify initial values, preallocate, and create the true state-space model.

 Estimate Random Parameter of State-Space Model

8-119

phi0 = -0.3; % Initial value of phi

Z = 1000; % Number of times to iterate the zig-zag method

phiz = [phi0; nan(Z,1)]; % Preallocate

A = [1 0; 0 NaN];

B = [sigma1; sigma2];

C = [1 1];

Mdl = ssm(A,B,C,'StateType',[2; 0]);

Mdl is an ssm model object. The NaN acts as a placeholder for .

Iterate steps 2 - 5 of the zig-zag method.

for j = 2:(Z + 1);

 % Draw a random path from smoothed x_2 series.

 xz = simsmooth(Mdl,y,'Params',phiz(j-1));

 % The second column of xz is a draw from the posterior distribution of x_2.

 % Create the intermediate state-space model.

 Az = 1;

 Bz = 0;

 Cz = num2cell(xz((1:(end - 1)),2));

 Dz = sigma2;

 Mdlz = ssm(Az,Bz,Cz,Dz,'StateType',2);

 % Draw a random path from the smoothed phiz series.

 phizvec = simsmooth(Mdlz,xz(2:end,2));

 phiz(j) = phizvec(1);

 % phiz(j) is a draw from the posterior distribution of phi

end

phiz is a Markov chain. Before analyzing the posterior distribution of , you should
assess whether to impose a burn-in period, or the severity of the autocorrelation in the
chain.

Determine Quality of Simulation

Draw a trace plot for the first 100, 500, and all of the random draws.

vec = [100 500 Z];

figure;

for j = 1:3;

 subplot(3,1,j)

8 State-Space Models

8-120

 plot(phiz(1:vec(j)));

 title('Trace Plot for \phi');

 xlabel('Simulation number');

 axis tight;

end

According to the first plot, transient effects die down after about 20 draws. Therefore,
a short burn-in period should suffice. The plot of the entire simulation shows that the
series settles around a center.

Plot the autocorrelation function of the series after removing the first 20 draws.

burnOut = 21:Z;

 Estimate Random Parameter of State-Space Model

8-121

figure;

autocorr(phiz(burnOut));

The autocorrelation function dies out rather quickly. It doesn't seem like autocorrelation
in the chain is an issue.

Determine qualities of the posterior distribution of by computing simulation statistics
and by plotting a histogram of the reduced set of random draws.

xbar = mean(phiz(burnOut))

xstd = std(phiz(burnOut))

ci = norminv([0.025,0.975],xbar,xstd); % 95% confidence interval

8 State-Space Models

8-122

figure;

histogram(phiz(burnOut),'Normalization','pdf');

h = gca;

hold on;

simX = linspace(h.XLim(1),h.XLim(2),100);

simPDF = normpdf(simX,xbar,xstd);

plot(simX,simPDF,'k','LineWidth',2);

h1 = plot([xbar xbar],h.YLim,'r','LineWidth',2);

h2 = plot([0.6 0.6],h.YLim,'g','LineWidth',2);

h3 = plot([ci(1) ci(1)],h.YLim,'--r',...

 [ci(2) ci(2)],h.YLim,'--r','LineWidth',2);

legend([h1 h2 h3(1)],{'Simulation Mean','True Mean','95% CI'});

h.XTick = sort([h.XTick xbar]);

h.XTickLabel{h.XTick == xbar} = xbar;

h.XTickLabelRotation = 90;

xbar =

 0.5104

xstd =

 0.0988

 Estimate Random Parameter of State-Space Model

8-123

The posterior distribution of is roughly normal with mean and standard deviation
approximately 0.51 and 0.1, respectively. The true mean of is 0.6, and it is less than
one standard deviation to the right of the simulation mean.

Compute the maximum likelihood estimate of . That is, treat as a fixed, but unknown
parameter, and then estimate Mdl using the Kalman filter and maximum likelihood.

[~,estParams] = estimate(Mdl,y,phi0)

Method: Maximum likelihood (fminunc)

Sample size: 150

Logarithmic likelihood: -10.1434

8 State-Space Models

8-124

Akaike info criterion: 22.2868

Bayesian info criterion: 25.2974

 | Coeff Std Err t Stat Prob

 c(1) | 0.53590 0.19183 2.79360 0.00521

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.85059 0.00000 -6.45811e+08 0

 x(2) | 0.00454 0 Inf 0

estParams =

 0.5359

The MLE of is 0.54. Both estimates are within one standard deviation or standard error
from the true value of .

See Also
estimate | refine | simsmooth | simulate | ssm

Related Examples
• “Simulate States and Observations of Time-Invariant State-Space Model” on page

8-103
• “Compare Simulation Smoother to Smoothed States” on page 8-162

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

 Forecast State-Space Model Using Monte-Carlo Methods

8-125

Forecast State-Space Model Using Monte-Carlo Methods

This example shows how to forecast a state-space model using Monte-Carlo methods, and
to compare the Monte-Carlo forecasts to the theoretical forecasts.

Suppose that the relationship between the change in the unemployment rate () and
the nominal gross national product (nGNP) growth rate () can be expressed in the
following, state-space model form.

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect on .
• is the nGNP growth rate at time t.
• is a dummy state for the MA(1) effect on .
• is the observed change in the unemployment rate.
• is the observed nGNP growth rate.
• and are Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

8 State-Space Models

8-126

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

y = zeros(T-1,2); % Preallocate

y(:,1) = diff(u);

y(:,2) = diff(log(gnpn));

This example proceeds using series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

To determine how well the model forecasts observations, remove the last 10 observations
for comparison.

numPeriods = 10; % Forecast horizon

isY = y(1:end-numPeriods,:); % In-sample observations

oosY = y(end-numPeriods+1:end,:); % Out-of-sample observations

Specify the coefficient matrices.

A = [NaN NaN NaN 0; 0 0 0 0; NaN 0 NaN NaN; 0 0 0 0];

B = [1 0; 1 0; 0 1; 0 1];

C = [1 0 0 0; 0 0 1 0];

D = [NaN 0; 0 NaN];

Specify the state-space model using ssm. Verify that the model specification is consistent
with the state-space model.

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 4

Observation vector length: 2

State disturbance vector length: 2

 Forecast State-Space Model Using Monte-Carlo Methods

8-127

Observation innovation vector length: 2

Sample size supported by model: Unlimited

Unknown parameters for estimation: 8

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c3)x2(t-1) + (c4)x3(t-1) + u1(t)

x2(t) = u1(t)

x3(t) = (c2)x1(t-1) + (c5)x3(t-1) + (c6)x4(t-1) + u2(t)

x4(t) = u2(t)

Observation equations:

y1(t) = x1(t) + (c7)e1(t)

y2(t) = x3(t) + (c8)e2(t)

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types are not specified.

Estimate the model parameters, and use a random set of initial parameter values for
optimization. Restrict the estimate of and to all positive, real numbers using the
'lb' name-value pair argument. For numerical stability, specify the Hessian when the
software computes the parameter covariance matrix, using the 'CovMethod' name-
value pair argument.

rng(1);

params0 = rand(8,1);

[EstMdl,estParams] = estimate(Mdl,isY,params0,...

 'lb',[-Inf -Inf -Inf -Inf -Inf -Inf 0 0],'CovMethod','hessian');

Method: Maximum likelihood (fmincon)

Sample size: 51

Logarithmic likelihood: -170.92

Akaike info criterion: 357.84

Bayesian info criterion: 373.295

8 State-Space Models

8-128

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.06750 0.16548 0.40791 0.68334

 c(2) | -0.01372 0.05887 -0.23302 0.81575

 c(3) | 2.71201 0.27039 10.03006 0

 c(4) | 0.83816 2.84586 0.29452 0.76836

 c(5) | 0.06273 2.83471 0.02213 0.98234

 c(6) | 0.05197 2.56873 0.02023 0.98386

 c(7) | 0.00272 2.40764 0.00113 0.99910

 c(8) | 0.00016 0.13942 0.00113 0.99910

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.00000 0.00272 -0.00033 0.99973

 x(2) | 0.12237 0.92954 0.13164 0.89527

 x(3) | 0.04049 0.00016 256.67560 0

 x(4) | 0.01183 0.00016 72.49713 0

EstMdl is an ssm model, and you can access its properties using dot notation.

Filter the estimated, state-space model, and extract the filtered states and their
variances from the final period.

[~,~,Output] = filter(EstMdl,isY);

Modify the estimated, state-space model so that the initial state means and covariances
are the filtered states and their covariances of the final period. This sets up simulation
over the forecast horizon.

EstMdl1 = EstMdl;

EstMdl1.Mean0 = Output(end).FilteredStates;

EstMdl1.Cov0 = Output(end).FilteredStatesCov;

Simulate 5e5 paths of observations from the fitted, state-space model EstMdl. Specify to
simulate observations for each period.

numPaths = 5e5;

SimY = simulate(EstMdl1,10,'NumPaths',numPaths);

SimY is a 10-by- 2-by- numPaths array containing the simulated observations. The rows
of SimY correspond to periods, the columns correspond to an observation in the model,
and the pages correspond to paths.

Estimate the forecasted observations and their 95% confidence intervals in the forecast
horizon.

 Forecast State-Space Model Using Monte-Carlo Methods

8-129

MCFY = mean(SimY,3);

CIFY = quantile(SimY,[0.025 0.975],3);

Estimate the theoretical forecast bands.

[Y,YMSE] = forecast(EstMdl,10,isY);

Lb = Y - sqrt(YMSE)*1.96;

Ub = Y + sqrt(YMSE)*1.96;

Plot the forecasted observations with their true values and the forecast intervals.

figure

h = plot(dates(end-numPeriods-9:end),[isY(end-9:end,1);oosY(:,1)],'-k',...

 dates(end-numPeriods+1:end),MCFY(end-numPeriods+1:end,1),'.-r',...

 dates(end-numPeriods+1:end),CIFY(end-numPeriods+1:end,1,1),'-b',...

 dates(end-numPeriods+1:end),CIFY(end-numPeriods+1:end,1,2),'-b',...

 dates(end-numPeriods+1:end),Y(:,1),':c',...

 dates(end-numPeriods+1:end),Lb(:,1),':m',...

 dates(end-numPeriods+1:end),Ub(:,1),':m',...

 'LineWidth',3);

xlabel('Period')

ylabel('Change in the unemployment rate')

legend(h([1,2,4:6]),{'Observations','MC forecasts',...

 '95% forecast intervals','Theoretical forecasts',...

 '95% theoretical intervals'},'Location','Best')

title('Observed and Forecasted Changes in the Unemployment Rate')

figure

h = plot(dates(end-numPeriods-9:end),[isY(end-9:end,2);oosY(:,2)],'-k',...

 dates(end-numPeriods+1:end),MCFY(end-numPeriods+1:end,2),'.-r',...

 dates(end-numPeriods+1:end),CIFY(end-numPeriods+1:end,2,1),'-b',...

 dates(end-numPeriods+1:end),CIFY(end-numPeriods+1:end,2,2),'-b',...

 dates(end-numPeriods+1:end),Y(:,2),':c',...

 dates(end-numPeriods+1:end),Lb(:,2),':m',...

 dates(end-numPeriods+1:end),Ub(:,2),':m',...

 'LineWidth',3);

xlabel('Period')

ylabel('nGNP growth rate')

legend(h([1,2,4:6]),{'Observations','MC forecasts',...

 '95% MC intervals','Theoretical forecasts','95% theoretical intervals'},...

 'Location','Best')

title('Observed and Forecasted nGNP Growth Rates')

8 State-Space Models

8-130

 Forecast State-Space Model Using Monte-Carlo Methods

8-131

See Also
estimate | forecast | refine | simulate | ssm

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Estimate Time-Invariant State-Space Model” on page 8-41
• “Simulate States and Observations of Time-Invariant State-Space Model” on page

8-103

8 State-Space Models

8-132

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

 Forecast State-Space Model Observations

8-133

Forecast State-Space Model Observations
This example shows how to forecast observations of a known, time-invariant, state-space
model.

Suppose that a latent process is an AR(1). Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D)

Mdl =

8 State-Space Models

8-134

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

Forecast the observations 10 periods into the future, and estimate their variances.

numPeriods = 10;

 Forecast State-Space Model Observations

8-135

[ForecastedY,YMSE] = forecast(Mdl,numPeriods,y);

Plot the forecasts with the in-sample responses, and 95% Wald-type forecast intervals.

ForecastIntervals(:,1) = ForecastedY - 1.96*sqrt(YMSE);

ForecastIntervals(:,2) = ForecastedY + 1.96*sqrt(YMSE);

figure

plot(T-20:T,y(T-20:T),'-k',T+1:T+numPeriods,ForecastedY,'-.r',...

 T+1:T+numPeriods,ForecastIntervals,'-.b',...

 T:T+1,[y(end)*ones(3,1),[ForecastedY(1);ForecastIntervals(1,:)']],':k',...

 'LineWidth',2)

hold on

title({'Observed Responses and Their Forecasts'})

xlabel('Period')

ylabel('Responses')

legend({'Observations','Forecasted observations','95% forecast intervals'},...

 'Location','Best')

hold off

8 State-Space Models

8-136

See Also
forecast | ssm

Related Examples
• “Explicitly Create State-Space Model Containing Known Parameter Values” on page

8-17
• “Forecast Time-Varying State-Space Model” on page 8-143
• “Forecast Observations of State-Space Model Containing Regression Component” on

page 8-138
• “Forecast State-Space Model Using Monte-Carlo Methods” on page 8-125

 Forecast State-Space Model Observations

8-137

• “Forecast State-Space Model Containing Regime Change in the Forecast Horizon”
on page 8-149

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-138

Forecast Observations of State-Space Model Containing
Regression Component

This example shows how to estimate a regression model containing a regression
component, and then forecast observations from the fitted model.

Suppose that the linear relationship between the change in the unemployment rate and
the nominal gross national product (nGNP) growth rate is of interest. Suppose further
that the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically,
and in state-space form, the model is

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed change in the unemployment rate being deflated by the growth

rate of nGNP ().
• is the Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each series. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

 Forecast Observations of State-Space Model Containing Regression Component

8-139

T = size(gnpn,1); % Sample size

Z = [ones(T-1,1) diff(log(gnpn))];

y = diff(u);

Though this example removes missing values, the software can accommodate series
containing missing values in the Kalman filter framework.

To determine how well the model forecasts observations, remove the last 10 observations
for comparison.

numPeriods = 10; % Forecast horizon

isY = y(1:end-numPeriods); % In-sample observations

oosY = y(end-numPeriods+1:end); % Out-of-sample observations

ISZ = Z(1:end-numPeriods,:); % In-sample predictors

OOSZ = Z(end-numPeriods+1:end,:); % Out-of-sample predictors

Specify the coefficient matrices.

A = [NaN NaN; 0 0];

B = [1; 1];

C = [1 0];

D = NaN;

Specify the state-space model using ssm.

Mdl = ssm(A,B,C,D);

Estimate the model parameters. Specify the regression component and its initial value
for optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Restrict the estimate of to all positive, real numbers. For numerical
stability, specify the Hessian when the software computes the parameter covariance
matrix, using the 'CovMethod' name-value pair argument.

params0 = [0.3 0.2 0.1]; % Chosen arbitrarily

[EstMdl,estParams] = estimate(Mdl,isY,params0,'Predictors',ISZ,...

 'Beta0',[0.1 0.2],'lb',[-Inf,-Inf,0,-Inf,-Inf],'CovMethod','hessian');

Method: Maximum likelihood (fmincon)

Sample size: 51

Logarithmic likelihood: -87.2409

Akaike info criterion: 184.482

Bayesian info criterion: 194.141

8 State-Space Models

8-140

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.31780 0.19429 -1.63572 0.10190

 c(2) | 1.21242 0.48882 2.48031 0.01313

 c(3) | 0.45583 0.63930 0.71301 0.47584

 y <- z(1) | 1.32407 0.26313 5.03201 0

 y <- z(2) | -24.48733 1.90115 -12.88024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.38117 0.42842 -0.88971 0.37363

 x(2) | 0.23402 0.66222 0.35339 0.72380

EstMdl is an ssm model, and you can access its properties using dot notation.

Forecast observations over the forecast horizon. EstMdl does not store the data set, so
you must pass it in appropriate name-value pair arguments.

[fY,yMSE] = forecast(EstMdl,numPeriods,isY,'Predictors0',ISZ,...

 'PredictorsF',OOSZ,'Beta',estParams(end-1:end));

fY is a 10-by-1 vector containing the forecasted observations, and yMSE is a 10-by-1
vector containing the variances of the forecasted observations.

Obtain 95% Wald-type forecast intervals. Plot the forecasted observations with their true
values and the forecast intervals.

ForecastIntervals(:,1) = fY - 1.96*sqrt(yMSE);

ForecastIntervals(:,2) = fY + 1.96*sqrt(yMSE);

figure

h = plot(dates(end-numPeriods-9:end-numPeriods),isY(end-9:end),'-k',...

 dates(end-numPeriods+1:end),oosY,'-k',...

 dates(end-numPeriods+1:end),fY,'--r',...

 dates(end-numPeriods+1:end),ForecastIntervals,':b',...

 dates(end-numPeriods:end-numPeriods+1),...

 [isY(end)*ones(3,1),[oosY(1);ForecastIntervals(1,:)']],':k',...

 'LineWidth',2);

xlabel('Period')

ylabel('Change in the unemployment rate')

legend(h([1,3,4]),{'Observations','Forecasted responses',...

 '95% forecast intervals'})

title('Observed and Forecasted Changes in the Unemployment Rate')

 Forecast Observations of State-Space Model Containing Regression Component

8-141

This model seems to forecast the changes in the unemployment rate well.

See Also
estimate | forecast | refine | ssm

Related Examples
• “Create State-Space Model Containing ARMA State” on page 8-24
• “Estimate State-Space Model Containing Regression Component” on page 8-55
• “Forecast State-Space Model Observations” on page 8-133
• “Forecast State-Space Model Using Monte-Carlo Methods” on page 8-125

8 State-Space Models

8-142

• “Forecast State-Space Model Containing Regime Change in the Forecast Horizon”
on page 8-149

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

 Forecast Time-Varying State-Space Model

8-143

Forecast Time-Varying State-Space Model

This example shows how to generate data from a known model, fit a state-space model to
the data, and then forecast states and observations states from the fitted model.

Suppose that a latent process comprises an AR(2) and an MA(1) model. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Subsequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

Assuming that the series starts at 1.5 and 1, respectively, generate a random series of 50
observations from and .

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are NaN values.

Suppose further that the latent processes are measured using

for the first 25 periods, and

8 State-Space Models

8-144

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

Use the random latent state process (x) and the observation equation to generate
observations.

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients are unknown parameters, the state-space model is

for the first 25 periods,

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

 Forecast Time-Varying State-Space Model

8-145

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = AR2MAParamMap(params,T)

%AR2MAParamMap Time-variant state-space model parameter mapping function

%

% This function maps the vector params to the state-space matrices (A, B,

% C, and D), the initial state value and the initial state variance (Mean0

% and Cov0), and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = ones(4,1);

 Cov0 = 10*eye(4);

 StateType = [0 0 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named AR2MAParamMap on your MATLAB® path.

Create the state-space model by passing the function AR2MAParamMap as a function
handle to ssm.

Mdl = ssm(@(params)AR2MAParamMap(params,T));

ssm implicitly creates the state-space model. Usually, you cannot verify an implicitly
defined state-space model.

Pass the observed responses (y) to estimate to estimate the parameters. Specify an
arbitrary set of positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0);

8 State-Space Models

8-146

Method: Maximum likelihood (fminunc)

Sample size: 50

Logarithmic likelihood: -114.957

Akaike info criterion: 239.913

Bayesian info criterion: 249.473

 | Coeff Std Err t Stat Prob

 c(1) | 0.47870 0.26634 1.79733 0.07229

 c(2) | 0.00809 0.27179 0.02975 0.97626

 c(3) | 0.55735 0.80958 0.68844 0.49118

 c(4) | 1.62679 0.41622 3.90848 0.00009

 c(5) | 1.90021 0.49563 3.83391 0.00013

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81229 0.46815 -1.73511 0.08272

 x(2) | -0.31449 0.45918 -0.68490 0.49341

EstMdl is an ssm model containing the estimated coefficients. Likelihood surfaces of
state-space models might contain local maxima. Therefore, it is good practice to try
several initial parameter values, or consider using refine.

Forecast observations and states five periods into the future. Also, obtain measures of
variability for the forecasts.

numPeriods = 5;

[fY,yMSE,FX,XMSE]= forecast(EstMdl,numPeriods,y);

forecast uses EstMdl.A{end}, ..., EstMdl.D{end} to forecast the state-space model.
fY and yMSE are numPeriods-by-1 numeric vectors of forecasted observations and
variances of the forecasted observations, respectively. FX and XMSE are numPeriods-
by-2 matrices of state forecasts and variances of the state forecasts. The columns indicate
the state, and the rows indicate the period. For all output arguments, the last row
corresponds to the latest forecast.

Plot the observations, true states, forecasted observations, and state forecasts.

figure;

plot(T-10:T,x(T-10:T,1),'-k',T+1:T+numPeriods,FX(:,1),'-r',...

 T-10:T,y(T-10:T),'--g',T+1:T+numPeriods,fY,'--b',...

 T:T+1,[y(T),fY(1);x(T,1),FX(1,1)]',':k','LineWidth',2);

xlabel('Period')

ylabel('States and Observations')

legend({'True state values','State forecasts',...

 Forecast Time-Varying State-Space Model

8-147

 'Observed responses','Forecasted responses'});

See Also
estimate | forecast | refine | ssm

Related Examples
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Estimate Time-Varying State-Space Model” on page 8-45
• “Forecast State-Space Model Using Monte-Carlo Methods” on page 8-125
• “Forecast State-Space Model Containing Regime Change in the Forecast Horizon”

on page 8-149

8 State-Space Models

8-148

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

 Forecast State-Space Model Containing Regime Change in the Forecast Horizon

8-149

Forecast State-Space Model Containing Regime Change in the
Forecast Horizon

This example shows how to forecast a time-varying, state-space model, in which there is
a regime change in the forecast horizon.

Suppose that you observed a multivariate process for 75 periods, and you want to
forecast the process 25 periods into the future. Also, suppose that you can specify the
process as a state-space model. For periods 1 through 50, the state-space model has
one state: a stationary AR(2) model with a constant term. At period 51, the state-space
model includes a random walk. The states are observed unbiasedly, but with additive
measurement error. Symbolically, the model is

For periods 1 through 50, the random walk process is not in the model.

Specify the in-sample, coefficient matrices.

A1 = {[0.5 0.2 1; 1 0 0; 0 0 1]}; % A for periods 1 - 50

A2 = {[0.5 0.2 1; 1 0 0; 0 0 1; 0 0 0]}; % A for period 51

A3 = {[0.5 0.2 1 0; 1 0 0 0; 0 0 1 0; 0 0 0 1]}; % A for periods 51 - 75

A = [repmat(A1,50,1); A2; repmat(A3,24,1)];

B1 = {[0.1; 0; 0]}; % B for periods 1 - 50

B3 = {[0.1 0; 0 0; 0 0; 0 0.5]}; % B for periods 51 - 75

B = [repmat(B1,50,1); repmat(B3,25,1)];

C1 = {[1 0 0]}; % C for periods 1 - 50

C3 = {[1 0 0 0; 0 0 0 1]}; % C for periods 51 - 75

C = [repmat(C1,50,1); repmat(C3,25,1)];

8 State-Space Models

8-150

D1 = {0.3}; % D for periods 1 - 50

D3 = {[0.3 0; 0 0.2]}; % D for periods 51 - 75

D = [repmat(D1,50,1); repmat(D3,25,1)];

Specify the state space model, and the initial state means and covariance matrix. It is
best practice to specify the types of each state using the 'StateType' name-value pair
argument. Only specify the initial state parameters for the three states that start the
state-space model.

Mean0 = [1/(1-0.5-0.2); 1/(1-0.5-0.2); 1];

Cov0 = [0.02 0.01 0; 0.01 0.02 0; 0 0 0];

StateType = [0; 0; 1];

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType)

Mdl =

State-space model type: ssm

State vector length: Time-varying

Observation vector length: Time-varying

State disturbance vector length: Time-varying

Observation innovation vector length: Time-varying

Sample size supported by model: 75

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations of period 1, 2, 3,..., 50:

x1(t) = (0.50)x1(t-1) + (0.20)x2(t-1) + x3(t-1) + (0.10)u1(t)

x2(t) = x1(t-1)

x3(t) = x3(t-1)

State equations of period 51:

x1(t) = (0.50)x1(t-1) + (0.20)x2(t-1) + x3(t-1) + (0.10)u1(t)

x2(t) = x1(t-1)

x3(t) = x3(t-1)

x4(t) = (0.50)u2(t)

State equations of period 52, 53, 54,..., 75:

x1(t) = (0.50)x1(t-1) + (0.20)x2(t-1) + x3(t-1) + (0.10)u1(t)

x2(t) = x1(t-1)

 Forecast State-Space Model Containing Regime Change in the Forecast Horizon

8-151

x3(t) = x3(t-1)

x4(t) = x4(t-1) + (0.50)u2(t)

Observation equation of period 1, 2, 3,..., 50:

y1(t) = x1(t) + (0.30)e1(t)

Observation equations of period 51, 52, 53,..., 75:

y1(t) = x1(t) + (0.30)e1(t)

y2(t) = x4(t) + (0.20)e2(t)

Initial state distribution:

Initial state means

 x1 x2 x3

 3.33 3.33 1

Initial state covariance matrix

 x1 x2 x3

 x1 0.02 0.01 0

 x2 0.01 0.02 0

 x3 0 0 0

State types

 x1 x2 x3

 Stationary Stationary Constant

Mdl is a time-varying, ssm model without unknown parameters. The software sets initial
state means and covariane values based on the type of state.

Simulate 75 observations from Mdl.

rng(1); % For reproducibility

Y = simulate(Mdl,75);

y is a 75-by-1 cell vector. Cells 1 through 50 contain scalars, and cells 51 through
75 contain 2-by-1 numeric vectors. Cell j corresponds to the observations of period j,
specified by the observation model.

Plot the simulated responses.

y1 = cell2mat(Y(51:75)); % Observations for periods 1 - 50

8 State-Space Models

8-152

d1 = cell2mat(Y(51:75));

y2 = [d1(((1:25)*2)-1) d1((1:25)*2)]; % Observations for periods 51 - 75

figure

plot(1:75,[y1;y2(:,1)],'-k',1:75,[nan(50,1);y2(:,2)],'-r','LineWidth',2')

title('In-sample Observations')

ylabel('Observations')

xlabel('Period')

legend({'AR(2)','Random walk'})

Suppose that the random walk process drops out of the state space in the 20th period of
the forecast horizon.

Specify the coefficient matrices for the forecast period.

 Forecast State-Space Model Containing Regime Change in the Forecast Horizon

8-153

A4 = {[0.5 0.2 1 0; 1 0 0 0; 0 0 1 0; 0 0 0 1]}; % A for periods 76 - 95

A5 = {[0.5 0.2 1 0; 1 0 0 0; 0 0 1 0]}; % A for period 96

A6 = {[0.5 0.2 1; 1 0 0; 0 0 1]}; % A for periods 97 - 100

fhA = [repmat(A4,20,1); A5; repmat(A6,4,1)];

B4 = {[0.1 0; 0 0; 0 0; 0 0.5]}; % B for periods 76 - 95

B6 = {[0.1; 0; 0]}; % B for periods 96 - 100

fhB = [repmat(B4,20,1); repmat(B6,5,1)];

C4 = {[1 0 0 0; 0 0 0 1]}; % C for periods 76 - 95

C6 = {[1 0 0]}; % C for periods 96 - 100

fhC = [repmat(C4,20,1); repmat(C6,5,1)];

D4 = {[0.3 0; 0 0.2]}; % D for periods 76 - 95

D6 = {0.3}; % D for periods 96 - 100

fhD = [repmat(D4,20,1); repmat(D6,5,1)];

Forecast observations over the forecast horizon.

FY = forecast(Mdl,25,Y,'A',fhA,'B',fhB,'C',fhC,'D',fhD);

FY is a 25-by-1 cell vector. Cells 1 through 20 contain 2-by-1 numeric vectors, and cells 51
through 75 contain scalars. Cell j corresponds to the observations of period j, specified by
the forecast-horizon, observation model.

Plot the forecasts with the in-sample observations.

d2 = cell2mat(FY(1:20));

FY1 = [d2(((1:20)*2)-1) d2((1:20)*2)]; % Forecasts for periods 76 - 95

FY2 = cell2mat(FY(21:25)); % Forecasts for periods 96 - 100

figure

plot(1:75,[y1;y2(:,1)],'-k',1:75,[nan(50,1);y2(:,2)],'-r',...

 76:100,[FY1(:,1); FY2],'.-k',76:100,[FY1(:,2); nan(5,1)],'.-r',...

 75:76,[y2(end,1) FY1(1,1)],':k',75:76,[y2(end,2) FY1(1,2)],':r',...

 'LineWidth',2')

title('In-sample and Forecasted Observations')

ylabel('Observations')

xlabel('Period')

xlim([50,100])

legend({'In-sample AR(2)','In-sample random walk',...

 'AR(2), forecasted observations',...

 'Random walk, forecasted observations'},'Location','Best')%% Title

% This example shows

8 State-Space Models

8-154

See Also
estimate | forecast | refine | ssm

Related Examples
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Estimate Time-Varying State-Space Model” on page 8-45
• “Forecast State-Space Model Observations” on page 8-133
• “Forecast Time-Varying State-Space Model” on page 8-143
• “Forecast Observations of State-Space Model Containing Regression Component” on

page 8-138

 Forecast State-Space Model Containing Regime Change in the Forecast Horizon

8-155

• “Forecast State-Space Model Using Monte-Carlo Methods” on page 8-125

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-156

Forecast Time-Varying Diffuse State-Space Model

This example shows how to generate data from a known model, fit a diffuse state-space
model to the data, and then forecast states and observations states from the fitted model.

Suppose that a latent process comprises an AR(2) and an MA(1) model. There are
50 periods, and the MA(1) process drops out of the model for the final 25 periods.
Consequently, the state equation for the first 25 periods is

and for the last 25 periods, it is

where and are Gaussian with mean 0 and standard deviation 1.

Assuming that the series starts at 1.5 and 1, respectively, generate a random series of 50
observations from and

T = 50;

ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);

MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);

x0 = [1.5 1; 1.5 1];

rng(1);

x = [simulate(ARMdl,T,'Y0',x0(:,1)),...

 [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

The last 25 values for the simulated MA(1) data are NaN values.

The latent processes are measured using

for the first 25 periods, and

 Forecast Time-Varying Diffuse State-Space Model

8-157

for the last 25 periods, where is Gaussian with mean 0 and standard deviation 1.

Use the random latent state process (x) and the observation equation to generate
observations.

y = 2*nansum(x')'+randn(T,1);

Together, the latent process and observation equations make up a state-space model. If
the coefficients are unknown parameters, the state-space model is

for the first 25 periods,

for period 26, and

for the last 24 periods.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state.

8 State-Space Models

8-158

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = diffuseAR2MAParamMap(params,T)

%diffuseAR2MAParamMap Time-variant diffuse state-space model parameter

%mapping function

%

% This function maps the vector params to the state-space matrices (A, B,

% C, and D) and the type of state (StateType). From periods 1 to T/2, the

% state model is an AR(2) and an MA(1) model, and the observation model is

% the sum of the two states. From periods T/2 + 1 to T, the state model is

% just the AR(2) model. The AR(2) model is diffuse.

 A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};

 B1 = {[1 0; 0 0; 0 1; 0 1]};

 C1 = {params(4)*[1 0 1 0]};

 Mean0 = [];

 Cov0 = [];

 StateType = [2 2 0 0];

 A2 = {[params(1) params(2) 0 0; 1 0 0 0]};

 B2 = {[1; 0]};

 A3 = {[params(1) params(2); 1 0]};

 B3 = {[1; 0]};

 C3 = {params(5)*[1 0]};

 A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];

 B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];

 C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];

 D = 1;

end

Save this code as a file named diffuseAR2MAParamMap on your MATLAB® path.

Create the diffuse state-space model by passing the function diffuseAR2MAParamMap
as a function handle to dssm.

Mdl = dssm(@(params)diffuseAR2MAParamMap(params,T));

dssm implicitly creates the diffuse state-space model. Usually, you cannot verify diffuse
state-space models that are implicitly created.

To estimate the parameters, pass the observed responses (y) to estimate. Specify an
arbitrary set of positive initial values for the unknown parameters.

params0 = 0.1*ones(5,1);

EstMdl = estimate(Mdl,y,params0);

 Forecast Time-Varying Diffuse State-Space Model

8-159

Method: Maximum likelihood (fminunc)

Effective Sample size: 48

Logarithmic likelihood: -110.313

Akaike info criterion: 230.626

Bayesian info criterion: 240.186

 | Coeff Std Err t Stat Prob

 c(1) | 0.44041 0.27687 1.59069 0.11168

 c(2) | 0.03949 0.29585 0.13349 0.89380

 c(3) | 0.78364 1.49223 0.52515 0.59948

 c(4) | 1.64260 0.66737 2.46133 0.01384

 c(5) | 1.90409 0.49374 3.85648 0.00012

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.81932 0.46706 -1.75420 0.07940

 x(2) | -0.29909 0.45939 -0.65107 0.51500

EstMdl is a dssm model containing the estimated coefficients. Likelihood surfaces of
state-space models might contain local maxima. Therefore, try several initial parameter
values, or consider using refine.

Forecast observations and states five periods into the future. Also, obtain measures of
variability for the forecasts.

numPeriods = 5;

[fY,yMSE,FX,XMSE] = forecast(EstMdl,numPeriods,y);

forecast uses EstMdl.A{end}, ..., EstMdl.D{end} to forecast the diffuse state-space
model. fY and yMSE are numPeriods-by-1 numeric vectors of forecasted observations
and variances of the forecasted observations, respectively. FX and XMSE are numPeriods-
by-2 matrices of state forecasts and variances of the state forecasts. The columns indicate
the state, and the rows indicate the period. For all output arguments, the last row
corresponds to the latest forecast.

Plot the observations, true states, forecasted observations, and state forecasts.

figure;

plot(T-10:T,x(T-10:T,1),'-k',T+1:T+numPeriods,FX(:,1),'-r',...

 T-10:T,y(T-10:T),'--g',T+1:T+numPeriods,fY,'--b',...

 T:T+1,[y(T),fY(1);x(T,1),FX(1,1)]',':k','LineWidth',2);

xlabel('Period')

ylabel('States and Observations')

legend({'True state values','State forecasts',...

8 State-Space Models

8-160

 'Observed responses','Forecasted responses'});

See Also
dssm | esitmate | forecast

Related Examples
• “Implicitly Create Time-Varying Diffuse State-Space Model” on page 8-35
• “Implicitly Create Diffuse State-Space Model Containing Regression Component” on

page 8-30
• “Estimate Time-Varying Diffuse State-Space Model” on page 8-50

 Forecast Time-Varying Diffuse State-Space Model

8-161

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

8 State-Space Models

8-162

Compare Simulation Smoother to Smoothed States

This example shows how the results of the state-space model simulation smoother
(simsmooth) compare to the smoothed states (smooth).

Suppose that the relationship between the change in the unemployment rate () and
the nominal gross national product (nGNP) growth rate () can be expressed in the
following, state-space model form.

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect on .
• is the nGNP growth rate at time t.
• is a dummy state for the MA(1) effect on .
• is the observed change in the unemployment rate.
• is the observed nGNP growth rate.
• and are Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

 Compare Simulation Smoother to Smoothed States

8-163

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

y = zeros(T-1,2); % Preallocate

y(:,1) = diff(u);

y(:,2) = diff(log(gnpn));

This example proceeds using series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

Specify the coefficient matrices.

A = [NaN NaN NaN 0; 0 0 0 0; NaN 0 NaN NaN; 0 0 0 0];

B = [1 0;1 0 ; 0 1; 0 1];

C = [1 0 0 0; 0 0 1 0];

D = [NaN 0; 0 NaN];

Specify the state-space model using ssm. Verify that the model specification is consistent
with the state-space model.

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 4

Observation vector length: 2

State disturbance vector length: 2

Observation innovation vector length: 2

Sample size supported by model: Unlimited

Unknown parameters for estimation: 8

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

8 State-Space Models

8-164

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c3)x2(t-1) + (c4)x3(t-1) + u1(t)

x2(t) = u1(t)

x3(t) = (c2)x1(t-1) + (c5)x3(t-1) + (c6)x4(t-1) + u2(t)

x4(t) = u2(t)

Observation equations:

y1(t) = x1(t) + (c7)e1(t)

y2(t) = x3(t) + (c8)e2(t)

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types are not specified.

Estimate the model parameters, and use a random set of initial parameter values for
optimization. Restrict the estimate of and to all positive, real numbers using the
'lb' name-value pair argument. For numerical stability, specify the Hessian when the
software computes the parameter covariance matrix, using the 'CovMethod' name-
value pair argument.

rng(1);

params0 = rand(8,1);

[EstMdl,estParams] = estimate(Mdl,y,params0,...

 'lb',[-Inf -Inf -Inf -Inf -Inf -Inf 0 0],'CovMethod','hessian');

Method: Maximum likelihood (fmincon)

Sample size: 61

Logarithmic likelihood: -199.397

Akaike info criterion: 414.793

Bayesian info criterion: 431.68

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.03387 0.15213 0.22262 0.82383

 c(2) | -0.01258 0.05749 -0.21876 0.82684

 c(3) | 2.49856 0.22759 10.97828 0

 c(4) | 0.77437 2.58647 0.29939 0.76464

 c(5) | 0.13993 2.64354 0.05293 0.95779

 c(6) | 0.00368 2.45466 0.00150 0.99880

 c(7) | 0.00238 2.11321 0.00113 0.99910

 Compare Simulation Smoother to Smoothed States

8-165

 c(8) | 0.00014 0.12685 0.00113 0.99910

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.40000 0.00238 587.37950 0

 x(2) | 0.21778 0.91641 0.23765 0.81216

 x(3) | 0.04730 0.00014 329.53907 0

 x(4) | 0.03568 0.00015 240.96251 0

EstMdl is an ssm model, and you can access its properties using dot notation.

Simulate 1e4 paths of observations from the fitted, state-space model EstMdl using the
simulation smoother. Specify to simulate observations for each period.

numPaths = 1e4;

SimX = simsmooth(EstMdl,y,'NumPaths',numPaths);

SimX is a T - 1-by- 4-by- numPaths matrix containing the simulated states. The rows
of SimX correspond to periods, the columns correspond to a state in the model, and the
pages correspond to paths.

Estimate the smoothed state means, standard deviations, and 95% confidence intervals.

SmoothBar = mean(SimX,3);

SmoothSTD = std(SimX,0,3);

SmoothCIL = SmoothBar - 1.96*SmoothSTD;

SmoothCIU = SmoothBar + 1.96*SmoothSTD;

Estimate smooth states using smooth.

SmoothX = smooth(EstMdl,y);

Plot the smoothed states, and the means of the simulated states and their 95%
confidence intervals.

figure

h = plot(dates(2:T),SmoothBar(:,1),'-r',...

 dates(2:T),SmoothCIL(:,1),':b',...

 dates(2:T),SmoothCIU(:,1),':b',...

 dates(2:T),SmoothX(:,1),':k',...

 'LineWidth',3);

xlabel 'Period';

ylabel 'Unemployment rate';

legend(h([1,2,4]),{'Simulated, smoothed state mean','95% confidence interval',...

 'Smoothed states'},'Location','Best');

title 'Smoothed Unemployment Rate';

8 State-Space Models

8-166

axis tight

figure

h = plot(dates(2:T),SmoothBar(:,3),'-r',...

 dates(2:T),SmoothCIL(:,3),':b',...

 dates(2:T),SmoothCIU(:,3),':b',...

 dates(2:T),SmoothX(:,3),':k',...

 'LineWidth',3);

xlabel 'Period';

ylabel 'nGNP';

legend(h([1,2,4]),{'Simulated, smoothed state mean','95% confidence interval',...

 'Smoothed states'},'Location','Best');

title 'Smoothed nGNP';

axis tight

 Compare Simulation Smoother to Smoothed States

8-167

The simulated state means are practically identical to the smoothed states.

See Also
simsmooth | simulate | smooth | ssm

8 State-Space Models

8-168

Rolling-Window Analysis of Time-Series Models

Rolling-window analysis of a time-series model assesses:

• The stability of the model over time. A common time-series model assumption is that
the coefficients are constant with respect to time. Checking for instability amounts to
examining whether the coefficients are time-invariant.

• The forecast accuracy of the model.

In this section...

“Rolling-Window Analysis for Parameter Stability” on page 8-168
“Rolling Window Analysis for Predictive Performance” on page 8-169

Rolling-Window Analysis for Parameter Stability

Suppose that you have data for all periods in the sample. To check the stability of a time-
series model using a rolling window:

1 Choose a rolling window size, m, i.e., the number of consecutive observation per
rolling window. The size of the rolling window will depend on the sample size, T, and
periodicity of the data. In general, you can use a short rolling window size for data
collected in short intervals, and a larger size for data collected in longer intervals.
Longer rolling window sizes tend to yield smoother rolling window estimates than
shorter sizes.

2 Suppose that the number of increments between successive rolling windows is 1
period, then partition the entire data set into N = T – m + 1 subsamples. The first
rolling window contains observations for period 1 through m, the second rolling
window contains observations for period 2 through m + 1, and so on.

There are variations on the partitions, e.g., rather than roll one observation ahead,
you can roll four observations for quarterly data.

3 Estimate the model using each rolling window subsamples.
4 Plot each estimate and point-wise confidence intervals (i.e., ˆ ˆq q± È

Î
˘
˚()2 SE¶) over

the rolling window index to see how the estimate changes with time. You should
expect a little fluctuation for each, but large fluctuations or trends indicate that the
parameter might be time varying.

 Rolling-Window Analysis of Time-Series Models

8-169

For more details on assessing the stability of a model using rolling window analysis, see
[1].

Rolling Window Analysis for Predictive Performance

Suppose that you have data for all periods in the sample. You can backtest to check the
predictive performance of several time-series models using a rolling window. These steps
outline how to backtest.

1 Choose a rolling window size, m, i.e., the number of consecutive observation per
rolling window. The size of the rolling window depends on the sample size, T, and
periodicity of the data. In general, you can use a short rolling window size for data
collected in short intervals, and a larger size for data collected in longer intervals.
Longer rolling window sizes tend to yield smoother rolling window estimates than
shorter sizes.

2 Choose a forecast horizon, h. The forecast horizon depends on the application and
periodicity of the data. The following illustrates how the rolling window partitions
the data set.

3 If the number of increments between successive rolling windows is 1 period, then
partition the entire data set into N = T – m + 1 subsamples. The first rolling window
contains observations for period 1 through m, the second rolling window contains
observations for period 2 through m + 1, and so on. The figure illustrates the
partitions.

8 State-Space Models

8-170

There are variations on the partitions, e.g., rather than roll one observation ahead,
you can roll four observations for quarterly data.

4 For each rolling window subsample:

a Estimate each model.
b Estimate h-step-ahead forecasts.

 Rolling-Window Analysis of Time-Series Models

8-171

c Compute the forecast errors for each forecast, that is e y ynj njm h n j= -
- + +

ˆ ,
where:

• enj is the forecast error of rolling window n for the j-step-ahead forecast.
• y is the response.
• ŷnj is the j-step-ahead forecast of rolling window subsample n.

5 Compute the root forecast mean squared errors (RMSEs) using the forecast errors for
each step-ahead forecast type. In other words,

RMSE
n

e

j hj

nj

n

N

= ==

Â 2

1 1 for , ..., .

6 Compare the RMSEs among the models. The model with the lowest set of RMSEs
has the best predictive performance.

For more details on backtesting, see [1].

References

[1] Zivot, E., and J. Wang. Modeling Financial Time Series with S_PLUS®. 2nd ed. NY:
Springer Science+Business Media, Inc., 2006.

Related Examples
• “Assess Model Stability Using Rolling Window Analysis” on page 8-172
• “Choose State-Space Model Specification Using Backtesting” on page 8-181

8 State-Space Models

8-172

Assess State-Space Model Stability Using Rolling Window Analysis
In this section...

“Assess Model Stability Using Rolling Window Analysis” on page 8-172
“Assess Stability of Implicitly Created State-Space Model” on page 8-176

Assess Model Stability Using Rolling Window Analysis

This example shows how to use a rolling window to check whether the parameters of a
time-series model are time invariant. This example analyzes two time series:

• Time-series 1: simulated data from a known, time-invariant model
• Time-series 2: simulated data from a known, time-varying model

Completely specify this AR(1) model for Time-series 1:

where is Gaussian with mean 0 and variance 1. Completely specify this time-varying
model for Time-series 2:

where is Gaussian with mean 0 and variance 1.

Mdl1 = arima('AR',0.6,'Constant',0,'Variance',1);

Mdl2 = cell(3,1); % Preallocate

ARMdl2 = [0.2 0.75 -0.5];

for j = 1:3;

 Mdl2{j} = arima('AR',ARMdl2(j),'Constant',0,'Variance',1);

end

Mdl1 is an arima model objects. You can access its properties using dot notation. Mdl2 is
a cell array of arima model objects. You can you cell indexing and dot notation to access
properties of the models within Mdl2. For example, to access the AR parameter value of
the third model in Mdl3, enter Mdl2{3}.AR.

Simulate T = 200 periods of data from Mdl1 and Mdl2. Use a presample response of 0 for
both series.

 Assess State-Space Model Stability Using Rolling Window Analysis

8-173

rng(1); % For reproducibility

T = 200;

y1 = simulate(Mdl1,T,'Y0',0);

timeMdl2 = [100 50 50]; % Number of observations per model in Mdl2

y2 = 0;

for k = 1:numel(Mdl2);

 y2 = [y2; simulate(Mdl2{k},timeMdl2(k),'Y0',y2(end))];

end

Y = [y1 y2(2:end)];

Specify empty AR(1) models for the estimation of Mdl1, Mdl2, and Mdl3. Estimate all
three models using the respective data sets and a rolling window size of 40 periods. Also,
use a rolling window increment of one period. Store the autoregressive parameters and
estimated innovations variance.

ToEstMdl = arima('ARLags',1,'Constant',0);

m = 100; % Rolling window size

N = T - m + 1; % Number of rolling windows

EstParams = cell(2,1); % Preallocate for estimates

EstParamsMat = zeros(N,2);

EstParamsSE = cell(2,1);

EstParamsSEMat = zeros(N,2);

for j = 1:2;

 for k = 1:N;

 idxRW = k:(m + k - 1); % In-sample indices

 [EstMdl,EstParamCov] = estimate(ToEstMdl,Y(idxRW,j),'Display','off');

 EstParamsMat(k,:) = [EstMdl.AR{1} EstMdl.Variance];

 EstParamsSEMat(k,:) = sqrt([EstParamCov(2,2) EstParamCov(3,3)]);

 end

 EstParams{j} = EstParamsMat;

 EstParamsSE{j} = EstParamsSEMat;

end

Plot the estimates and their point-wise confidence intervals over the rolling window
index.

titleMdls = {'Mdl1','Mdl2'};

for j = 1:2;

 figure;

 subplot(2,1,1);

8 State-Space Models

8-174

 Estimates = EstParams{j};

 SEs = EstParamsSE{j};

 plot(Estimates(:,1),'LineWidth',2);

 hold on;

 plot(Estimates(:,1) + 2*SEs(:,1),'r:','LineWidth',2);

 plot(Estimates(:,1) - 2*SEs(:,1),'r:','LineWidth',2);

 title(sprintf('%s - AR at Lag 1 Estimate',titleMdls{j}));

 xlabel 'Rolling window index';

 axis tight;

 hold off;

 subplot(2,1,2);

 plot(Estimates(:,2),'LineWidth',2);

 hold on;

 plot(Estimates (:,2) + 2*SEs(:,2),'r:','LineWidth',2);

 plot(Estimates(:,2) - 2*SEs(:,2),'r:','LineWidth',2);

 title(sprintf('%s - Variance Estimate',titleMdls{j}));

 xlabel 'Rolling window index';

 axis tight;

 hold off;

end

 Assess State-Space Model Stability Using Rolling Window Analysis

8-175

8 State-Space Models

8-176

For Mdl1, the AR estimate does not vary much from 0.6, and the estimates are not
significantly different from one another (pair-wise). Similar results occur for the
variance of Mdl1. The AR estimate of Mdl2 grows, and then falls, which indicates
time dependence. Also, based on the confidence intervals, there is evidence that some
estimates differ from others. Though the variance did not change during simulation,
there seems to be heteroscedasticity possibly induced by the instability of the model.

Assess Stability of Implicitly Created State-Space Model

This example shows how to specify and estimate a state space model when conducting a
rolling window analysis for stability. A rolling window analysis for an explicitly defined

 Assess State-Space Model Stability Using Rolling Window Analysis

8-177

state-space model is straightforward, so this example focuses on implicitly defined state-
space models.

Consider this state-space model:

x

y

x

z x u

t t t

t t t t

= +

- = +

-f e

b

1
,

where εt and ut are Gaussian process with mean 0 and variance 1. Create the function
rwParamMap.m, which specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state, and save it in your working
folder.

function [A,B,C,D,Mean0,Cov0,StateType,deflateY] = rwParamMap(params,y,Z)

%rwParamMap Parameter-to-matrix mapping function for rolling window example

%using ssm and specifying an AR(1) state model

% The state space model specified by rwParamMap contains a stationary

% AR(1) state, the observation model includes a regression component, and

% the variances of the innovation and disturbances are 1. The response y

% is deflated by the regression component specified by the predictor

% variables x.

A = params(1);

B = 1;

C = 1;

D = 1;

Mean0 = [];

Cov0 = [];

StateType = 0;

deflateY = y - params(2)*Z;

end

The software does not support the simulation of implicit models containing a regression
component. Therefore, to simulate data from this model, you must specify all model
components up to the regression component. You can do this explicitly since this example
uses a simple state-space model. Otherwise, you can create another function and define
another state-space model implicitly (e.g., for time-varying state-space models).

Mdl2Sim = ssm(NaN,1,1,1,'StateType',1);

Mdl2Sim is an implicitly defined ssm object.

8 State-Space Models

8-178

Simulate a 200-period path of random standard Gaussian data. Then, simulate responses
from Mdl2Sim, and inflate the responses with the regression component. For this
example, use ϕ = 0.6 and β = 2.

rng(1); % For reproducibility

T = 200;

Z = randn(T,1);

phi = 0.6;

beta = 2;

deflateY = simulate(Mdl2Sim,T,'Params',phi);

y = deflateY + Z*beta;

y is the inflated, simulated response path, and Z is the simulated predictor series.

If you define a state-space model implicitly and the response and predictor data (i.e.,
y and Z) exist in the MATLAB Workspace, then the software creates a link from the
parameter-to-matrix mapping function those series. If the data do not exist in the
MATLAB Workspace, then the software creates the model, but you must provide the data
using the appropriate name-value pair arguments when you, e.g., estimate the model.

Therefore, to conduct a rolling window analysis when the state-space model is implicitly
defined and there is a regression component, you must specify the state-space model
indicating the indices of the data to be analyzed for each window. Conduct a rolling
window analysis of the simulated data. Let the rolling window length be 100 periods for
this example.

m = 100;

N = T - m + 1; % Number of rolling windows

EstParams = nan(N,2); % Preallocation

EstParamSE = nan(N,2);

for j = 1:N;

 idxRW = j:(m + j - 1);

 Mdl = ssm(@(c)rwParamMap(c,y(idxRW),Z(idxRW)));

 [~,EstParams(j,:),EstParamCov] = estimate(Mdl,y(idxRW),[0.5 1]',...

 'Display','off');

 EstParamSE(j,:) = sqrt(diag(EstParamCov));

end

Plot the estimates and point-wise confidence intervals for the AR parameter and
regression coefficient.

figure;

 Assess State-Space Model Stability Using Rolling Window Analysis

8-179

subplot(2,1,1);

plot(EstParams(:,1),'LineWidth',2);

hold on;

plot(EstParams(:,1) + 2*EstParamSE(:,1),':r','LineWidth',2);

plot(EstParams(:,1) - 2*EstParamSE(:,1),':r','LineWidth',2);

title 'State AR Estimate at Lag 1';

xlabel 'Rolling window index';

axis tight;

hold off;

subplot(2,1,2);

plot(EstParams(:,2),'LineWidth',2);

hold on;

plot(EstParams(:,2) + 2*EstParamSE(:,2),':r','LineWidth',2);

plot(EstParams(:,2) - 2*EstParamSE(:,2),':r','LineWidth',2);

title 'Regression Coefficient Estimate';

xlabel 'Rolling window index';

axis tight;

hold off;

8 State-Space Models

8-180

The plots indicate that the model is stable since the AR estimate does not deviate much
from its mean, nor does the regression coefficient estimate.

 Choose State-Space Model Specification Using Backtesting

8-181

Choose State-Space Model Specification Using Backtesting

This example shows how to choose the state-space model specification with the best
predictive performance using a rolling window. A rolling window analysis for an
explicitly defined state-space model is straightforward, so this example focuses on
implicitly defined state-space models.

Suppose that the linear relationship between the change in the observed unemployment
rate and the nominal gross national product (nGNP) growth rate is of interest. Suppose
further that you want to choose between an AR(1) or an AR(2) model for the first
difference of the unemployment rate (i.e., the state). That is,

Model 1:

Model 2:

x x

y

x

x

z x u

x

t t t t

t t t t

t t

= + +

- = +

=

- -f f e

b

f

11 1 12 1

1

21 -- +

- = +
1

2

e

b
t

t t t ty z x u

,

where:

• εt and ut are Gaussian process with mean 0 and variance 1.
• xt is the true unemployment rate at time t.
• yt is the observed unemployment.
• zt is the nGNP rate.

Create the functions rwParamMap.m and rwAR2ParamMap.m in separate functions,
which specify how the parameters in params map to the state-space model matrices, the
initial state values, and the type of state, and save them in your working folder.

function [A,B,C,D,Mean0,Cov0,StateType,deflateY] = rwParamMap(params,y,Z)

%rwParamMap Parameter-to-matrix mapping function for rolling window example

%using ssm and specifying an AR(1) state model

% The state space model specified by rwParamMap contains a stationary

% AR(1) state, the observation model includes a regression component, and

% the variances of the innovation and disturbances are 1. The response y

% is deflated by the regression component specified by the predictor

% variables x.

A = params(1);

B = 1;

C = 1;

8 State-Space Models

8-182

D = 1;

Mean0 = [];

Cov0 = [];

StateType = 0;

deflateY = y - params(2)*Z;

end

function [A,B,C,D,Mean0,Cov0,StateType,deflateY] = rwAR2ParamMap(params,y,Z)

%rwParamMap Parameter-to-matrix mapping function for rolling window example

%using ssm and specifying an AR(2) state model

% The state space model specified by rwParamMap contains a stationary

% AR(2) state, the observation model includes a regression component, and

% the variances of the innovation and disturbances are 1. The response y

% is deflated by the regression component specified by the predictor

% variables x.

A = [params(1) params(2); 1 0];

B = [1; 0];

C = [1 0];

D = 1;

Mean0 = [];

Cov0 = [];

StateType = [0 0];

deflateY = y - params(3)*Z;

end

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

ur = DataTable.UR(~isNaN); % Sample size

Z = diff(log(gnpn));

y = diff(ur);

T = size(y,1);

If you define a state-space model implicitly and the response and predictor data (i.e.,
y and Z) exist in the MATLAB Workspace, then the software creates a link from the

 Choose State-Space Model Specification Using Backtesting

8-183

parameter-to-matrix mapping function those series. If the data do not exist in the
MATLAB Workspace, then the software creates the model, but you must provide the data
using the appropriate name-value pair arguments when you, e.g., estimate the model.

Therefore, to conduct a rolling window analysis when the state-space model is implicitly
defined and there is a regression component, you must specify the state-space model
indicating the indices of the data to be analyzed for each window. Conduct a rolling
window analysis of the simulated data. Let the rolling window length (m) be 40 periods
and the forecast horizon (h) be 10 periods. For this example, assume that the time-series
are stable (i.e., all parameters are time-invariant).

m = 40;

N = T - m + 1; % Number of rolling windows

h = 10;

fError1 = nan(N,h); % Preallocation

fError2 = nan(N,h);

for j = 1:N;

 idxRW = j:(m + j - h - 1);

 idxFH = (m + j - h):(m + j - 1);

 Mdl1 = ssm(@(c)rwParamMap(c,y(idxRW),Z(idxRW)));

 Mdl2 = ssm(@(c)rwARMAParamMap(c,y(idxRW),Z(idxRW)));

 [EstMdl1,estParams1] = estimate(Mdl1,y(idxRW),[0.5 -20]',...

 'Display','off');

 [EstMdl2,estParams2] = estimate(Mdl2,y(idxRW),[0.5 0.1 -20]',...

 'Display','off');

 fY1 = forecast(EstMdl1,h,y(idxRW),'Predictors0',Z(idxRW),...

 'PredictorsF',Z(idxFH),'Beta',estParams1(end));

 fY2 = forecast(EstMdl2,h,y(idxRW),'Predictors0',Z(idxRW),...

 'PredictorsF',Z(idxFH),'Beta',estParams2(end));

 fError1(j,:) = y(idxFH) - fY1;

 fError2(j,:) = y(idxFH) - fY2;

end

Compute the RMSE for each step-ahead forecast, and compare them for each model.

fRMSE1 = sqrt(mean(fError1.^2));

fRMSE2 = sqrt(mean(fError2.^2));

fRMSE1 < fRMSE2

ans =

 1 1 1 0 0 0 0 0 0 0

8 State-Space Models

8-184

Overall, the predictive performance of the AR(2) model is better than the AR(1) model.

Alternatively, you can compare the predictive performance of the models using the
Diebold-Mariano test. For more details, see [1].

9

Functions — Alphabetical List

9 Functions — Alphabetical List

9-2

adftest
Augmented Dickey-Fuller test

Syntax
h = adftest(Y)

h = adftest(Y,Name,Value)

[h,pValue] = adftest(___)

[h,pValue,stat,cValue,reg] = adftest(___)

Description
h = adftest(Y) returns a logical value with the rejection decision from conducting an
augmented Dickey-Fuller test for a unit root in a univariate time series, Y.

h = adftest(Y,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

• If any Name,Value argument is a vector, then all Name,Value arguments specified
must be vectors of equal length or length one. adftest(Y,Name,Value) treats
each element of a vector input as a separate test, and returns a vector of rejection
decisions.

• If any Name,Value argument is a row vector, then adftest(Y,Name,Value)
returns a row vector.

[h,pValue] = adftest(___) returns the rejection decision and p-value for the
hypothesis test, using any of the input arguments in the previous syntaxes.

[h,pValue,stat,cValue,reg] = adftest(___) additionally returns the test
statistic, critical value, and a structure of regression statistics for the hypothesis test.

Examples
Conduct a Dickey-Fuller Test Without Augmentation

Test a time series for a unit root using the default autoregression model without
augmented difference terms.

 adftest

9-3

Load Canadian inflation rate data.

load Data_Canada

Y = DataTable.INF_C;

Test the time series for a unit root.

h = adftest(Y)

h =

 0

The result h = 0 indicates that this test fails to reject the null hypothesis of a unit root
against the autoregressive alternative.

Conduct an Augmented Dickey-Fuller Test Against a Trend-Stationary Alternative

Test a time series for a unit root against a trend-stationary alternative augmented with
lagged difference terms.

Load a time series of GDP data, and calculate its log.

load Data_GDP;

Y = log(Data);

Test for a unit root against a trend-stationary alternative, augmenting the model with 0,
1, and 2 lagged difference terms.

h = adftest(Y,'model','TS','lags',0:2)

h =

 0 0 0

adftest treats the three lag choices as three separate tests, and returns a vector with
rejection decisions for each test. The values h = 0 indicate that all three tests fail to
reject the null hypothesis of a unit root against the trend-stationary alternative.

Choose the Number of Lagged Difference Terms to Include in the Augmented Model

Test a time series for a unit root against trend-stationary alternatives augmented
with different numbers of lagged difference terms. Look at the regression statistics

9 Functions — Alphabetical List

9-4

corresponding to each of the alternative models to choose how many lagged difference
terms to include in the augmented model.

Load a time series of GDP data, and calculate its log.

load Data_GDP;

Y = log(Data);

Test for a unit root using three different choices for the number of lagged difference
terms. Return the regression statistics for each alternative model.

[h,~,~,~,reg] = adftest(Y,'model','TS','lags',0:2);

adftest treats each of the three lag choices as separate tests, and returns results for
each test. reg is an array of three data structures, corresponding to each alternative
model.

Display the names of the coefficients included in each of the three alternatives.

reg.names

ans =

 'c'

 'd'

 'a'

ans =

 'c'

 'd'

 'a'

 'b1'

ans =

 'c'

 'd'

 'a'

 'b1'

 'b2'

 adftest

9-5

The output shows which terms are included in the three alternative models. The first
model has no added difference terms, the second model has one difference term (b1), and
the third model has two difference terms (b1 and b2).

Display the t-statistics and corresponding p-values for each coefficient in the three
alternative models.

[reg(1).tStats.t reg(1).tStats.pVal]

[reg(2).tStats.t reg(2).tStats.pVal]

[reg(3).tStats.t reg(3).tStats.pVal]

ans =

 2.0533 0.0412

 1.8842 0.0608

 61.4717 0.0000

ans =

 2.9026 0.0041

 2.7681 0.0061

 64.1396 0.0000

 5.6514 0.0000

ans =

 3.2568 0.0013

 3.1249 0.0020

 62.7825 0.0000

 4.7586 0.0000

 1.7615 0.0795

The returned t-statistics and p-values correspond to the coefficients in reg.names. These
results indicate that the coefficient on the first difference term is significantly different
from zero in both the second and third models, but the coefficient on the second term in
the third model is not. This suggests augmenting the model with one lagged difference
term is adequate.

Compare the BIC for each of the three alternatives.

reg.BIC

9 Functions — Alphabetical List

9-6

ans =

 -1.4774e+03

ans =

 -1.4966e+03

ans =

 -1.4878e+03

Based on the BIC values, choose the model augmented with one lagged difference term
because it has the best (that is, the smallest) BIC value.

• “Unit Root Tests” on page 3-44

Input Arguments
Y — Univariate time series
column vector

Univariate time series, specified as a column vector. The last element is the most recent
observation. adftest ignores missing observations, indicated by NaNs.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'alpha',0.1,'lags',0:2 specifies three tests with 0, 1, and 2 lagged
difference terms conducted at the 0.1 significance level

'alpha' — Significance levels
0.05 (default) | scalar | vector

 adftest

9-7

Significance levels for the hypothesis tests, specified as the comma-separated pair
consisting of 'alpha' and a scalar or vector. Use a vector to conduct multiple tests. All
values of alpha must be between 0.001 and 0.999.

Example: 'alpha',0.01

Data Types: double

'lags' — Number of lagged difference terms
0 (default) | nonnegative integer | vector of nonnegative integers

Number of lagged difference terms to include in the model, specified as the comma-
separated pair consisting of 'lags' and a nonnegative integer or vector of nonnegative
integers. Use a vector to conduct multiple tests.
Example: 'lags',[0,1,2]

Data Types: double

'model' — Model variant
'AR' (default) | 'ARD' | 'TS'

Model variant, specified as the comma-separated pair consisting of 'model' and a string
or cell array of strings. Use a cell array of strings to conduct multiple tests with different
model variants. The possible values are:

'AR' Autoregressive model variant, which specifies a test of the null model

y y y y yt t t t p t p t= + + + + +- - - -1 1 1 2 2b b b eD D D…

against the alternative model

y y y y yt t t t p t p t= + + + + +- - - -f b b b e1 1 1 2 2D D D… ,

with AR(1) coefficient, f < 1.

'ARD' Autoregressive model with drift variant, which specifies a test of the null model

y y y y yt t t t p t p t= + + + + +- - - -1 1 1 2 2b b b eD D D…

against the alternative model

9 Functions — Alphabetical List

9-8

y c y y y yt t t t p t p t= + + + + + +- - - -f b b b e1 1 1 2 2D D D… ,

with drift coefficient, c, and AR(1) coefficient, f < 1.

'TS' Trend-stationary model variant, which specifies a test of the null model

y c y y y yt t t t p t p t= + + + + + +- - - -1 1 1 2 2b b b eD D D…

against the alternative model

y c t y y y yt t t t p t p t= + + + + + + +- - - -d f b b b e1 1 1 2 2D D D… ,

with drift coefficient, c, deterministic trend coefficient, δ, and AR(1) coefficient,
f < 1.

Example: 'model',{'AR','ARD'}

'test' — Test statistic
't1' (default) | 't2' | 'F'

Test statistic, specified as the comma-separated pair consisting of 'test' and a string or
cell array of strings with these possible values:

't1' Standard t statistic,

t
se1

1
=

-(�) ,f

computed using the OLS estimate of the AR(1) coefficient, ˆ,f and its standard
error (se), in the alternative model.

The test assesses the significance of the restriction, f - =1 0.

't2' Lag-adjusted, unstudentized t statistic,

t N

p
2

1

1

1
= -

- - -
(�)

(� �)
,f

b b…

 adftest

9-9

computed using the OLS estimates of the AR(1) coefficient and stationary
coefficients in the alternative model. N is the effective sample size, adjusted for
lags and missing values.

The test assesses the significance of the restriction, f - =1 0.

'F' F statistic for assessing the significance of a joint restriction on the alternative
model.

• For model variant 'ARD', the restrictions aref - =1 0 and c = 0.
• For model variant 'TS', the restrictions aref - =1 0 and δ = 0.

An F statistic is invalid for model variant 'AR'.

Use a cell array of strings to conduct multiple tests using different test statistics.
Example: 'test','t2'

Output Arguments

h — Test rejection decisions
logical | vector of logicals

Test rejection decisions, returned as a logical value or vector of logical values with length
equal to the number of tests conducted.

• h = 1 indicates rejection of the unit-root null in favor of the alternative model.
• h = 0 indicates failure to reject the unit-root null.

pValue — Test statistic p-values
scalar | vector

Test statistic p-values, returned as a scalar or vector with length equal to the number of
tests conducted.

• If the test statistic is 't1' or 't2', then the p-values are left-tail probabilities.
• If the test statistic is 'F', then the p-values are right-tail probabilities.

stat — Test statistics
scalar | vector

9 Functions — Alphabetical List

9-10

Test statistics, returned as a scalar or vector with length equal to the number of tests
conducted. adftest computes test statistics using ordinary least squares (OLS)
estimates of the coefficients in the alternative model.

cValue — Critical values
scalar | vector

Critical values, returned as a scalar or vector with length equal to the number of tests
conducted.

• If the test statistic is 't1' or 't2', then the critical values are for left-tail
probabilities.

• If the test statistic is 'F', then the critical values are for right-tail probabilities.

reg — Regression statistics
data structure | data structure array

Regression statistics for ordinary least squares (OLS) estimation of coefficients in the
alternative model, returned as a data structure or data structure array with length equal
to the number of tests conducted.

Each data structure has the following fields.

Field Description

num Length of input series with NaNs removed
size Effective sample size, adjusted for lags
names Regression coefficient names
coeff Estimated coefficient values
se Estimated coefficient standard errors
Cov Estimated coefficient covariance matrix
tStats t statistics of coefficients and p-values
FStat F statistic and p-value
yMu Mean of the lag-adjusted input series
ySigma Standard deviation of the lag-adjusted input series
yHat Fitted values of the lag-adjusted input series
res Regression residuals

 adftest

9-11

Field Description

DWStat Durbin-Watson statistic
SSR Regression sum of squares
SSE Error sum of squares
SST Total sum of squares
MSE Mean square error
RMSE Standard error of the regression
RSq R2 statistic
aRSq Adjusted R2 statistic
LL Loglikelihood of data under Gaussian innovations
AIC Akaike information criterion
BIC Bayesian (Schwarz) information criterion
HQC Hannan-Quinn information criterion

More About

Augmented Dickey-Fuller Test for a Unit Root

The Augmented Dickey-Fuller test for a unit root assesses the null hypothesis of a unit
root using the model

y c t y y yt t t p t p t= + + + + + +- - -d f b b e1 1 1D D… ,

where

• Δ is the differencing operator, such that Dy y yt t t= -
-1

.

• The number of lagged difference terms, p, is user specified.
• εt is a mean zero innovation process.

The null hypothesis of a unit root is

H
0

1: .f =

9 Functions — Alphabetical List

9-12

Under the alternative hypothesis, f < 1.

Variants of the model allow for different growth characteristics. The model with δ = 0 has
no trend component, and the model with c = 0 and δ = 0 has no drift or trend.

A test that fails to reject the null hypothesis, fails to reject the possibility of a unit root.

Algorithms

• adftest performs ordinary least squares (OLS) regression to estimate the
coefficients in the alternative model.

• Dickey-Fuller statistics follow nonstandard distributions under the null hypothesis
(even asymptotically). Critical values for a range of sample sizes and significance
levels have been tabulated using Monte Carlo simulations of the null model with
Gaussian innovations, with five million replications per sample size.

• For small samples, the tabulated critical values are only valid for Gaussian
innovations. For large samples, the tabulated values are still valid for non-Gaussian
innovations.

• adftest interpolates critical values and p-values from the tables. The tables for test
types 't1' and 't2' are identical to those for pptest.

• “Unit Root Nonstationarity” on page 3-34

See Also
i10test | kpsstest | lmctest | pptest | vratiotest

Introduced in R2009b

 aicbic

9-13

aicbic

Akaike or Bayesian information criteria

Syntax

aic = aicbic(logL,numParam)

[aic,bic] = aicbic(logL,numParam,numObs)

Description

aic = aicbic(logL,numParam) returns Akaike information criteria (AIC)
corresponding to optimized loglikelihood function values (logL), as returned by
estimate, and the model parameters, numParam.

[aic,bic] = aicbic(logL,numParam,numObs) additionally returns Bayesian
information criteria (BIC) corresponding to logL, numParam, and the sample sizes
associated with each logL value.

Examples

Compare AIC Statistics

Calculate and interpret the AIC for four models.

The loglikelihood function values (logL) and the number of model parameters
(numParam) from four multivariate time series analyses are:

logL1 = -681.4724;

logL2 = -632.3158;

logL3 = -663.4615;

logL4 = -605.9439;

numParam1 = 12;

numParam2 = 27;

numParam3 = 18;

9 Functions — Alphabetical List

9-14

numParam4 = 45;

Calculate the AIC.

aic = aicbic([logL1,logL2,logL3,logL4], ...

 [numParam1,numParam2,numParam3,numParam4])

aic =

 1.0e+03 *

 1.3869 1.3186 1.3629 1.3019

The model with the lowest AIC has the best fit. Therefore, the fourth model fits best.

Information Criteria Statistics for Simulated Data

Compare information criteria statistics for several model fits.

Specify the model

where is Gaussian with mean 0 and variance 2. Simulate data from this model.

rng(1); % For random data reproducibility

T = 100; % Sample size

DGP = arima('Constant',-4,'AR',[0.2, 0.5], ...

 'Variance',2);

y = simulate(DGP,T);

Define three competing models to fit to the data.

EstMdl1 = arima('ARLags',1);

EstMdl2 = arima('ARLags',1:2);

EstMdl3 = arima('ARLags',1:3);

Fit the models to the data.

logL = zeros(3,1); % Preallocate loglikelihood vector

[~,~,logL(1)] = estimate(EstMdl1,y,'print',false);

[~,~,logL(2)] = estimate(EstMdl2,y,'print',false);

[~,~,logL(3)] = estimate(EstMdl3,y,'print',false);

 aicbic

9-15

Compute the AIC and BIC for each model.

[aic,bic] = aicbic(logL, [3; 4; 5], T*ones(3,1))

aic =

 381.7732

 358.2422

 358.8479

bic =

 389.5887

 368.6629

 371.8737

The model containing two autoregressive lag parameters fits best since it yields the
lowest information criteria. The structure of the best fitting model matches the model
structure that simulated the data.

• “Time Series Regression V: Predictor Selection”
• “Example: Using Akaike Information Criterion to Calculate the Minimal Requisite

Lag” on page 7-20
• “Choose ARMA Lags Using BIC” on page 5-135
• “Compare Conditional Variance Models Using Information Criteria” on page 6-87
• “VAR Model Case Study” on page 7-89

Input Arguments

logL — Optimized loglikelihood values
scalar | vector

Optimized loglikelihood objective function values associated with various model fits,
specified as a scalar or vector.

Obtain an optimized loglikelihood value using estimate, infer, vgxvarx, or an
Optimization Toolbox function such as fmincon or fminunc.

9 Functions — Alphabetical List

9-16

Data Types: double | single

numParam — Number of estimated parameters
scalar | vector

Number of estimated parameters associated with each corresponding fitted model in
logL, specified as a positive integer, or a vector of positive integers having the same
length as logL.

If numParam is a scalar, then aicbic applies it to all logL values.

For univariate time series models, use length(info.X) to obtain numParam from a
fitted model returned by estimate.

For multivariate time series models, obtain numParam using vgxcount from a vgxset or
vgxvarx model specification.

Data Types: double | single

numObs — Sample sizes
scalar | vector

Sample sizes of the observed series associated with each corresponding fitted model in
logL, specified as a positive integer, or a vector of positive integers having the same
length as logL.

aicbic requires numObs to compute the BIC.

If numObs is a scalar, then aicbic applies it to all logL values.

Data Types: double | single

Output Arguments

aic — AIC statistics
scalar | vector

AIC statistics associated with each corresponding fitted model in logL, returned as a
vector with the same length as logL.

bic — BIC statistics
scalar | vector

 aicbic

9-17

BIC statistics associated with each corresponding fitted model in logL, returned as a
vector with the same length as logL.

More About

Akaike Information Criterion

A model fit statistic considers goodness-of-fit and parsimony. Select models that
minimize AIC.

When comparing multiple model fits, additional model parameters often yield larger,
optimized loglikelihood values. Unlike the optimized loglikelihood value, AIC penalizes
for more complex models, i.e., models with additional parameters.

The formula for AIC, which provides insight into its relationship to the optimized
loglikelihood and its penalty for complexity, is:

aic logL numParam= - () + ()2 2 .

Bayesian Information Criterion

A model fit statistic considers goodness-of-fit and parsimony. Select models that
minimize BIC.

Like AIC, BIC uses the optimal loglikelihood function value and penalizes for more
complex models, i.e., models with additional parameters. The penalty of BIC is a function
of the sample size, and so is typically more severe than that of AIC.

The formula for BIC is:

bic logL numParam numObs= - () + ()2 * log .

• “Information Criteria” on page 3-63

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

9 Functions — Alphabetical List

9-18

See Also
estimate | fmincon | fminunc | infer | lmtest | vgxcount | vgxset | vgxvarx |
waldtest

Introduced before R2006a

 archtest

9-19

archtest
Engle test for residual heteroscedasticity

Syntax
h = archtest(res)

h = archtest(res,Name,Value)

[h,pValue] = archtest(___)

[h,pValue,stat,cValue] = archtest(___)

Description
h = archtest(res) returns a logical value with the rejection decision from conducting
the Engle’s ARCH test for residual heteroscedasticity in the univariate residual series
res.

h = archtest(res,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

• If any Name,Value pair argument is a vector, then all Name,Value pair
arguments that you specify must be vectors of equal length or scalars.
archtest(res,Name,Value) treats each element of a vector input as a separate
test, and returns a vector of rejection decisions.

• If any Name,Value pair argument is a row vector, then
archtest(res,Name,Value) returns row vectors.

[h,pValue] = archtest(___) returns the rejection decision and p-value for the
hypothesis test, using any of the input arguments in the previous syntaxes.

[h,pValue,stat,cValue] = archtest(___) additionally returns the test statistic
(stat) and critical value (cValue) for the hypothesis test.

Examples
Test a Time Series for ARCH Effects

Load the Deutschmark/British pound foreign-exchange rate data set.

9 Functions — Alphabetical List

9-20

load Data_MarkPound

Convert the prices to returns.

returns = price2ret(Data);

Compute the deviations of the return series.

residuals = returns - mean(returns);

Test the return series for ARCH effects using the residuals.

h = archtest(residuals)

h =

 1

The result h = 1 indicates that you should reject null hypothesis of no conditional
heteroscedasticity and conclude that there are significant ARCH effects in the return
series.

Specify the Lag Structure in an ARCH Test

To draw valid inferences from Engle's ARCH test, you should determine a suitable
number of lags for the model. Do this by fitting the model over a range of plausible lags,
and comparing the fitted models. Choose the number of lags that yields the best fitting
model for the ARCH test.

Load and Process the Data

Load the NASDAQ data included in the toolbox. Convert the daily close composite index
series to a percentage return series.

load Data_EquityIdx;

price = DataTable.NASDAQ;

ret = 100*price2ret(price);

T = length(ret);

figure

plot(ret)

xlim([0,T])

title('NASDAQ Daily Returns')

 archtest

9-21

The last quarter of the return series seems to have higher variance than the first three
quarters. This volatile behavior indicates conditional heteroscedasticity. Also, the series
seems to fluctuate at a constant level.

The returns are of relatively high frequency. Therefore, the daily changes can be small.
For numerical stability, it is good practice to scale such data.

Determine a Suitable Number of Lags

Fit the model over a grid of lags. Choose the number of lags that corresponds to the best
fitting model.

numLags = 4;

logL = zeros(numLags,1); % Preallocate fit statistics

9 Functions — Alphabetical List

9-22

for k = 1:numLags

 Mdl = garch(0,k); % Specify garch model

 [~,~,logL(k)] = estimate(Mdl,ret,'Display','off'); % Obtain loglikelihood

end

fitStats = aicbic(logL,1:numLags); % Get AIC

lags = find(min(fitStats)) % Obtain suitable number of lags

lags =

 1

lags = 1 indicates that it is reasonable to conduct the ARCH test using one lag.

Conduct the ARCH Test

Calculate the residuals, and use them to conduct the ARCH test at a 1% significance
level.

r = ret - mean(ret); % Returns fluctuate at constant level

[h,pValue,stat,cValue] = archtest(ret,'Lags',lags,'Alpha',0.01)

h =

 1

pValue =

 0

stat =

 204.2625

cValue =

 6.6349

 archtest

9-23

h = 1 indicates that the software rejects the null hypothesis of no ARCH effects. pValue
= 0 indicates that the evidence is strong for the rejection of the null.

• “Time Series Regression VI: Residual Diagnostics”
• “Detect ARCH Effects” on page 3-28

Input Arguments

res — Residual series
vector

Residual series for which the software computes the test statistic, specified as a vector.
The last element corresponds to the most recent observation.

Typically, you fit a model to an observed time series, and res is the (standardized)
residuals from the fitted model.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'lags',1:4,'alpha',0.1 specifies four tests with 1, 2, 3, and 4 lagged
terms conducted at the 0.1 significance level.

'lags' — Number of lagged terms
1 (default) | positive integer | vector of positive integers

Number of lagged terms to include in the test statistic calculation, specified as the
comma-separated pair consisting of 'lags' and a positive integer or vector of positive
integers.

Use a vector to conduct multiple tests.

Each element of lags must be less than length(res) – 1.

Example: 'lags',1:4

9 Functions — Alphabetical List

9-24

'alpha' — Significance levels
0.05 (default) | scalar | vector

Significance levels for the hypothesis tests, specified as the comma-separated pair
consisting of 'alpha' and a scalar or vector.

Use a vector to conduct multiple tests.

Each element of alpha must be greater than 0 and less than 1.

Example: 'alpha',0.01

Output Arguments

h — Test rejection decisions
logical | vector of logicals

Test rejection decisions, returned as a logical value or vector of logical values with length
equal to the number of tests that the software conducts.

• h = 1 indicates rejection of the no ARCH effects null hypothesis in favor of the
alternative.

• h = 0 indicates failure to reject the no ARCH effects null hypothesis.

pValue — Test statistic p-values
scalar | vector

Test statistic p-values, returned as a scalar or vector with length equal to the number of
tests that the software conducts.

stat — Test statistics
scalar | vector

Test statistics, returned as a scalar or vector with length equal to the number of tests
that the software conducts.

cValue — Critical values
scalar | vector

Critical values, returned as a scalar or vector with length equal to the number of tests
that the software conducts.

 archtest

9-25

More About

Engle’s ARCH Test

Engle’s ARCH test assesses the null hypothesis that a series of residuals (rt) exhibits no
conditional heteroscedasticity (ARCH effects), against the alternative that an ARCH(L)
model describes the series.

The ARCH(L) model has the following form:

r a a r r e
t t L t L t

2
0 1 1

2 2
= + + +

- -
…+a ,

where there is at least one aj ≠ 0, j = 0,..,L.

The test statistic is the Lagrange multiplier statistic TR2, where:

• T is the sample size.
• R2 is the coefficient of determination from fitting the ARCH(L) model for a number of

lags (L) via regression.

Under the null hypothesis, the asymptotic distribution of the test statistic is chi-square
with L degrees of freedom.

Tips

• You must determine a suitable number of lags to draw valid inferences from Engle’s
ARCH test. One method is to:

1 Fit a sequence of arima, garch, egarch, or gjr models using estimate. Restrict
each model by specifying progressively smaller ARCH lags (i.e., ARCH effects
corresponding to increasingly smaller lag polynomial terms).

2 Obtain loglikelihoods from the estimated models.
3 Use lratiotest to evaluate the significance of each restriction. Alternatively,

determine information criteria using aicbic and combine them with measures of
fit.

• Residuals in an ARCH process are dependent, but not correlated. Thus, archtest
tests for heteroscedasticity without autocorrelation. To test for autocorrelation, use
lbqtest.

9 Functions — Alphabetical List

9-26

• GARCH(P,Q) processes are locally equivalent to ARCH(P + Q) processes. If
archtest(res,'lags',lags) shows evidence of conditional heteroscedasticity in
residuals from a mean model, then it might be better to model a GARCH(P,Q) model
with P + Q = lags.

• “Engle’s ARCH Test” on page 3-25

References

[1] Box, G. E. P., G.M. Jenkins, and G.C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Engle, R. "Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation." Econometrica. Vol. 96, 1988, pp. 893–920.

See Also
aicbic | autocorr | estimate | estimate | lbqtest | lratiotest

Introduced before R2006a

 arima class

9-27

arima class

Create ARIMA or ARIMAX time series model

Description

arima creates model objects for stationary or unit root nonstationary linear time series
model. This includes moving average (MA), autoregressive (AR), mixed autoregressive
and moving average (ARMA), integrated (ARIMA), multiplicative seasonal, and linear
time series models that include a regression component (ARIMAX).

Specify models with known coefficients, estimate coefficients with data using estimate,
or simulate models with simulate. By default, the variance of the innovations is a
positive scalar, but you can specify any supported conditional variance model, such as a
GARCH model.

Construction

Mdl = arima creates an ARIMA model of degrees zero.

Mdl = arima(p,D,q) creates a nonseasonal linear time series model using
autoregressive degree p, differencing degree D, and moving average degree q.

Mdl = arima(Name,Value) creates a linear time series model using additional
options specified by one or more Name,Value pair arguments. Name is the property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Note: You can only use these arguments for nonseasonal models. For seasonal models,
use the name-value syntax.

9 Functions — Alphabetical List

9-28

p

Positive integer indicating the degree of the nonseasonal autoregressive polynomial.

D

Nonnegative integer indicating the degree of nonseasonal integration in the linear time
series.

q

Positive integer indicating the degree of the nonseasonal moving average polynomial.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'AR'

Cell vector of nonseasonal autoregressive coefficients corresponding to a stable
polynomial. When specified without ARLags, AR is a cell vector of coefficients at lags
1,2,... to the degree of the nonseasonal autoregressive polynomial. When specified with
ARLags, AR is an equivalent-length cell vector of coefficients associated with the lags in
ARLags.

Default: Cell vector of NaNs.

'ARLags'

Vector of positive integer lags associated with the AR coefficients.

Default: Vector of integers 1,2,... to the degree of the nonseasonal autoregressive
polynomial.

'Beta'

Real vector of coefficients corresponding to the regression component in an ARIMAX
conditional mean model.

Default: [] (no regression coefficients corresponding to a regression component)

 arima class

9-29

'Constant'

Scalar constant in the linear time series.

Default: NaN

'D'

Nonnegative integer indicating the degree of the nonseasonal differencing lag operator
polynomial (the degree of nonseasonal integration) in the linear time series.

Default: 0 (no nonseasonal integration)

'Distribution'

Conditional probability distribution of the innovation process. Distribution is a string
you specify as 'Gaussian' or 't'. Alternatively, specify it as a data structure with the
field Name to store the distribution 'Gaussian' or 't'. If the distribution is 't', then
the structure also needs the field DoF to store the degrees of freedom.

Default: 'Gaussian'

'MA'

Cell vector of nonseasonal moving average coefficients corresponding to an invertible
polynomial. When specified without MALags, MA is a cell vector of coefficients at lags
1,2,... to the degree of the nonseasonal moving average polynomial. When specified with
MALags, MA is an equivalent-length cell vector of coefficients associated with the lags in
MALags.

Default: Cell vector of NaNs.

'MALags'

Vector of positive integer lags associated with the MA coefficients.

Default: Vector of integers 1,2,... to the degree of the nonseasonal moving average
polynomial.

'SAR'

Cell vector of seasonal autoregressive coefficients corresponding to a stable polynomial.
When specified without SARLags, SAR is a cell vector of coefficients at lags 1,2,... to the

9 Functions — Alphabetical List

9-30

degree of the seasonal autoregressive polynomial. When specified with SARLags, SAR is
an equivalent-length cell vector of coefficients associated with the lags in SARLags.

Default: Cell vector of NaNs.

'SARLags'

Vector of positive integer lags associated with the SAR coefficients.

Default: Vector of integers 1,2,... to the degree of the seasonal autoregressive
polynomial.

'SMA'

Cell vector of seasonal moving average coefficients corresponding to an invertible
polynomial. When specified without SMALags, SMA is a cell vector of coefficients at lags
1,2,... to the degree of the seasonal moving average polynomial. When specified with
SMALags, SMA is an equivalent-length cell vector of coefficients associated with the lags
in SMALags.

Default: Cell vector of NaNs.

'SMALags'

Vector of positive integer lags associated with the SMA coefficients.

Default: Vector of integers 1,2,... to the degree of the seasonal moving average
polynomial.

'Seasonality'

Nonnegative integer indicating the degree of the seasonal differencing lag operator
polynomial in the linear time series model.

Default: 0 (no seasonal integration)

'Variance'

Positive scalar variance of the model innovations, or a supported conditional variance
model object (e.g., a garch model object).

Default: NaN

 arima class

9-31

Notes

• Each AR, SAR, MA, and SMA coefficient is associated with an underlying lag operator
polynomial and is subject to a near-zero tolerance exclusion test. That is, the software

compares each coefficient to the default lag operator zero tolerance, 1e-12. If the
magnitude of a coefficient is greater than 1e-12, then the software includes it in the
model. Otherwise, the software considers the coefficient sufficiently close to 0, and
excludes it from the model. For additional details, see LagOp.

• Specify the lags associated with the seasonal polynomials SAR and SMA in the
periodicity of the observed data, and not as multiples of the Seasonality parameter.
This convention does not conform to standard Box and Jenkins [1] notation, but it is a
more flexible approach for incorporating multiplicative seasonality.

Properties

AR

Cell vector of nonseasonal autoregressive coefficients corresponding to a stable
polynomial. Associated lags are 1,2,... to the degree of the nonseasonal autoregressive
polynomial, or as specified in ARLags.

Beta

Real vector of regression coefficients corresponding to a regression component.

Constant

Scalar constant in the linear time series model.

D

Nonnegative integer indicating the degree of nonseasonal integration in the linear time
series.

Distribution

Data structure for the conditional probability distribution of the innovation process. The
field Name stores the distribution name 'Gaussian' or 't'. If the distribution is 't',
then the structure also has the field DoF to store the degrees of freedom.

9 Functions — Alphabetical List

9-32

MA

Cell vector of nonseasonal moving average coefficients corresponding to an invertible
polynomial. Associated lags are 1,2,... to the degree of the nonseasonal moving average
polynomial, or as specified in MALags.

P

Degree of the compound autoregressive polynomial. P is the total number of lagged
observations necessary to initialize the autoregressive component of the model.

P includes the effects of nonseasonal and seasonal integration captured by the properties
D and Seasonality, respectively, and the nonseasonal and seasonal autoregressive
polynomials AR and SAR, respectively.

The property P does not necessarily conform to standard Box and Jenkins notation. It
only conforms if the model has no integration nor seasonal autoregressive component.

Q

Degree of the compound moving average polynomial. Q is the total number of lagged
innovations necessary to initialize the moving average component of the model. Q
includes the effects of nonseasonal and seasonal moving average polynomials MA and
SMA, respectively.

The property Q does not necessarily conform to standard Box and Jenkins notation. It
only conforms if the model has no seasonal moving average component.

SAR

Cell vector of seasonal autoregressive coefficients corresponding to a stable polynomial.
Associated lags are 1,2,... to the degree of the seasonal autoregressive polynomial, or as
specified in SARLags.

SMA

Cell vector of seasonal moving average coefficients corresponding to an invertible
polynomial. Associated lags are 1,2,... to the degree of the seasonal moving average
polynomial, or as specified in SMALags.

Seasonality

Nonnegative integer indicating the seasonal differencing polynomial degree in the linear
time series model.

 arima class

9-33

Variance

Positive scalar variance of the model innovations, or a supported conditional variance
model (e.g., a garch model).

Methods

estimate Estimate ARIMA or ARIMAX model
parameters

filter Filter disturbances using ARIMA or
ARIMAX model

forecast Forecast ARIMA or ARIMAX process
impulse Impulse response function
infer Infer ARIMA or ARIMAX model residuals

or conditional variances
print Display parameter estimation results for

ARIMA or ARIMAX models
simulate Monte Carlo simulation of ARIMA or

ARIMAX models

Definitions

Lag Operator

The lag operator L is defined as L y yi
t t i=

-
. You can create lag operator polynomials

using them to condense the notation and solve linear difference equations. The lag
operator polynomials in the linear time series model definitions are:

•
f f f f() ... ,L L L Lp p

= - - - -1 2 2 which is the degree p autoregressive polynomial.

•
q q q q() ... ,L L L Lq q

= + + ++1 2 2 which is the degree q moving average polynomial.
•

F F F F() ... ,L L L Lp p p
pp p

s

s= - - - -1
1

1

2

2 which is the degree ps seasonal
autoregressive polynomial.

9 Functions — Alphabetical List

9-34

•
Q Q Q Q() ... ,L L L Lq q q

qq q

s

s= + + + +1
1

1

2

2 which is the degree qs seasonal moving
average polynomial.

Note: The degrees of the lag operators in the seasonal polynomials Φ(L) and Θ(L) do not
conform to those defined by Box and Jenkins [1]. In other words, Econometrics Toolbox
does not treat p1 = s, p2 = 2s,...,ps = cps nor q1 = s, q2 = 2s,...,qs = cqs where cp and cq are
positive integers. The software is flexible as it lets you specify the lag operator degrees.
See “Multiplicative ARIMA Model Specifications” on page 5-48.

Linear Time Series Model

A linear time series model for response process yt and innovations εt is a “What Is a
Stochastic Process?” on page 1-20 that has the form

y c y y qt t p t p t t t q= + + + + + ++- - - -f f e q e q e1 1 1 1… … .

In lag operator notation, this model is

f q e() () .L y c Lt t= +

The general times series model, which includes differencing, multiplicative seasonality,
and seasonal differencing, is

f q e()() ()() () () .L L L L y c L LD
t t

s Ds1 1- - = +F Q

• The coefficients of the nonseasonal and seasonal autoregressive polynomials f()L and
F()L correspond to AR and SAR, respectively. The degrees of these polynomials are p
and ps. Similarly, the coefficients of polynomials q ()L and Q()L correspond to MA and
SMA. The degrees of these polynomials are q and qs, respectively.

• The polynomials ()1- L
D and ()1- L

s D
s have a degree of nonseasonal and seasonal

integration D and Ds, respectively. Note that s corresponds to model property
Seasonality. Ds is 1 if Seasonality is nonzero, and it is 0 otherwise. That is, the
software applies first-order seasonal differencing if Seasonality ≥ 1.

• The model property P is equal to p + D + ps + Ds.

 arima class

9-35

• The model property Q is equal to q + qs.
• You can extend this model by including a matrix of predictor data. For details, see

“ARIMA Model Including Exogenous Covariates” on page 5-58.

Stationarity Requirements

The ARMA(p,q) model,

f q e() () ,L y c Lt t= +

where εt has mean 0, variance σ2, and Cov t s(,)e e = 0 for t ≠ s, is stationary if its expected
value, variance, and covariance between elements of the series are independent of time.
For example, the MA(q) model, with c = 0, is stationary for any q < • because

• E y Lt() () ,= =q 0 0

•
Var yt i

i

q

() ,=

=

Âs q
2 2

1

 and

•
Cov y y

s q
t t s

s s s q s q(),
(...)

-
- - -=

+ + + + ≥s q q q q q q q2
1 1 2 2

0

 if

 otherwwise.

Ï
Ì
Ô

ÓÔ

are free of t for all time points [1].

Unit Root

The time series { ; ,..., }y t Tt = 1 is a unit root process if its expected value, variance, or
covariance grows with time. Subsequently, the time series is not stationary.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc.,
1995.

9 Functions — Alphabetical List

9-36

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Specify a Nonseasonal ARIMA Model

Specify an ARIMA(2,1,2) model,

Mdl = arima(2,1,2)

Mdl =

 ARIMA(2,1,2) Model:

 Distribution: Name = 'Gaussian'

 P: 3

 D: 1

 Q: 2

 Constant: NaN

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {NaN NaN} at Lags [1 2]

 SMA: {}

 Variance: NaN

The model is nonseasonal, so you can use shorthand syntax. The result is a model with
two nonseasonal AR coefficients (= 2), two nonseasonal MA coefficients (= 2), and one
degree of differencing (= 1). The property P is equal to + = 3. NaN values indicate
estimable parameters.

Modify an ARIMA Model Object

Create, and then modify an arima model.

 arima class

9-37

Specify an AR(3) model with known coefficients,

where has a Gaussian distribution with mean 0 and variance 0.01.

Mdl = arima('Constant',0.05,'AR',{0.6,0.2,-0.1},...

 'Variance',0.01)

Mdl =

 ARIMA(3,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 3

 D: 0

 Q: 0

 Constant: 0.05

 AR: {0.6 0.2 -0.1} at Lags [1 2 3]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: 0.01

Modify the model object to make all the model parameters unknown (set them to NaN).

Mdl.Constant = NaN;

Mdl.AR{1:3} = NaN;

Mdl.Variance = NaN

Mdl =

 ARIMA(3,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 3

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN NaN NaN} at Lags [1 2 3]

 SAR: {}

 MA: {}

 SMA: {}

9 Functions — Alphabetical List

9-38

 Variance: NaN

Make the innovation distribution a distribution with 10 degrees of freedom.

tdist = struct('Name','t','DoF',10);

Mdl.Distribution = tdist

Mdl =

 ARIMA(3,0,0) Model:

 Distribution: Name = 't', DoF = 10

 P: 3

 D: 0

 Q: 0

 Constant: NaN

 AR: {NaN NaN NaN} at Lags [1 2 3]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

Specify an Additive Seasonal ARIMA Model

Specify an MA model with no constant, and moving average terms at lags 1, 2, and 12,

Mdl = arima('Constant',0,'MALags',[1,2,12])

Mdl =

 ARIMA(0,0,12) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 12

 Constant: 0

 AR: {}

 SAR: {}

 MA: {NaN NaN NaN} at Lags [1 2 12]

 SMA: {}

 arima class

9-39

 Variance: NaN

Specify a Multiplicative Seasonal Model

Specify a multiplicative seasonal ARIMA model with seasonal and nonseasonal
integration,

Mdl = arima('Constant',0,'D',1,'Seasonality',12,...

 'MALags',1,'SMALags',12)

Mdl =

 ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):

 Distribution: Name = 'Gaussian'

 P: 13

 D: 1

 Q: 13

 Constant: 0

 AR: {}

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {NaN} at Lags [12]

 Seasonality: 12

 Variance: NaN

An ARIMA model is assumed to be multiplicative any time SMALags or SARLags are
specified.

Specify an ARIMAX Model

Specify an ARIMAX model with one or more regression coefficients corresponding to
predictor data.

Specify the ARIMAX(1,1,1) model,

using arima.

Mdl = arima('AR',0.2,'D',1,'MA',0.3,'Beta',0.5)

9 Functions — Alphabetical List

9-40

Mdl =

 ARIMAX(1,1,1) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 1

 Q: 1

 Constant: NaN

 AR: {0.2} at Lags [1]

 SAR: {}

 MA: {0.3} at Lags [1]

 SMA: {}

 Beta: [0.5]

 Variance: NaN

In the output, the property P is sum of the AR lags and degree of nonseasonal integration
p + D = 2.

Modify this ARIMAX(1,1,1) model by adding two more regression coefficients,

 Mdl.Beta=[0.5,4,-0.6]

Mdl =

 ARIMAX(1,1,1) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 1

 Q: 1

 Constant: NaN

 AR: {0.2} at Lags [1]

 SAR: {}

 MA: {0.3} at Lags [1]

 SMA: {}

 Beta: [0.5 4 -0.6]

 Variance: NaN

Specify a Composite Conditional Variance Model

Specify an ARIMA(1,0,1) conditional mean model with a GARCH(1,1) conditional
variance model.

 arima class

9-41

Specify the conditional mean model.

Mdl = arima(1,0,1);

Specify the conditional variance model.

Mdl.Variance = garch(1,1)

Mdl =

 ARIMA(1,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 1

 D: 0

 Q: 1

 Constant: NaN

 AR: {NaN} at Lags [1]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: [GARCH(1,1) Model]

• “Modify Properties of Conditional Mean Model Objects” on page 5-65
• “Specify Conditional Mean Model Innovation Distribution” on page 5-72
• “AR Model Specifications” on page 5-21
• “MA Model Specifications” on page 5-29
• “ARMA Model Specifications” on page 5-37
• “ARIMA Model Specifications” on page 5-43
• “ARIMAX Model Specifications” on page 5-61
• “Multiplicative ARIMA Model Specifications” on page 5-48
• “Multiplicative ARIMA Model Specifications” on page 5-48
• “Specify Multiplicative ARIMA Model” on page 5-52
• “Specify Conditional Mean and Variance Models” on page 5-79

See Also
estimate | filter | forecast | impulse | infer | print | simulate

9 Functions — Alphabetical List

9-42

More About
• “Specify Conditional Mean Models Using arima” on page 5-6
• “Stochastic Process Characteristics” on page 1-20
• “Conditional Mean Models” on page 5-3
• “Autoregressive Model” on page 5-18
• “Moving Average Model” on page 5-27
• “Autoregressive Moving Average Model” on page 5-34
• “ARIMA Model” on page 5-41
• “ARIMA Model Including Exogenous Covariates” on page 5-58
• “Multiplicative ARIMA Model” on page 5-46
• Using garch Objects
• Using egarch Objects
• Using gjr Objects

 arima

9-43

arima
Class: regARIMA

Convert regression model with ARIMA errors to ARIMAX model

Syntax

ARIMAX = arima(Mdl)

[ARIMAX,XNew] = arima(Mdl,Name,Value)

Description

ARIMAX = arima(Mdl) converts the univariate regression model with ARIMA time
series errors Mdl to a model of type arima including a regression component (ARIMAX).

[ARIMAX,XNew] = arima(Mdl,Name,Value) returns an updated regression matrix
of predictor data using additional options specified by one or more Name,Value pair
arguments.

Input Arguments

Mdl

Regression model with ARIMA time series errors, as created by regARIMA or estimate.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'X'

Predictor data for the regression component of Mdl, specified as the comma-separated
pair consisting of 'X' and a matrix.

9 Functions — Alphabetical List

9-44

The last row of X contains the latest observation of each series.

Each column of X is a separate time series.

Output Arguments

ARIMAX

ARIMAX model equivalent to the regression model with ARIMA errors Mdl, returned as
a model of type arima.

XNew

Updated predictor data matrix for the regression component of ARIMAX, returned as a
matrix.

XNew has the same number of rows as X. The last row of XNew contains the latest
observation of each series.

Each column of XNew is a separate time series. The number of columns of XNew is one
plus the number of nonzero autoregressive coefficients in the difference equation of Mdl.

Examples

Convert a Regression Model with ARMA Errors to an ARIMAX Model

Convert a regression model with ARMA(4,1) errors to an ARIMAX model using the
arima converter.

Specify the regression model with ARMA(4,1) errors:

where is Gaussian with mean 0 and variance 1.

Mdl = regARIMA('AR',{0.8, -0.4},'MA',0.3,...

 'ARLags',[1 4],'Intercept',1,'Beta',0.5,...

 'Variance',1)

 arima

9-45

Mdl =

 Regression with ARIMA(4,0,1) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 1

 Beta: [0.5]

 P: 4

 D: 0

 Q: 1

 AR: {0.8 -0.4} at Lags [1 4]

 SAR: {}

 MA: {0.3} at Lags [1]

 SMA: {}

 Variance: 1

You can verify that the lags of the autoregressive terms are 1 and 4 in the AR row.

Generate random predictor data.

rng(1); % For reproducibility

T = 20;

X = randn(T,1);

Convert Mdl to an ARIMAX model.

[ARIMAX,XNew] = arima(Mdl,'X',X);

ARIMAX

ARIMAX =

 ARIMAX(4,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 4

 D: 0

 Q: 1

 Constant: 0.6

 AR: {0.8 -0.4} at Lags [1 4]

 SAR: {}

 MA: {0.3} at Lags [1]

 SMA: {}

 Beta: [1 -0.8 0.4]

9 Functions — Alphabetical List

9-46

 Variance: 1

The new arima model, ARIMAX, is

where

and is row j of X. Since the product of the autoregressive and integration polynomials
is ARIMAX.Beta is simply [1 -0.8 0.4]. Note that the
software carries over the autoregressive and moving average coefficients from Mdl to
ARIMAX. Also, Mdl.Intercept = 1 and ARIMAX.Constant = (1 - 0.8 + 0.4)(1) = 0.6, i.e.,
the regARIMA model intercept and arima model constant are generally unequal.

Convert a Regression Model with ARIMA Errors to an ARIMAX Model

Convert a regression model with seasonal ARIMA errors to an ARIMAX model using the
arima converter.

Specify the regression model with errors:

where is Gaussian with mean 0 and variance 1.

Mdl = regARIMA('AR',{0.3, -0.15},'MA',0.1,...

 'ARLags',[1 2],'SAR',0.2,'SARLags',2,...

 'Intercept',0,'Beta',[-2; 1],'Variance',1,'D',1,...

 arima

9-47

 'Seasonality',2)

Mdl =

 Regression with ARIMA(2,1,1) Error Model Seasonally Integrated with Seasonal AR(2):

 Distribution: Name = 'Gaussian'

 Intercept: 0

 Beta: [-2 1]

 P: 7

 D: 1

 Q: 1

 AR: {0.3 -0.15} at Lags [1 2]

 SAR: {0.2} at Lags [2]

 MA: {0.1} at Lags [1]

 SMA: {}

 Seasonality: 2

 Variance: 1

Generate predictor data.

rng(1); % For reproducibility

T = 20;

X = randn(T,2);

Convert Mdl to an ARIMAX model.

[ARIMAX,XNew] = arima(Mdl,'X',X);

ARIMAX

ARIMAX =

 ARIMAX(2,1,1) Model Seasonally Integrated with Seasonal AR(2):

 --

 Distribution: Name = 'Gaussian'

 P: 7

 D: 1

 Q: 1

 Constant: 0

 AR: {0.3 -0.15} at Lags [1 2]

 SAR: {0.2} at Lags [2]

 MA: {0.1} at Lags [1]

 SMA: {}

9 Functions — Alphabetical List

9-48

 Beta: [1 -1.3 -0.75 1.41 -0.34 -0.08 0.09 -0.03]

 Seasonality: 2

 Variance: 1

Mdl.Beta has length 2, but ARIMAX.Beta has length 8. This is because the product of
the autoregressive and integration polynomials, , is

You can see that when you add seasonality, seasonal lag terms, and integration to a
model, the size of XNew can grow quite large. A conversion such as this might not be ideal
for analyses involving small sample sizes.

Algorithms

Let X denote the matrix of concatenated predictor data vectors (or design matrix) and β
denote the regression component for the regression model with ARIMA errors, Mdl.

• If you specify X, then arima returns XNew in a certain format. Suppose that the
nonzero autoregressive lag term degrees of Mdl are 0 < a1 < a2 < ...< P, which is the
largest lag term degree. The software obtains these lag term degrees by expanding
and reducing the product of the seasonal and nonseasonal autoregressive lag
polynomials, and the seasonal and nonseasonal integration lag polynomials

f()() ()().L L L L
D s

1 1- -F

• The first column of XNew is Xβ.
• The second column of XNew is a sequence of a1 NaNs, and then the product Xa

1
b ,

where X L Xa

a

1

1b b= .

• The jth column of XNew is a sequence of aj NaNs, and then the product Xa j
b ,

where X L Xa
a

j

jb b= .

• The last column of XNew is a sequence of ap NaNs, and then the product Xpb ,

where X L Xp
pb b= .

 arima

9-49

Suppose that Mdl is a regression model with ARIMA(3,1,0) errors, and ϕ1 = 0.2 and ϕ3
= 0.05. Then the product of the autoregressive and integration lag polynomials is

(. .)()1 0 2 0 05 1 1 1 2 0 02 0 05 0 05
3 2 3 4

- - - = - + - +L L L L L L L

This implies that ARIMAX.Beta is [1 -1.2 0.02 -0.05 0.05] and XNew is

x

x x

x x x

x x x x

1

2 1

2 1

2 1

3

4 3

b

b b

b b b

b b b b

NaN NaN NaN NaN

NaN NaN NaN

NaN NaN

NaaN

x x x x x

x x x x x
T T T T T

5 2 1

1 2 3 4

4 3b b b b b

b b b b b

M M M M M

- - - -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚̊

˙
˙
˙
˙
˙
˙
˙
˙
˙

,

where xj is the jth row of X.
• If you do not specify X, then arima returns XNew as an empty matrix without rows

and one plus the number of nonzero autoregressive coefficients in the difference
equation of Mdl columns.

See Also
arima | estimate | regARIMA

More About
• “Time Series Regression Models” on page 4-3
• “Compare Alternative ARIMA Model Representations” on page 4-136

9 Functions — Alphabetical List

9-50

arma2ar
Convert ARMA model to AR model

Syntax
ar = arma2ar(ar0,ma0)

ar = arma2ar(ar0,ma0,numLags)

Description
ar = arma2ar(ar0,ma0) returns the coefficients of the truncated, infinite-order AR
model approximation to an ARMA model having AR and MA coefficients specified by ar0
and ma0, respectively.

arma2ar:

• Accepts:

• Vectors or cell vectors of matrices in difference-equation notation.
• LagOp lag operator polynomials corresponding to the AR and MA polynomials in

lag operator notation.
• Accommodates time series models that are univariate or multivariate (i.e., numVars

variables compose the model), stationary or integrated, structural or in reduced form,
and invertible.

• Assumes that the model constant c is 0.

ar = arma2ar(ar0,ma0,numLags) returns the first nonzero numLags lag-term
coefficients of the infinite-order AR model approximation of an ARMA model having AR
coefficients ar0 and MA coefficients ma0.

Examples

Convert an ARMA model to an AR Model

Find the lag coefficients of the truncated, AR approximation of this univariate,
stationary, and invertible ARMA model

 arma2ar

9-51

The ARMA model is in difference-equation notation because the left side contains only
 and its coefficient 1. Create a vector containing the AR lag term coefficients in order

starting from t - 1.

ar0 = [0.2 -0.1];

Alternatively, you can create a cell vector of the scalar coefficients.

Create a vector containing the MA lag term coefficient.

ma0 = 0.5;

Convert the ARMA model to an AR model by obtaining the coefficients of the truncated
approximation of the infinite-lag polynomial.

ar = arma2ar(ar0,ma0)

ar =

 0.7000 -0.4500 0.2250 -0.1125 0.0562 -0.0281 0.0141

ar is a numeric vector because ar0 and ma0 are numeric vectors.

The approximate AR model truncated at 7 lags is

Convert an MA(3) Model to an AR(5) Model

Find the first five lag coefficients of the AR approximation of this univariate and
invertible MA(3) model

The MA model is in difference-equation notation because the left side contains only
and its coefficient of 1. Create a cell vector containing the MA lag term coefficient in

9 Functions — Alphabetical List

9-52

order starting from t - 1. Because the second lag term of the MA model is missing, specify
a 0 for its coefficient.

ma0 = {-0.2 0 0.5};

Convert the MA model to an AR model with at most five lag coefficents of the truncated
approximation of the infinite-lag polynomial. Because there is no AR contribution, specify
an empty cell ({}) for the AR coefficients.

numLags = 5;

ar0 = {};

ar = arma2ar(ar0,ma0,numLags)

ar =

 [-0.2000] [-0.0400] [0.4920] [0.1984] [0.0597]

ar is a cell vector of scalars because at least one of ar0 and ma0 is a cell vector.

The approximate AR(5) model is

Convert a Structural VARMA model to a Structural VAR model

Find the coefficients of the truncated, structural VAR equivalent of the structural,
stationary, and invertible VARMA model

where and .

The VARMA model is in lag operator notation because the response and innovation
vectors are on opposite sides of the equation.

 arma2ar

9-53

Create a cell vector containing the VAR matrix coefficients. Because this model is a
structural model, start with the coefficient of and enter the rest in order by lag.
Because the equation is in lag operator notation, include the sign in front of each matrix.
Construct a vector that indicates the degree of the lag term for the corresponding
coefficients.

var0 = {[1 0.2 -0.1; 0.03 1 -0.15; 0.9 -0.25 1],...

 -[-0.5 0.2 0.1; 0.3 0.1 -0.1; -0.4 0.2 0.05],...

 -[-0.05 0.02 0.01; 0.1 0.01 0.001; -0.04 0.02 0.005]};

var0Lags = [0 4 8];

Create a cell vector containing the VMA matrix coefficients. Because this model is
a structural model, start with the coefficient of and enter the rest in order by lag.
Construct a vector that indicates the degree of the lag term for the corresponding
coefficients.

vma0 = {eye(3),...

 [-0.02 0.03 0.3; 0.003 0.001 0.01; 0.3 0.01 0.01]};

vma0Lags = [0 4];

arma2ar requires LagOp lag operator polynomials for input arguments that comprise
structural VAR or VMA models. Construct separate LagOp polynomials that describe the
VAR and VMA components of the VARMA model.

VARLag = LagOp(var0,'Lags',var0Lags);

VMALag = LagOp(vma0,'Lags',vma0Lags);

VARLags and VMALags are LagOp lag operator polynomials that describe the VAR and
VMA components of the VARMA model.

Convert the VARMA model to a VAR model by obtaining the coefficients of the truncated
approximation of the infinite-lag polynomial.

VAR = arma2ar(VARLag,VMALag)

VAR =

 3-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 4 Non-Zero Coefficients]

 Lags: [0 4 8 12]

 Degree: 12

 Dimension: 3

9 Functions — Alphabetical List

9-54

VAR is a LagOP lag operator polynomial. All coefficients except those corresponding to
lags 0, 4, 8, and 12 are 3-by-3 matrices of zeros.

Convert the coefficients to difference-equation notation by reflecting the VAR lag
operator polynomial around lag zero.

VARDiffEqn = reflect(VAR);

Display the nonzero coefficients of the resulting VAR models.

lag2Idx = VAR.Lags + 1; % Lags start at 0. Add 1 to convert to indices.

varCoeff = toCellArray(VAR);

varDiffEqnCoeff = toCellArray(VARDiffEqn);

fprintf (' Lag Operator | Difference Equation\n')

for j = 1:numel(lag2Idx)

 fprintf('_________________________Lag %d_________________________\n',...

 lag2Idx(j) - 1)

 fprintf('%8.3f %8.3f %8.3f | %8.3f %8.3f %8.3f\n',...

 [varCoeff{lag2Idx(j)} varDiffEqnCoeff{lag2Idx(j)}]')

 fprintf('___\n')

end

 Lag Operator | Difference Equation

_________________________Lag 0_________________________

 1.000 0.200 -0.100 | 1.000 0.200 -0.100

 0.030 1.000 -0.150 | 0.030 1.000 -0.150

 0.900 -0.250 1.000 | 0.900 -0.250 1.000

_________________________Lag 4_________________________

 0.249 -0.151 -0.397 | -0.249 0.151 0.397

 -0.312 -0.099 0.090 | 0.312 0.099 -0.090

 0.091 -0.268 -0.029 | -0.091 0.268 0.029

_________________________Lag 8_________________________

 0.037 0.060 -0.012 | -0.037 -0.060 0.012

 -0.101 -0.007 0.000 | 0.101 0.007 -0.000

 -0.033 0.029 0.114 | 0.033 -0.029 -0.114

_________________________Lag 12_________________________

 0.014 -0.007 -0.034 | -0.014 0.007 0.034

 0.000 -0.000 -0.001 | -0.000 0.000 0.001

 -0.010 -0.018 0.002 | 0.010 0.018 -0.002

 arma2ar

9-55

The coefficients of lags 4, 8, and 12 are opposites between VAR and VARDiffEqn.

Convert ARMA Model That Includes a Constant to an AR Model

Find the lag coefficients and constant of the truncated AR approximation of this
univariate, stationary, and invertible ARMA model.

The ARMA model is in difference-equation notation because the left side contains only
and its coefficient of 1. Create separate vectors for the AR and MA lag term coefficients in
order starting from t - 1.

ar0 = [0.2 -0.1];

ma0 = 0.5;

Convert the ARMA model to an AR model by obtaining the first five coefficients of the
truncated approximation of the infinite-lag polynimial.

numLags = 5;

ar = arma2ar(ar0,ma0,numLags)

ar =

 0.7000 -0.4500 0.2250 -0.1125 0.0562

To compute the constant of the AR model, consider the ARMA model in lag operator
notation.

or

Part of the conversion involves premultiplying both sides of the equation by the inverse
of the MA lag operator polynomial, as in this equation.

To compute the inverse of MA lag operator polynomial, use the lag operator left-division
object function mldivide (LagOp).

9 Functions — Alphabetical List

9-56

Theta = LagOp([1 0.5]);

ThetaInv = mldivide(Theta,1,'RelTol',1e-5);

ThetaInv is a LagOp lag operator polynomial.

The application of lag operator polynomials to constants results in the product of the
constant with the sum of the coefficients. Apply ThetaInv to the ARMA model constant
to obtain the AR model constant.

arConstant = 1.5*sum(cell2mat(toCellArray(ThetaInv)))

arConstant =

 1.0000

The approximate AR model is

Input Arguments

ar0 — Autoregressive coefficients
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

Autoregressive coefficients of the ARMA(p,q) model, specified as a numeric vector, cell
vector of square, numeric matrices, or a LagOp lag operator polynomial object. If ar0 is
a vector (numeric or cell), then the coefficient of yt is the identity. To specify a structural
AR polynomial (i.e., the coefficient of yt is not the identity), use LagOp lag operator
polynomials.

• For univariate time series models, ar0 is a numeric vector, cell vector of scalars,
or a one-dimensional LagOp lag operator polynomial. For vectors, ar0 has length p
and the elements correspond to lagged responses composing the AR polynomial in
difference-equation notation. That is, ar0(j) or ar0{j} is the coefficient of yt-j.

• For numVars-dimensional time series models, ar0 is a cell vector of numVars-
by-numVars numeric matrices or an numVars-dimensional LagOp lag operator
polynomial. For cell vectors:

• ar0 has length p.

 arma2ar

9-57

• ar0 and ma0 must contain numVars-by-numVars matrices.
• The elements of ar0 correspond to the lagged responses composing the AR

polynomial in difference equation notation. That is, ar0{j} is the coefficient
matrix of yt-j.

• Row k of an AR coefficient matrix contains the AR coefficients in the equation of
the variable yk. Subsequently, column k must correspond to variable yk, and the
column and row order of all autoregressive and moving average coefficients must
be consistent.

• For LagOp lag operator polynomials:

• The first element of the Coefficients property corresponds to the coefficient
of yt (to accommodate structural models). All other elements correspond to the
coefficients of the subsequent lags in the Lags property.

• To construct a univariate model in reduced form, specify 1 for the first coefficient.
For numVars-dimensional multivariate models, specify eye(numVars) for the
first coefficient.

• When you work from a model in difference-equation notation, negate the AR
coefficients of the lagged responses to construct the lag-operator polynomial
equivalent. For example, consider y y yt t t t t t= - + - +

- - - -
0 5 0 8 0 6 0 08

1 2 1 2
. . . .e e e .

The model is in difference-equation form. To convert to an AR model, enter the
following into the command window.

ar = arma2ar([0.5 -0.8], [-0.6 0.08]);

The ARMA model written in “Lag Operator Notation” on page 9-60 is

1 0 5 0 8 1 0 6 0 08
2 2

-()+ = - +().L L y L Lt te The AR coefficients of the lagged
responses are negated compared to the corresponding coefficients in difference-
equation format. In this form, to obtain the same result, enter the following into
the command window.

ar0 = LagOp({1 -0.5 0.8});

ma0 = LagOp({1 -0.6 0.08});

ar = arma2ar(ar0, ma0);

It is a best practice for ar0 to constitute a stationary or unit-root stationary (integrated)
time series model.

If the ARMA model is strictly an MA model, then specify [] or {} for ar0.

9 Functions — Alphabetical List

9-58

ma0 — Moving average coefficients
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

Moving average coefficients of the ARMA(p,q) model, specified as a numeric vector, cell
vector of square, numeric matrices, or a LagOp lag operator polynomial object. If ma0 is
a vector (numeric or cell), then the coefficient of εt is the identity. To specify a structural
MA polynomial (i.e., the coefficient of εt is not the identity), use LagOp lag operator
polynomials.

• For univariate time series models, ma0 is a numeric vector, cell vector of scalars,
or a one-dimensional LagOp lag operator polynomial. For vectors, ma0 has length q
and the elements correspond to lagged innovations composing the AR polynomial in
difference-equation notation. That is, ma0(j) or ma0{j} is the coefficient of εt-j.

• For numVars-dimensional time series models, ma0 is a cell vector of numeric
numVars-by-numVars numeric matrices or an numVars-dimensional LagOp lag
operator polynomial. For cell vectors:

• ma0 has length q.
• ar0 and ma0 must both contain numVars-by-numVars matrices.
• The elements of ma0 correspond to the lagged responses composing the AR

polynomial in difference equation notation. That is, ma0{j} is the coefficient
matrix of yt-j.

• For LagOp lag operator polynomials:

• The first element of the Coefficients property corresponds to the coefficient
of εt (to accommodate structural models). All other elements correspond to the
coefficients of the subsequent lags in the Lags property.

• To construct a univariate model in reduced form, specify 1 for the first coefficient.
For numVars-dimensional multivariate models, specify eye(numVars) for the
first coefficient.

It is a best practice for ma0 to constitute an invertible time series model.

numLags — Maximum number of lag-term coefficients to return
positive integer

Maximum number of lag-term coefficients to return, specified as a positive integer.

 arma2ar

9-59

If you specify 'numLags', then arma2ar truncates the output polynomial at a maximum
of numLags lag terms, and then returns the remaining coefficients. As a result, the
output vector has numLags elements or is at most a degree numLags LagOp lag operator
polynomial.

By default, arma2ar determines the number of lag coefficients to return by the stopping
criteria of mldivide.
Data Types: double

Output Arguments

ar — Coefficients of the truncated AR model
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

Coefficients of the truncated AR model approximation of the ARMA model, returned
as a numeric vector, cell vector of square, numeric matrices, or a LagOp lag operator
polynomial object. ar has numLags elements, or is at most a degree numLags LagOp lag
operator polynomial.

The data types and orientations of ar0 and ma0 determine the data type and orientation
of ar. If ar0 or ma0 are of the same data type or have the same orientation, then ar
shares the common data type or orientation. If at least one of ar0 or ma0 is a LagOp
lag operator polynomial, then ar is a LagOp lag operator polynomial. Otherwise, if at
least one of ar0 or ma0 is a cell vector, then ar is a cell vector. If ar0 and ma0 are cell or
numeric vectors and at least one is a row vector, then ar is a row vector.

If ar is a cell or numeric vector, then the order of the elements of ar corresponds to the
order of the coefficients of the lagged responses in difference-equation notation starting
with the coefficient of yt-1. The resulting AR model is in reduced form.

If ar is a LagOp lag operator polynomial, then the order of the coefficients of ar
corresponds to the order of the coefficients of the lagged responses in lag operator
notation starting with the coefficient of yt. If Φ0 ≠ InumVars, then the resulting AR model is
structural. To view the coefficients in difference-equation notation, pass ar to reflect.

9 Functions — Alphabetical List

9-60

More About

Difference-Equation Notation

A linear time series model written in difference-equation notation positions the present
value of the response and its structural coefficient on the left side of the equation. The
right side of the equation contains the sum of the lagged responses, present innovation,
and lagged innovations with corresponding coefficients.

That is, a linear time series written in difference-equation notation is

F F F Q Q Q0 1 1 0 1 1y c y yt t p t p t t q t q= + + + + + + +- - - -... ... ,e e e

where

• yt is an numVars-dimensional vector representing the responses of numVars variables
at time t, for all t and for numVars ≥ 1.

• εt is an numVars-dimensional vector representing the innovations at time t.
• Φj is the numVars-by-numVars matrix of AR coefficients of the response yt-j, for j =

0,...,p.
• Θk is the numVars-by-numVars matrix of MA coefficients of the innovation εt-k., k =

0,...,q.
• c is the n-dimensional model constant.
• For models in reduced form, Φ0 = Θ0 = InumVars, which is the numVars-dimensional

identity matrix.

Lag Operator Notation

A time series model written in lag-operator notation positions a p-degree lag operator
polynomial on the present response on the left side of the equation. The right side of
the equation contains the model constant and a q-degree lag operator polynomial on the
present innovation.

That is, a linear time series model written in lag-operator notation is

F Q() () ,L y Lct t= + e

where

 arma2ar

9-61

• yt is an numVars-dimensional vector representing the responses of numVars variables
at time t, for all t and for numVars ≥ 1.

•
F F F F F() ...L L L Lp

p
= - - - -0 1 2

2 , which is the autoregressive, lag operator
polynomial.

• L is the back-shift operator, i.e., L y yj
t t j=

-
.

• Φj is the numVars-by-numVars matrix of AR coefficients of the response yt-j, for j =
0,...,p.

• εt is an numVars-dimensional vector representing the innovations at time t.
•

Q Q Q Q Q() ...L L L Lq
q

= + + + +0 1 2
2 , which is the moving average, lag operator

polynomial.
• Θk is the numVars-by-numVars matrix of MA coefficients of the innovation εt-k., k =

0,...,q.
• c is the numVars-dimensional model constant.
• For models in reduced form, Φ0 = Θ0 = InumVars, which is the numVars-dimensional

identity matrix.

When comparing lag operator notation to difference equation notation, the signs of the
lagged AR coefficients appear negated relative to the corresponding terms in difference
equation notation. The signs of the moving average coefficients are the same and appear
on the same side.

For more details on lag operator notation, see “Lag Operator Notation” on page 1-22.

Tips

• To accommodate structural ARMA models, specify the input arguments ar0 and ma0
as LagOp lag operator polynomials.

• To access the cell vector of the lag operator polynomial coefficients of the output
argument ar, enter toCellArray(ar).

• To convert the model coefficients of the output argument from lag operator notation to
the model coefficients in difference-equation notation, enter

arDEN = toCellArray(reflect(ar));

arDEN is a cell vector containing at most numLags + 1 coefficients corresponding
to the lag terms in ar.Lags of the AR model equivalent of the input ARMA model

9 Functions — Alphabetical List

9-62

in difference-equation notation. The first element is the coefficient of yt, the second
element is the coefficient of yt–1, and so on.

Algorithms

• The software computes the infinite-lag polynomial of the resulting AR model
according to this equation in lag operator notation:

Q F
-

=
1() () ,L L yt te

where F F()L Lj

j

p
j

=

=

Â
0

 and Q Q() .L Lk
k

q
k

=

=

Â
0

• arma2ar approximates the AR model coefficients whether ar0 and ma0 compose a
stable polynomial (a polynomial that is stationary or invertible). To check for stability,
use isStable.

isStable requires a LagOp lag operator polynomial as input. For example, if ar0 is a
vector, enter the following code to check ar0 for stationarity.

ar0LagOp = LagOp([1 -ar0]);

isStable(ar0LagOp)

A 0 indicates that the polynomial is not stable.

You can similarly check whether the AR approximation to the ARMA model (ar) is
stationary.

• “Lag Operator Notation” on page 1-22

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[3] Lutkepohl, H. New Introduction to Multiple Time Series Analysis. Springer-Verlag,
2007.

 arma2ar

9-63

See Also
arma2ma | isStable | LagOp | reflect | toCellArray | var2vec | vec2var | vgxvarx

Introduced in R2015a

9 Functions — Alphabetical List

9-64

arma2ma
Convert ARMA model to MA model

Syntax
ma = arma2ma(ar0,ma0)

ma = arma2ma(ar0,ma0,numLags)

Description
ma = arma2ma(ar0,ma0) returns the coefficients of the truncated, infinite-order MA
model approximation to an ARMA model having AR and MA coefficients specified by ar0
and ma0, respectively.

arma2ma:

• Accepts:

• Vectors or cell vectors of matrices in difference-equation notation.
• LagOp lag operator polynomials corresponding to the AR and MA polynomials in

lag operator notation.
• Accommodates time series models that are univariate or multivariate (i.e., numVars

variables compose the model), stationary or integrated, structural or in reduced form,
and invertible.

• Assumes that the model constant c is 0.

ma = arma2ma(ar0,ma0,numLags) returns the first nonzero numLags lag-term
coefficients of the infinite-order MA model approximation of an ARMA model having AR
coefficients ar0 and MA coefficients ma0.

Examples

Convert an ARMA model to an MA Model

Find the lag coefficients of the truncated, MA approximation of this univariate,
stationary, and invertible ARMA model

 arma2ma

9-65

The ARMA model is in difference-equation notation because the left side contains only
 and its coefficient 1. Create a vector containing the AR lag term coefficients in order

starting from t - 1.

ar0 = [0.2 -0.1];

Alternatively, you can create a cell vector of the scalar coefficients.

Create a vector containing the MA lag term coefficient.

ma0 = 0.5;

Convert the ARMA model to an MA model by obtaining the coefficients of the truncated
approximation of the infinite-lag polynomial.

ma = arma2ma(ar0,ma0)

ma =

 0.7000 0.0400 -0.0620 -0.0164

ma is a numeric vector because ar0 and ma0 are numeric vectors.

The approximate MA model truncated at 4 lags is

Convert an AR(3) Model to an MA(5) Model

Find the first five lag coefficients of the MA approximation of this univariate and
stationary AR(3) model

The AR model is in difference-equation notation because the left side contains only
and its coefficient of 1. Create a cell vector containing the AR lag term coefficient in order
starting from t - 1. Because the second lag term of the MA model is missing, specify a 0
for its coefficient.

9 Functions — Alphabetical List

9-66

ar0 = {-0.2 0 0.5};

Convert the AR model to an MA model with at most five lag coefficents of the truncated
approximation of the infinite-lag polynomial. Because there is no MA contribution,
specify an empty cell ({}) for the MA coefficients.

numLags = 5;

ma0 = {};

ma = arma2ma(ar0,ma0,numLags)

ma =

 [-0.2000] [0.0400] [0.4920] [-0.1984] [0.0597]

ma is a cell vector of scalars because at least one of ar0 and ma0 is a cell vector.

The approximate MA(5) model is

Convert a Structural VARMA model to a Structural VMA model

Find the coefficients of the truncated, structural VMA equivalent of the structural,
stationary, and invertible VARMA model

where and .

The VARMA model is in lag operator notation because the response and innovation
vectors are on opposite sides of the equation.

Create a cell vector containing the VAR matrix coefficients. Because this model is a
structural model, start with the coefficient of and enter the rest in order by lag.

 arma2ma

9-67

Construct a vector that indicates the degree of the lag term for the corresponding
coefficients.

var0 = {[1 0.2 -0.1; 0.03 1 -0.15; 0.9 -0.25 1],...

 [0.5 -0.2 -0.1; -0.3 -0.1 0.1; 0.4 -0.2 -0.05],...

 [0.05 -0.02 -0.01; -0.1 -0.01 -0.001; 0.04 -0.02 -0.005]};

var0Lags = [0 4 8];

Create a cell vector containing the VMA matrix coefficients. Because this model is
a structural model, start with the coefficient of and enter the rest in order by lag.
Construct a vector that indicates the degree of the lag term for the corresponding
coefficients.

vma0 = {eye(3),...

 [-0.02 0.03 0.3; 0.003 0.001 0.01; 0.3 0.01 0.01]};

vma0Lags = [0 4];

arma2ma requires LagOp lag operator polynomials for input arguments that comprise
structural VAR or VMA models. Construct separate LagOp polynomials that describe the
VAR and VMA components of the VARMA model.

VARLag = LagOp(var0,'Lags',var0Lags);

VMALag = LagOp(vma0,'Lags',vma0Lags);

VARLags and VMALags are LagOp lag operator polynomials that describe the VAR and
VMA components of the VARMA model.

Convert the VARMA model to a VMA model by obtaining the coefficients of the truncated
approximation of the infinite-lag polynomial. Specify to return at most 12 lagged terms.

numLags = 12;

VMA = arma2ma(VARLag,VMALag,numLags)

VMA =

 3-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 4 Non-Zero Coefficients]

 Lags: [0 4 8 12]

 Degree: 12

 Dimension: 3

VMA is a LagOP lag operator polynomial. All coefficients except those corresponding to
lags 0, 4, 8, and 12 are 3-by-3 matrices of zeros.

9 Functions — Alphabetical List

9-68

Display the nonzero coefficients of the resulting VMA model.

lag2Idx = VMA.Lags + 1; % Lags start at 0. Add 1 to convert to indices.

vmaCoeff = toCellArray(VMA);

for j = 1:numel(lag2Idx)

 fprintf('___________Lag %d__________\n',lag2Idx(j) - 1)

 fprintf('%8.3f %8.3f %8.3f \n',vmaCoeff{lag2Idx(j)})

 fprintf ('__________________________\n')

end

___________Lag 0__________

 0.943 -0.162 -0.889

 -0.172 1.068 0.421

 0.069 0.144 0.974

___________Lag 4__________

 -0.650 0.460 0.546

 0.370 0.000 -0.019

 0.383 -0.111 -0.312

___________Lag 8__________

 0.431 -0.138 -0.089

 -0.170 0.122 0.065

 -0.260 0.165 0.089

___________Lag 12__________

 -0.216 0.078 0.047

 0.099 -0.013 -0.011

 0.153 -0.042 -0.026

Find the Unconditional Mean of ARMA Models

Find the lag coefficients and constant of the truncated MA approximation of this
univariate, stationary, and invertible ARMA model

The ARMA model is in difference-equation notation because the left side contains only
and its coefficient of 1. Create separate vectors for the AR and MA lag term coefficients in
order starting from t - 1.

ar0 = [0.2 -0.1];

 arma2ma

9-69

ma0 = 0.5;

Convert the ARMA model to an MA model by obtaining the first five coefficients of the
truncated approximation of the infinite-lag polynimial.

numLags = 5;

ar = arma2ma(ar0,ma0,numLags)

ar =

 0.7000 0.0400 -0.0620 -0.0164 0.0029

To compute the constant of the MA model, consider the ARMA model in lag operator
notation.

or

Part of the conversion involves premultiplying both sides of the equation by the inverse
of the AR lag operator polynomial, as in this equation.

To compute the inverse of AR lag operator polynomial, use the lag operator left-division
object function mldivide (LagOp).

Phi = LagOp([1 -0.2 0.1]);

PhiInv = mldivide(Phi,1,'RelTol',1e-5);

PhiInv is a LagOp lag operator polynomial.

The application of lag operator polynomials to constants results in the product of the
constant with the sum of the coefficients. Apply PhiInv to the ARMA model constant to
obtain the MA model constant.

maConstant = 1.5*sum(cell2mat(toCellArray(PhiInv)))

9 Functions — Alphabetical List

9-70

maConstant =

 1.6667

The approximate MA model is

Since the unconditional expected value of all innovations is 0, the unconditional expected
value (or mean) of the response series is

Input Arguments

ar0 — Autoregressive coefficients
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

Autoregressive coefficients of the ARMA(p,q) model, specified as a numeric vector, cell
vector of square, numeric matrices, or a LagOp lag operator polynomial object. If ar0 is
a vector (numeric or cell), then the coefficient of yt is the identity. To specify a structural
AR polynomial (i.e., the coefficient of yt is not the identity), use LagOp lag operator
polynomials.

• For univariate time series models, ar0 is a numeric vector, cell vector of scalars,
or a one-dimensional LagOp lag operator polynomial. For vectors, ar0 has length p
and the elements correspond to lagged responses composing the AR polynomial in
difference-equation notation. That is, ar0(j) or ar0{j} is the coefficient of yt-j.

• For numVars-dimensional time series models, ar0 is a cell vector of numVars-
by-numVars numeric matrices or an numVars-dimensional LagOp lag operator
polynomial. For cell vectors:

• ar0 has length p.
• ar0 and ma0 must contain numVars-by-numVars matrices.
• The elements of ar0 correspond to the lagged responses composing the AR

polynomial in difference equation notation. That is, ar0{j} is the coefficient
matrix of yt-j.

 arma2ma

9-71

• Row k of an AR coefficient matrix contains the AR coefficients in the equation of
the variable yk. Subsequently, column k must correspond to variable yk, and the
column and row order of all autoregressive and moving average coefficients must
be consistent.

• For LagOp lag operator polynomials:

• The first element of the Coefficients property corresponds to the coefficient
of yt (to accommodate structural models). All other elements correspond to the
coefficients of the subsequent lags in the Lags property.

• To construct a univariate model in reduced form, specify 1 for the first coefficient.
For numVars-dimensional multivariate models, specify eye(numVars) for the
first coefficient.

• When you work from a model in difference-equation notation, negate the AR
coefficient of the lagged terms to construct the lag-operator polynomial equivalent.
For example, consider y y yt t t t t t= - + - +

- - - -
0 5 0 8 0 6 0 08

1 2 1 2
. . . .e e e . The model is

in difference-equation notation. To convert to an MA model, enter the following
into the command window.

ma = arma2ma([0.5 -0.8], [-0.6 0.08]);

The ARMA model in lag operator notation is

1 0 5 0 8 1 0 6 0 08
2 2

-()+ = - +().L L y L Lt te The AR coefficients of the lagged

responses are negated compared to the corresponding coefficients in difference-
equation format. In this form, to obtain the same result, enter the following into
the command window.

ar0 = LagOp({1 -0.5 0.8});

ma0 = LagOp({1 -0.6 0.08});

ma = arma2ma(ar0, ma0);

It is a best practice for ar0 to constitute a stationary or unit-root stationary (integrated)
time series model.

ma0 — Moving average coefficients
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

Moving average coefficients of the ARMA(p,q) model, specified as a numeric vector, cell
vector of square, numeric matrices, or a LagOp lag operator polynomial object. If ma0 is

9 Functions — Alphabetical List

9-72

a vector (numeric or cell), then the coefficient of εt is the identity. To specify a structural
MA polynomial (i.e., the coefficient of εt is not the identity), use LagOp lag operator
polynomials.

• For univariate time series models, ma0 is a numeric vector, cell vector of scalars,
or a one-dimensional LagOp lag operator polynomial. For vectors, ma0 has length q
and the elements correspond to lagged innovations composing the AR polynomial in
difference-equation notation. That is, ma0(j) or ma0{j} is the coefficient of εt-j.

• For numVars-dimensional time series models, ma0 is a cell vector of numeric
numVars-by-numVars numeric matrices or an numVars-dimensional LagOp lag
operator polynomial. For cell vectors:

• ma0 has length q.
• ar0 and ma0 must both contain numVars-by-numVars matrices.
• The elements of ma0 correspond to the lagged responses composing the AR

polynomial in difference equation notation. That is, ma0{j} is the coefficient
matrix of yt-j.

• For LagOp lag operator polynomials:

• The first element of the Coefficients property corresponds to the coefficient
of εt (to accommodate structural models). All other elements correspond to the
coefficients of the subsequent lags in the Lags property.

• To construct a univariate model in reduced form, specify 1 for the first coefficient.
For numVars-dimensional multivariate models, specify eye(numVars) for the
first coefficient.

If the ARMA model is strictly an AR model, then specify [] or {}.

It is a best practice for ma0 to constitute an invertible time series model.

numLags — Maximum number of lag-term coefficients to return
positive integer

Maximum number of lag-term coefficients to return, specified as a positive integer.

If you specify 'numLags', then arma2ma truncates the output polynomial at a maximum
of numLags lag terms, and then returns the remaining coefficients. As a result, the
output vector has numLags elements or is at most a degree numLags LagOp lag operator
polynomial.

 arma2ma

9-73

By default, arma2ma determines the number of lag coefficients to return by the stopping
criteria of mldivide.
Data Types: double

Output Arguments

ma — Lag-term coefficients of the truncated MA model
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

Lag-term coefficients of the truncated MA model approximation of the ARMA model,
returned as a numeric vector, cell vector of square, numeric matrices, or a LagOp lag
operator polynomial object. ma has numLags elements, or is at most a degree numLags
LagOp lag operator polynomial.

The data types and orientations of ar0 and ma0 determine the data type and orientation
of ma. If ar0 or ma0 are of the same data type or have the same orientation, then ma
shares the common data type or orientation. If at least one of ar0 or ma0 is a LagOp
lag operator polynomial, then ma is a LagOp lag operator polynomial. Otherwise, if at
least one of ar0 or ma0 is a cell vector, then ma is a cell vector. If ar0 and ma0 are cell or
numeric vectors and at least one is a row vector, then ma is a row vector.

If ma is a cell or numeric vector, then the order of the elements of ma corresponds to the
order of the coefficients of the lagged innovations in difference-equation notation starting
with the coefficient of εt-1. The resulting MA model is in reduced form.

If ma is a LagOp lag operator polynomial, then the order of the coefficients of ma
corresponds to the order of the coefficients of the lagged innovations in lag operator
notation starting with the coefficient of εt. If Θ0 ≠ InumVars, then the resulting MA model is
structural.

More About

Difference-Equation Notation

A linear time series model written in difference-equation notation positions the present
value of the response and its structural coefficient on the left side of the equation. The

9 Functions — Alphabetical List

9-74

right side of the equation contains the sum of the lagged responses, present innovation,
and lagged innovations with corresponding coefficients.

That is, a linear time series written in difference-equation notation is

F F F Q Q Q0 1 1 0 1 1y c y yt t p t p t t q t q= + + + + + + +- - - -... ... ,e e e

where

• yt is an numVars-dimensional vector representing the responses of numVars variables
at time t, for all t and for numVars ≥ 1.

• εt is an numVars-dimensional vector representing the innovations at time t.
• Φj is the numVars-by-numVars matrix of AR coefficients of the response yt-j, for j =

0,...,p.
• Θk is the numVars-by-numVars matrix of MA coefficients of the innovation εt-k., k =

0,...,q.
• c is the n-dimensional model constant.
• For models in reduced form, Φ0 = Θ0 = InumVars, which is the numVars-dimensional

identity matrix.

Lag Operator Notation

A time series model written in lag-operator notation positions a p-degree lag operator
polynomial on the present response on the left side of the equation. The right side of
the equation contains the model constant and a q-degree lag operator polynomial on the
present innovation.

That is, a linear time series model written in lag-operator notation is

F Q() () ,L y Lct t= + e

where

• yt is an numVars-dimensional vector representing the responses of numVars variables
at time t, for all t and for numVars ≥ 1.

•
F F F F F() ...L L L Lp

p
= - - - -0 1 2

2 , which is the autoregressive, lag operator
polynomial.

 arma2ma

9-75

• L is the back-shift operator, i.e., L y yj
t t j=

-
.

• Φj is the numVars-by-numVars matrix of AR coefficients of the response yt-j, for j =
0,...,p.

• εt is an numVars-dimensional vector representing the innovations at time t.
•

Q Q Q Q Q() ...L L L Lq
q

= + + + +0 1 2
2 , which is the moving average, lag operator

polynomial.
• Θk is the numVars-by-numVars matrix of MA coefficients of the innovation εt-k., k =

0,...,q.
• c is the numVars-dimensional model constant.
• For models in reduced form, Φ0 = Θ0 = InumVars, which is the numVars-dimensional

identity matrix.

When comparing lag operator notation to difference equation notation, the signs of the
lagged AR coefficients appear negated relative to the corresponding terms in difference
equation notation. The signs of the moving average coefficients are the same and appear
on the same side.

For more details on lag operator notation, see “Lag Operator Notation” on page 1-22.

Tips

• To accommodate structural ARMA models, specify the input arguments ar0 and ma0
as LagOp lag operator polynomials.

• To access the cell vector of the lag operator polynomial coefficients of the output
argument ma, enter toCellArray(ma).

Algorithms

• The software computes the infinite-lag polynomial of the resulting MA model
according to this equation in lag operator notation:

y L Lt t=
-

F Q
1
() ()e

where F F()L Lj

j

p
j

=

=

Â
0

 and Q Q() .L Lk
k

q
k

=

=

Â
0

9 Functions — Alphabetical List

9-76

• arma2ma approximates the MA model coefficients whether ar0 and ma0 compose a
stable polynomial (a polynomial that is stationary or invertible). To check for stability,
use isStable.

isStable requires a LagOp lag operator polynomial as input. For example, if ar0 is a
vector, enter the following code to check ar0 for stationarity.

ar0LagOp = LagOp([1 -ar0]);

isStable(ar0LagOp)

A 0 indicates that the polynomial is not stable.

You can similarly check whether the MA approximation to the ARMA model (ma) is
invertible.

• “Lag Operator Notation” on page 1-22

References

v

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[3] Lutkepohl, H. New Introduction to Multiple Time Series Analysis. Springer-Verlag,
2007.

See Also
arma2ar | armairf | isStable | LagOp | toCellArray | var2vec | vec2var |
vgxvarx

Introduced in R2015a

 armairf

9-77

armairf
Generate ARMA model impulse responses

Syntax

armairf(ar0,ma0)

armairf(ar0,ma0,Name,Value)

Y = armairf(ar0,ma0)

Y = armairf(ar0,ma0,Name,Value)

Description

armairf(ar0,ma0) returns a tiered plot of the impulse response function, or dynamic
response of the system, that results from applying a one standard deviation shock to each
of the numVars time series variables composing an ARMA(p,q) model. The autoregressive
and moving average coefficients of the ARMA(p,q) model are ar0 and ma0, respectively.

armairf

• Accepts:

• Vectors or cell vectors of matrices in difference-equation notation.

• LagOp lag operator polynomials corresponding to the AR and MA polynomials in
lag operator notation.

• Accommodates time series models that are univariate or multivariate, stationary or
integrated, structural or in reduced form, and invertible or noninvertible.

• Assumes that the model constant c is 0.

armairf(ar0,ma0,Name,Value) returns a tiered plot of the impulse response function
with additional options specified by one or more Name,Value pair arguments. For
example, you can specify the number of periods to plot the impulse response function or
the computation method to use.

Y = armairf(ar0,ma0) returns the impulse responses (Y) that result from applying
a one standard deviation shock to each of the numVars time series variables in an

9 Functions — Alphabetical List

9-78

ARMA(p,q) model. The autoregressive coefficients ar0 and the moving average
coefficients ma0 compose the ARMA model.

Y = armairf(ar0,ma0,Name,Value) returns the impulse responses with additional
options specified by one or more Name,Value pair arguments.

Examples

Plot Orthogonalized Impulse Response Function of Univariate ARMA Model

Plot the entire impulse response function of the univariate ARMA(2,1) model

Create vectors for the autoregressive and moving average coefficients as you encounter
them in the model expressed in difference-equation notation.

AR0 = [0.3 -0.1];

MA0 = 0.05;

Plot the orthogonalized impulse response function of .

figure;

armairf(AR0,MA0);

 armairf

9-79

Because is univariate, there is one impulse response function in the plot. The impulse
response dies after four periods.

Alternatively, create an ARMA model that represents . Specify that the variance of the
innovations is 1, and that there is no model constant.

Mdl = arima('AR',AR0,'MA',MA0,'Variance',1,'Constant',0);

Mdl is an arima model object.

Plot the impulse response function using Mdl.

impulse(Mdl);

9 Functions — Alphabetical List

9-80

impulse uses a stem plot, whereas armairf uses a line plot. However, the impulse
response functions between the two implementations are equivalent.

Plot Generalized Impulse Response Function of Univariate ARMA Model

Plot the entire impulse response function of the univariate ARMA(2,1) model

Because the model is in lag operator form, create the polynomials using the coefficients
as you encounter them in the model.

AR0Lag = LagOp([1 -0.3 0.1])

 armairf

9-81

MA0Lag = LagOp([1 0.05])

AR0Lag =

 1-D Lag Operator Polynomial:

 Coefficients: [1 -0.3 0.1]

 Lags: [0 1 2]

 Degree: 2

 Dimension: 1

MA0Lag =

 1-D Lag Operator Polynomial:

 Coefficients: [1 0.05]

 Lags: [0 1]

 Degree: 1

 Dimension: 1

AR0Lag and MA0Lag are LagOp lag operator polynomials representing the autoregressive
and moving average lag operator polynomials, respectively.

Plot the generalized impulse response function by passing in the lag operator
polynomials.

figure;

armairf(AR0Lag,MA0Lag,'Method','generalized');

9 Functions — Alphabetical List

9-82

The impulse response function is equivalent to the impulse response function in “Plot
Orthogonalized Impulse Response Function of Univariate ARMA Model”.

Plot Generalized Impulse Response Function of VARMA Model

Plot the entire impulse response function of the structural VARMA(8,4) model

 armairf

9-83

where and .

The VARMA model is in lag operator notation because the response and innovation
vectors are on opposite sides of the equation.

Create a cell vector containing the VAR matrix coefficients. Because this model is a
structural model in lag operator notation, start with the coefficient of and enter the
rest in order by lag. Construct a vector that indicates the degree of the lag term for the
corresponding coefficients.

var0 = {[1 0.2 -0.1; 0.03 1 -0.15; 0.9 -0.25 1],...

 -[-0.5 0.2 0.1; 0.3 0.1 -0.1; -0.4 0.2 0.05],...

 -[-0.05 0.02 0.01; 0.1 0.01 0.001; -0.04 0.02 0.005]};

var0Lags = [0 4 8];

Create a cell vector containing the VMA matrix coefficients. Because this model is
in lag operator notation, start with the coefficient of and enter the rest in order by
lag. Construct a vector that indicates the degree of the lag term for the corresponding
coefficients.

vma0 = {eye(3),...

 [-0.02 0.03 0.3; 0.003 0.001 0.01; 0.3 0.01 0.01]};

vma0Lags = [0 4];

Construct separate lag operator polynomials that describe the VAR and VMA
components of the VARMA model.

VARLag = LagOp(var0,'Lags',var0Lags);

VMALag = LagOp(vma0,'Lags',vma0Lags);

Plot the impulse response function of the VARMA model.

figure;

armairf(VARLag,VMALag,'Method','generalized');

9 Functions — Alphabetical List

9-84

The figure contains three subplots. The top plot contains the impulse responses of all
variables resulting from an innovation shock to , the second plot from the top contains
the impulse responses of all variables resulting from an innovation shock to , and so
on. Because the impulse responses die out after a finite number of periods, the VARMA
model is stable.

Impulse Response Function of ARMA Model

Compute the entire, orthogonalized impulse response function of the univariate
ARMA(2,1) model

 armairf

9-85

Create vectors for the autoregressive and moving average coefficients as you encounter
them in the model expressed in difference-equation notation.

AR0 = [0.3 -0.1];

MA0 = 0.05;

Plot the orthogonalized impulse response function of .

y = armairf(AR0,MA0)

y =

 1.0000

 0.3500

 0.0050

 -0.0335

 -0.0105

y is a 5-by-1 vector of impulse responses. y(1) is the impulse response for time ,
y(2) is the impulse response for time , and so on. The impulse response function
dies out after period .

Alternatively, create an ARMA model that represents . Specify that the variance of the
innovations is 1, and that there is no model constant.

Mdl = arima('AR',AR0,'MA',MA0,'Variance',1,'Constant',0);

Mdl is an arima model object.

Plot the impulse response function using Mdl.

y = impulse(Mdl)

y =

 1.0000

 0.3500

 0.0050

 -0.0335

 -0.0105

9 Functions — Alphabetical List

9-86

The impulse response functions between the two implementations are equivalent.

Impulse Response Function of VAR Model

Compute the generalized impulse response function of the 2 dimensional VAR(3) model

, , and, for all t, is Gaussian with mean zero and
covariance matrix

Create a cell vector of matrices for the autoregressive coefficients as you encounter them
in the model expressed in difference-equation notation. Specify the innovation covariance
matrix.

AR1 = [1 -0.2; -0.1 0.3];

AR2 = -[0.75 -0.1; -0.05 0.15];

AR3 = [0.55 -0.02; -0.01 0.03];

ar0 = {AR1 AR2 AR3};

InnovCov = [0.5 -0.1; -0.1 0.25];

Compute the entire, generalized impulse response function of . Because there are no
MA terms, specify an empty array ([]) for the second input argument.

Y = armairf(ar0,[],'Method','generalized','InnovCov',InnovCov);

size(Y)

ans =

 31 2 2

Y is a 31-by-2-2 array of impulse responses. Rows correspond to periods, columns
correspond to variables, and pages correspond to the variable that armairf shocks. The
armairf satisfies the stopping criterion after 31 periods. You can specify to stop sooner

 armairf

9-87

using the 'NumObs' name-value pair argument. This is a good practice when there are
many variables in the system.

Compute and display the generalized impulse responses for the first ten periods.

Y20 = armairf(ar0,[],'Method','generalized','InnovCov',InnovCov,...

 'NumObs',10)

Y20(:,:,1) =

 0.7071 -0.1414

 0.7354 -0.1131

 0.2135 -0.0509

 0.0526 0.0058

 0.2929 0.0040

 0.3717 -0.0300

 0.1872 -0.0325

 0.0730 -0.0082

 0.1360 -0.0001

 0.1841 -0.0116

Y20(:,:,2) =

 -0.2000 0.5000

 -0.3000 0.1700

 -0.1340 -0.0040

 -0.0112 -0.0113

 -0.0772 -0.0003

 -0.1435 0.0100

 -0.0936 0.0133

 -0.0301 0.0054

 -0.0388 -0.0003

 -0.0674 0.0028

The impulse responses appear to die out with increasing time. This suggests a stable
system.

• “Generate Impulse Responses for a VAR model” on page 7-42
• “Compare Generalized and Orthogonalized Impulse Response Functions” on page

7-45
• “Generate VEC Model Impulse Responses” on page 7-138

9 Functions — Alphabetical List

9-88

Input Arguments

ar0 — Autoregressive coefficients
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

Autoregressive coefficients of the ARMA(p,q) model, specified as a numeric vector, cell
vector of square, numeric matrices, or a LagOp lag operator polynomial object. If ar0 is
a vector (numeric or cell), then the coefficient of yt is the identity. To specify a structural
AR polynomial (i.e., the coefficient of yt is not the identity), use LagOp lag operator
polynomials.

• For univariate time series models, ar0 is a numeric vector, cell vector of scalars,
or a one-dimensional LagOp lag operator polynomial. For vectors, ar0 has length p
and the elements correspond to lagged responses composing the AR polynomial in
difference-equation notation. That is, ar0(j) or ar0{j} is the coefficient of yt-j.

• For numVars-dimensional time series models, ar0 is a cell vector of numVars-
by-numVars numeric matrices or an numVars-dimensional LagOp lag operator
polynomial. For cell vectors:

• ar0 has length p.
• ar0 and ma0 must contain numVars-by-numVars matrices.
• The elements of ar0 correspond to the lagged responses composing the AR

polynomial in difference equation notation. That is, ar0{j} is the coefficient
matrix of vector yt-j.

• Row k of an AR coefficient matrix contains the AR coefficients in the equation of
the variable yk. Subsequently, column k must correspond to variable yk, and the
column and row order of all autoregressive and moving average coefficients must
be consistent.

• For LagOp lag operator polynomials:

•
• The first element of the Coefficients property corresponds to the coefficient

of yt (to accommodate structural models). All other elements correspond to the
coefficients of the subsequent lags in the Lags property.

• To construct a univariate model in reduced form, specify 1 for the first coefficient.
For numVars-dimensional multivariate models, specify eye(numVars) for the
first coefficient.

 armairf

9-89

• armairf composes the model using lag operator notation. That is, when you work
from a model in difference-equation notation, negate the AR coefficients of the
lagged responses to construct the lag-operator polynomial equivalent. For example,
consider y y yt t t t t t= - + - +

- - - -
0 5 0 8 0 6 0 08

1 2 1 2
. . . .e e e . The model is in difference-

equation form. To compute the impulse responses, enter the following into the
command window.

y = armairf([0.5 -0.8], [-0.6 0.08]);

The ARMA model written in lag-operator notation is

1 0 5 0 8 1 0 6 0 08
2 2

-()+ = - +().L L y L Lt te The AR coefficients of the lagged
responses are negated compared to the corresponding coefficients in difference-
equation format. In this form, to obtain the same result, enter the following into
the command window.

ar0 = LagOp({1 -0.5 0.8});

ma0 = LagOp({1 -0.6 0.08});

y = armairf(ar0, ma0);

If the ARMA model is strictly an MA model, then specify an empty array or cell ([] or
{}).

ma0 — Moving average coefficients
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

Moving average coefficients of the ARMA(p,q) model, specified as a numeric vector, cell
vector of square, numeric matrices, or a LagOp lag operator polynomial object. If ma0 is
a vector (numeric or cell), then the coefficient of εt is the identity. To specify a structural
MA polynomial (i.e., the coefficient of εt is not the identity), use LagOp lag operator
polynomials.

• For univariate time series models, ma0 is a numeric vector, cell vector of scalars,
or a one-dimensional LagOp lag operator polynomial. For vectors, ma0 has length q
and the elements correspond to lagged innovations composing the AR polynomial in
difference-equation notation. That is, ma0(j) or ma0{j} is the coefficient of εt-j.

• For numVars-dimensional time series models, ma0 is a cell vector of numeric
numVars-by-numVars numeric matrices or an numVars-dimensional LagOp lag
operator polynomial. For cell vectors:

9 Functions — Alphabetical List

9-90

• ma0 has length q.
• ar0 and ma0 must both contain numVars-by-numVars matrices.
• The elements of ma0 correspond to the lagged responses composing the AR

polynomial in difference equation notation. That is, ma0{j} is the coefficient
matrix of yt-j.

• Row k of an MA coefficient matrix contains the MA coefficients in the equation of
the variable yk. Subsequently, column k must correspond to variable yk, and the
order of all autoregressive and moving average coefficients must be consistent.

• For LagOp lag operator polynomials:

• The first element of the Coefficients property corresponds to the coefficient
of εt (to accommodate structural models). All other elements correspond to the
coefficients of the subsequent lags in the Lags property.

• To construct a univariate model in reduced form, specify 1 for the first coefficient.
For numVars-dimensional multivariate models, specify eye(numVars) for the
first coefficient.

If the ARMA model is strictly an AR model, then specify an empty array or cell ([] or
{}).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Method','generalized','NumObs',10 specifies to compute generalized
impulse responses for ten periods.

'InnovCov' — Covariance matrix
eye(numVars) (default) | numeric scalar | numeric matrix

Covariance matrix of the ARMA(p,q) model innovations εt, specified as the comma-
separated pair consisting of 'InnovCov' and a numeric scalar or an numVars-
by-numVars numeric matrix. InnovCov must be a positive scalar or a positive definite
matrix.
Example: 'InnovCov',0.2

 armairf

9-91

Data Types: double

'NumObs' — Number of periods in the impulse response function to return
positive integer

Number of periods in the impulse response function to return, specified as the comma-
separated pair consisting of 'NumObs' and a positive integer. NumObs specifies the
number of rows in the output argument Y.

By default, armairf determines NumObs by the stopping criteria of mldivide.

Example: 'NumObs',10

Data Types: double

'Method' — Impulse response function computation method
'orthogonalized' (default) | 'generalized'

Impulse response function computation method, specified as the comma-separated pair
consisting of 'Method' and a string.

Value Description

'generalized' Compute impulse responses using one
standard deviation innovation shocks.

'orthogonalized' Compute impulse responses using
orthogonalized, one standard deviation
innovation shocks. armairf uses the
Cholesky factorization of InnovCov for
orthogonalization.

Example: 'Method','generalized'

Data Types: char

Output Arguments

Y — Impulse responses
numeric column vector | numeric array

Impulse responses, returned as a numeric column vector or array.

9 Functions — Alphabetical List

9-92

If Y is a vector, then Y(t) is the impulse response at period t, where t = 0,1,...,NumObs.

Otherwise, Y(t,j,k) is the period-t impulse response of variable j shocked by a one
standard impulse originating in variable k. t = 0,1,...,NumObs, j = 1,2,...,numVars, and
k = 1,2,...,numVars. The variable order in Y corresponds to the variable order in ar0 and
ma0.

More About

Difference-Equation Notation

A linear time series model written in difference-equation notation positions the present
value of the response and its structural coefficient on the left side of the equation. The
right side of the equation contains the sum of the lagged responses, present innovation,
and lagged innovations with corresponding coefficients.

That is, a linear time series written in difference-equation notation is

F F F Q Q Q0 1 1 0 1 1y c y yt t p t p t t q t q= + + + + + + +- - - -... ... ,e e e

where

• yt is an numVars-dimensional vector representing the responses of numVars variables
at time t, for all t and for numVars ≥ 1.

• εt is an numVars-dimensional vector representing the innovations at time t.
• Φj is the numVars-by-numVars matrix of AR coefficients of the response yt-j, for j =

0,...,p.
• Θk is the numVars-by-numVars matrix of MA coefficients of the innovation εt-k., k =

0,...,q.
• c is the n-dimensional model constant.
• For models in reduced form, Φ0 = Θ0 = InumVars, which is the numVars-dimensional

identity matrix.

Impulse Response Function

An impulse response function of a time series model measures the changes in the future
responses of all variables in the system when a variable is shocked by an impulse.

 armairf

9-93

Suppose yt is the ARMA(p,q) model containing numVars response variables

F Q() () .L Lyt t= e

• Φ(L) is the lag operator polynomial of the autoregressive coefficients, i.e.,
F F F F F()L L L Lp

p
= - - - -0 1 2

2

• Θ(L) is the lag operator polynomial of the moving average coefficients, i.e.,
Q Q Q Q Q()L L L Lq

q
= + ++ +0 1 2

2

• εt is the vector of numVars innovations at time t. Assume that the innovations have
zero mean and the constant, positive-definite covariance matrix Σ for all t.

The infinite-lag MA representation of yt is

y L L Lt t t= =
-

F Q W
1
() () () .e e

Then, the general form of the impulse response function of yt shocked by an impulse to
variable j by one standard deviation of its innovation m periods into the future is

y j m jm C e() .=

• ej is a selection vector of length numVars containing a one in element j and zeros
elsewhere.

• For orthogonalized impulse responses, C Pm m= W , where P is the lower triangular
factor in the Cholesky factorization of Σ.

• For generalized impulse responses, Cm j m=
-

s
1
W S, where σj is the standard deviation

of innovation j.

Lag Operator Notation

A time series model written in lag-operator notation positions a p-degree lag operator
polynomial on the present response on the left side of the equation. The right side of
the equation contains the model constant and a q-degree lag operator polynomial on the
present innovation.

That is, a linear time series model written in lag-operator notation is

9 Functions — Alphabetical List

9-94

F Q() () ,L y Lct t= + e

where

• yt is an numVars-dimensional vector representing the responses of numVars variables
at time t, for all t and for numVars ≥ 1.

•
F F F F F() ...L L L Lp

p
= - - - -0 1 2

2 , which is the autoregressive, lag operator
polynomial.

• L is the back-shift operator, i.e., L y yj
t t j=

-
.

• Φj is the numVars-by-numVars matrix of AR coefficients of the response yt-j, for j =
0,...,p.

• εt is an numVars-dimensional vector representing the innovations at time t.
•

Q Q Q Q Q() ...L L L Lq
q

= + + + +0 1 2
2 , which is the moving average, lag operator

polynomial.
• Θk is the numVars-by-numVars matrix of MA coefficients of the innovation εt-k., k =

0,...,q.
• c is the numVars-dimensional model constant.
• For models in reduced form, Φ0 = Θ0 = InumVars, which is the numVars-dimensional

identity matrix.

When comparing lag operator notation to difference equation notation, the signs of the
lagged AR coefficients appear negated relative to the corresponding terms in difference
equation notation. The signs of the moving average coefficients are the same and appear
on the same side.

For more details on lag operator notation, see “Lag Operator Notation” on page 1-22.

Tips

• To compute forecast error impulse responses, use the default value of InnovCov,
which is a numVar-by-numVars identity matrix. In this case, all available
computation methods (see Method) result in equivalent impulse response functions.

• To accommodate structural ARMA(p,q) models, specify the input arguments ar0 and
ma0 as LagOp lag operator polynomials.

 armairf

9-95

Algorithms

• If Method is 'orthogonalized', then the resulting impulse response function
depends on the order of the variables in the time series model. If Method is
'generalized', then the resulting impulse response function is invariant to the
order of the variables. Therefore, the two methods generally produce different results.

• If InnovCov is a diagonal matrix, then the resulting generalized and orthogonal
impulse response functions are identical. Otherwise, the resulting generalized and
orthogonal impulse response functions are identical when the first variable shocks all
variables only (i.e., Y(:,:,1)).

• “Impulse Response Function” on page 5-86

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Lutkepohl, H. New Introduction to Multiple Time Series Analysis. Springer-Verlag,
2007.

[3] Pesaran, H. H. and Y. Shin. “Generalized Impulse Response Analysis in Linear
Multivariate Models.” Economic Letters. Vol. 58, 1998, 17–29.

See Also
arima | impulse | LagOp | mldivide | vec2var

Introduced in R2015b

9 Functions — Alphabetical List

9-96

autocorr
Sample autocorrelation

Syntax

autocorr(y)

autocorr(y,numLags)

autocorr(y,numLags,numMA,numSTD)

acf = autocorr(y)

acf = autocorr(y,numLags)

acf = autocorr(y,numLags,numMA,numSTD)

[acf,lags,bounds] = autocorr(___)

Description

autocorr(y) plots the sample autocorrelation function (ACF) of the univariate,
stochastic time series y with confidence bounds.

autocorr(y,numLags) plots the ACF, where numLags indicates the number of lags in
the sample ACF.

autocorr(y,numLags,numMA,numSTD) plots the ACF, where numMA specifies the
number of lags beyond which the theoretical ACF is effectively 0, and numSTD specifies
the number of standard deviations of the sample ACF estimation error.

acf = autocorr(y) returns the sample ACF of the univariate, stochastic time series y.

acf = autocorr(y,numLags) returns the ACF, where numLags specifies the number
of lags in the sample ACF.

acf = autocorr(y,numLags,numMA,numSTD) returns the ACF, where numMA
specifies the number of lags beyond which the theoretical ACF is effectively 0, and
numSTD specifies the number of standard deviations of the sample ACF estimation error.

[acf,lags,bounds] = autocorr(___) additionally returns the lags (lags)
corresponding to the ACF and the approximate upper and lower confidence bounds
(bounds), using any of the input arguments in the previous syntaxes.

 autocorr

9-97

Examples

Plot the Autocorrelation Function of a Time Series

Specify the MA(2) model:

where is Gaussian with mean 0 and variance 1.

rng(1); % For reproducibility

Mdl = arima('MA',{-0.5 0.4},'Constant',0,'Variance',1)

Mdl =

 ARIMA(0,0,2) Model:

 Distribution: Name = 'Gaussian'

 P: 0

 D: 0

 Q: 2

 Constant: 0

 AR: {}

 SAR: {}

 MA: {-0.5 0.4} at Lags [1 2]

 SMA: {}

 Variance: 1

Simulate 1000 observations from Mdl.

y = simulate(Mdl,1000);

Compute the ACF.

[ACF,lags,bounds] = autocorr(y,[],2);

bounds

bounds =

 0.0843

 -0.0843

9 Functions — Alphabetical List

9-98

[] tells the software to return the default number of lags (20). numMA = 2 indicates that
the ACF is effectively 0 after the second lag. bounds displays (-0.0843, 0.0843), which are
the upper and lower confidence bounds.

Plot the ACF.

autocorr(y)

The ACF cuts off after the second lag. This behavior indicataes an MA(2) process.

Specify More Lags for the ACF Plot

Specify the mutliplicative seasonal ARMA model:

 autocorr

9-99

where is Gaussian with mean 0 and variance 1.

Mdl = arima('AR',{0.75,0.15},'SAR',{0.9,-0.5,0.5},...

 'SARLags',[12,24,36],'MA',-0.5,'Constant',2,...

 'Variance',1);

Simulate data from Mdl.

rng(1); % For reproducibility

y = simulate(Mdl,1000);

Plot the default autocorrelation function (ACF).

figure

autocorr(y)

9 Functions — Alphabetical List

9-100

The default correlogram does not display the dependence structure for higher lags.

Plot the ACF for 40 lags.

figure

autocorr(y,40,[],3)

 autocorr

9-101

The correlogram shows the larger correlations at lags 12, 24, and 36.

Compare the ACF for Normalized and Unnormalized Series

Although various estimates of the sample autocorrelation function exist, autocorr uses
the form in Box, Jenkins, and Reinsel, 1994. In their estimate, they scale the correlation
at each lag by the sample variance (var(y,1)) so that the autocorrelation at lag 0 is
unity. However, certain applications require rescaling the normalized ACF by another
factor.

Simulate 1000 observations from the standard Gaussian distribution.

rng(1); % For reproducibility

y = randn(1000, 1);

9 Functions — Alphabetical List

9-102

Compute the normalized and unnormalized sample ACF.

[normalizedACF, lags] = autocorr(y, 10);

unnormalizedACF = normalizedACF*var(y,1);

Compare the first 10 lags of the sample ACF with and without normalization.

[lags normalizedACF unnormalizedACF]

ans =

 0 1.0000 0.9960

 1.0000 -0.0180 -0.0180

 2.0000 0.0536 0.0534

 3.0000 -0.0206 -0.0205

 4.0000 -0.0300 -0.0299

 5.0000 -0.0086 -0.0086

 6.0000 -0.0108 -0.0107

 7.0000 -0.0116 -0.0116

 8.0000 0.0309 0.0307

 9.0000 0.0341 0.0340

 10.0000 0.0076 0.0075

• “Time Series Regression VI: Residual Diagnostics”
• “Detect Autocorrelation” on page 3-18
• “Box-Jenkins Model Selection” on page 3-4

Input Arguments

y — Observed univariate time series
vector

Observed univariate time series for which the software computes or plots the ACF,
specified as a vector. The last element of y contains the most recent observation.

Data Types: double

numLags — Number of lags
min(20,length(y)-1) (default) | positive integer

 autocorr

9-103

Number of lags of the ACF that the software returns or plots, specified as a positive
integer.

For example, autocorr(y,10) plots the ACF for lags 0 through 10.

Data Types: double

numMA — MA order
0 (default) | nonnegative integer

MA order that specifies the number of lags beyond which the theoretical ACF is
effectively 0, specified as a nonnegative integer.

• numMA must be less than numLags.
• Specify numMA to assess whether the ACF is effectively zero beyond lag numMA [1]. The

software uses Bartlett’s approximation to estimate the large-lag standard error for
lags that are greater than numMA.

• If numMA = 0, then the software assumes that y is a length T Gaussian white noise

process. In this case, the standard error is approximately 1

T
.

Example: [~,~,bounds] = autocorr(y,[],5)

Data Types: double

numSTD — Number of standard deviations
2 (default) | positive scalar

Number of standard deviations for the sample ACF estimation error assuming the
theoretical ACF is 0 beyond lag numMA, specified as a positive scalar. For example,
autocorr(y,[],[],1.5) plots the ACF with estimation error bounds 1.5 standard
deviations away from 0.

If numMA = 0 and y a lengthT Gaussian process, then the confidence bounds are:

±
numSTD

T
.

The default (numSTD = 2) corresponds to approximate 95% confidence bounds.

Data Types: double

9 Functions — Alphabetical List

9-104

Output Arguments

acf — Sample ACF
vector

Sample ACF of the univariate time series y, returned as a vector of length numLags +
1.

The elements of acf correspond to lags 0,1,2,...,numLags. The first element, which
corresponds to lag 0, is unity (i.e., acf(1) = 1).

lags — Sample ACF lags
vector

Sample ACF lags, returned as a vector. Specifically, lags = 0:numLags.

bounds — Approximate confidence bounds
vector

Approximate confidence bounds of the ACF assuming y is an MA(numMA) process,
returned as a two-element vector. bounds is approximate for lags > numMA.

More About

Autocorrelation Function

Measures the correlation between yt and yt + k, where k = 0,...,K and yt is a stochastic
process.

According to [1], the formula for the autocorrelation for lag k is

r
c

c
k

k
=

0

,

where

•
c

T
y y y yk t

t

T k

t k= - -
-

=

-

+Â
1

1
1

()().

 autocorr

9-105

• c0 is the sample variance of the time series.

The estimated standard error for the autocorrelation at lag k is

SE r
T

rk j
j

q

() ,= +
Ê

Ë
Á
Á

ˆ

¯
˜
˜=

Â1
1 2 2

1

where q is the lag beyond which the theoretical ACF is effectively 0. If the series is
completely random, then the standard error reduces to 1 / T [1].

Tips

To plot the ACF without confidence bounds, set numSTD to 0.
• “Box-Jenkins Methodology” on page 3-2
• “Autocorrelation and Partial Autocorrelation” on page 3-13

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
crosscorr | filter | parcorr

Introduced before R2006a

9 Functions — Alphabetical List

9-106

chowtest

Chow test for structural change

Chow tests assess the stability of coefficients β in a multiple linear regression model of
the form y = Xβ + ε. Data are split at specified break points. Coefficients are estimated
in initial subsamples, then tested for compatibility with data in complementary
subsamples.

Syntax

h = chowtest(X,y,bp)

h = chowtest(Tbl,bp)

h = chowtest(___ ,Name,Value)

[h,pValue,stat,cValue] = chowtest(___)

Description

h = chowtest(X,y,bp) returns test decisions (h) from conducting Chow tests on the
multiple linear regression model y = Xβ + ε at the break points in bp.

h = chowtest(Tbl,bp) returns test decisions using the data in the tabular array Tbl.
The first numPreds columns are the predictors (X) and the last column is the response
(y).

h = chowtest(___ ,Name,Value) uses any of the input arguments in the previous
syntaxes and additional options specified by one or more Name,Value pair arguments.
For example, you can specify which type of Chow test to conduct or specify whether to
include an intercept in the multiple regression model.

[h,pValue,stat,cValue] = chowtest(___) additionally returns p-values, test
statistics, and critical values for the tests.

 chowtest

9-107

Examples

Test Consumption Model for Structural Change

Conduct Chow tests to assess whether there are structural changes in the equation for
food demand around World War II.

Load the U.S. food consumption data set, which contains annual measurements from
1927 through 1962 with missing data due to the war.

load Data_Consumption

For more details on the data, enter Description at the command prompt.

Suppose that you want to develop a model for consumption as determined by food prices
and disposable income, and assess its stability through the economic shock through the
war.

Plot the series.

P = Data(:,1); % Food price index

I = Data(:,2); % Disposable income index

Q = Data(:,3); % Food consumption index

figure;

plot(dates,[P I Q],'o-')

axis tight

grid on

xlabel('Year')

ylabel('Index')

title('{\bf Time Series Plot of All Series}')

legend({'Price','Income','Consumption'},'Location','SE')

9 Functions — Alphabetical List

9-108

Measurements are missing from 1942 through 1947, which correspond to World War II.

Assume that log consumption is a linear function of the logs of food price and income.
That is,

 is a Gaussian random variable with mean 0 and standard deviation .

Apply the log transformation to each series.

LP = log(P);

 chowtest

9-109

LI = log(I);

LQ = log(Q);

Identify the indices before World War II. Plot log consumption with respect to the logs of
food price and income.

preWarIdx = (dates <= 1941);

figure

scatter3(LP(preWarIdx),LI(preWarIdx),LQ(preWarIdx),[],'ro');

hold on

scatter3(LP(~preWarIdx),LI(~preWarIdx),LQ(~preWarIdx),[],'b*');

legend({'Pre-war observations','Post-war observations'},...

 'Location','Best')

xlabel('Log price')

ylabel('Log income')

zlabel('Log consumption')

title('{\bf Food Consumption Data}')

% Get a better view

h = gca;

h.CameraPosition = [4.3 -12.2 5.3];

9 Functions — Alphabetical List

9-110

Data relationships appear to be affected by the war.

Conduct two break point Chow tests at 5% level of significance. For the first test, set the
break point at 1941. Set the break point of the other test at 1948.

bp = find(preWarIdx,1,'last');

h1941 = chowtest([LP LI],LQ,bp)

h1948 = chowtest([LP LI],LQ,bp + 1)

h1941 =

 1

 chowtest

9-111

h1948 =

 0

h1941 = 1 indicates that there is significant evidence reject the null hypothesis that the
coefficients are stable when the break points occur before the war. However, h1948 = 0
indicates that there is not enough evidence to reject coefficient stability if the break point
is after the war. This result suggests that the data at 1948 are influential.

Alternatively, you can supply a vector of break points to conduct three Chow tests.

h = chowtest([LP LI],LQ,[bp bp+1]);

RESULTS SUMMARY

Test 1

Sample size: 30

Breakpoint: 15

Test type: breakpoint

Coefficients tested: All

Statistic: 5.5400

Critical value: 3.0088

P value: 0.0049

Significance level: 0.0500

Decision: Reject coefficient stability

Test 2

Sample size: 30

Breakpoint: 16

Test type: breakpoint

Coefficients tested: All

9 Functions — Alphabetical List

9-112

Statistic: 1.2942

Critical value: 3.0088

P value: 0.2992

Significance level: 0.0500

Decision: Fail to reject coefficient stability

By default, chowtest displays a summary of the test results for each test when you
conduct more than one test.

Test Model of Real U.S. GNP for Structural Change

Using the Chow test, assess the stability of an explanatory model of U.S. real gross
national product (GNP) using the end of World War II as a break point.

Load the Nelson-Plosser data set.

load Data_NelsonPlosser

The time series in the data set contain annual, macroeconomic measurements from 1860
to 1970. For more details, a list of variables, and descriptions, enter Description in the
command line.

Several series have missing data. Focus the sample to measurements from 1915 to 1970.

span = (1915 <= dates) & (dates <= 1970);

Assume that an appropriate multiple regression model to describe real GNP is

Collect the model variables into a tabular array. Position the predictors in the first three
columns, and the response in the last column.

Mdl = DataTable(span,[4,5,10,1]);

Select the index corresponding to 1945, the end of World War II.

bp = find(strcmp(Mdl.Properties.RowNames,'1945'));

 chowtest

9-113

Using 1945 as a break point, conduct a break point test to assess whether all regression
coefficients are stable.

h = chowtest(Mdl,bp)

h =

 1

h = 1 indicates to reject the null hypothesis that the regression coefficients between the
subsamples are equivalent.

In addition to returning a test decision, you can request that a test summary display in
the Command Window.

h = chowtest(Mdl,bp,'Display','summary');

RESULTS SUMMARY

Test 1

Sample size: 56

Breakpoint: 31

Test type: breakpoint

Coefficients tested: All

Statistic: 11.1036

Critical value: 2.5652

P value: 0.0000

Significance level: 0.0500

Decision: Reject coefficient stability

Assess Stability of Subsets of Regression Coefficients

Conduct a Chow test to assess the stability of a subset of regression coefficients. This
example follows from “Test Consumption Model for Structural Change”.

9 Functions — Alphabetical List

9-114

Load the U.S. food consumption data set.

load Data_Consumption

P = Data(:,1);

I = Data(:,2);

Q = Data(:,3);

Apply the log transformation to each series.

LP = log(P);

LI = log(I);

LQ = log(Q);

Identify the indices before World War II.

preWarIdx = (dates <= 1941);

Consider two regression models: one is log consumption onto log food price, and the
other is log consumption onto log income. Plot scatter plots and regression lines for both
models.

figure;

subplot(2,2,1)

plot(LP(preWarIdx),LQ(preWarIdx),'bo',LP(~preWarIdx),LQ(~preWarIdx),'r*');

axis tight

grid on

lsline;

xlabel('Log price')

ylabel('Log consumption')

legend('Pre-war observations','Post-war observations',...

 'Location',[0.6,0.6,0.25,0.25])

subplot(2,2,4)

plot(LI(preWarIdx),LQ(preWarIdx),'bo',LI(~preWarIdx),LQ(~preWarIdx),'r*');

axis tight

grid on

lsline

xlabel('Log income')

ylabel('Log consumption')

 chowtest

9-115

There is a clear break in food price elasticity between subsamples before and after the
war. However, there doesn't appear to be such a break in income elasticity.

Conduct two Chow tests to determine whether there is statistical evidence to reject
model continuity for both regression models. Because there are more observations in the
complementary subsample than coefficients, conduct a break point test. Consider the
elasticities in the test only. That is, specify 0 or false for the intercept (first coefficient),
and 1 or true for elasticity (second coefficient).

bp = find(preWarIdx,1,'last'); % Index for 1941

chowtest(LP,LQ,bp,'Coeffs',[0 1],'Display','summary');

chowtest(LI,LQ,bp,'Coeffs',[0 1],'Display','summary');

9 Functions — Alphabetical List

9-116

RESULTS SUMMARY

Test 1

Sample size: 30

Breakpoint: 15

Test type: breakpoint

Coefficients tested: 0 1

Statistic: 7.3947

Critical value: 4.2252

P value: 0.0115

Significance level: 0.0500

Decision: Reject coefficient stability

RESULTS SUMMARY

Test 1

Sample size: 30

Breakpoint: 15

Test type: breakpoint

Coefficients tested: 0 1

Statistic: 0.1289

Critical value: 4.2252

P value: 0.7225

Significance level: 0.0500

Decision: Fail to reject coefficient stability

The first summary suggests to reject the null hypothesis that price elasticities are
equivalent across subsamples at 5% level of significance. The second summary
suggests to not reject the null hypothesis that income elasticities are equivalent across
subsamples.

 chowtest

9-117

Consider a regression model of log consumption onto the logs of price and income.
Conduct two break point tests: one that compares price elasticity across subsamples only,
and another that compares income elasticity only.

chowtest([LP,LI],LQ,bp,'Coeffs',[0 1 0; 0 0 1]);

RESULTS SUMMARY

Test 1

Sample size: 30

Breakpoint: 15

Test type: breakpoint

Coefficients tested: 0 1 0

Statistic: 0.0001

Critical value: 4.2597

P value: 0.9920

Significance level: 0.0500

Decision: Fail to reject coefficient stability

Test 2

Sample size: 30

Breakpoint: 15

Test type: breakpoint

Coefficients tested: 0 0 1

Statistic: 2.8151

Critical value: 4.2597

P value: 0.1064

Significance level: 0.0500

Decision: Fail to reject coefficient stability

9 Functions — Alphabetical List

9-118

For both tests, there is not enough evidence to reject model stability at 5% level.

Model Structural Change

Simulate data for a linear model including a structural break in the intercept and one of
the predictor coefficients. Then, choose specific coefficients to test for equality across a
break point using the Chow test. Adjust parameters to assess the sensitivity of the Chow
test.

Specify four predictors, 50 observations, and a break point at period 44 for the simulated
linear model.

numPreds = 4;

numObs = 50;

bp = 44;

rng(1); % For reproducibility

Form the predictor data by specifying means for the predictors, and then adding random,
standard Gaussian noise to each of the means.

mu = [0 1 2 3];

X = repmat(mu,numObs,1) + randn(numObs,numPreds);

Add a column of ones to the predictor data.

X = [ones(numObs,1) X];

Specify the true values of the regression coefficients, and that the intercept and the
coefficient of the second predictor jump by 10%.

beta1 = [1 2 3 4 5]'; % Initial subsample coefficients

beta2 = beta1 + [beta1(1)*0.1 0 beta1(3)*0.1 0 0]'; % Complementary subsample coefficients

X1 = X(1:bp,:); % Initial subsample predictors

X2 = X(bp+1:end,:); % Complementary subsample predictors

Specify a 2-by-5 logical matrix that indicates to first test the intercept and second
regression coefficient, and then test all other coefficients.

test1 = [true false true false false];

Coeffs = [test1; ~test1]

Coeffs =

 1 0 1 0 0

 chowtest

9-119

 0 1 0 1 1

The null hypothesis for the first test (Coeffs(1,:)) is equality of the intercepts and the
coefficients of the second predictor across subsamples. The null hypothesis for second test
(Coeffs(2,:)) is equality of the first, third, and fourth predictors across subsamples.

Simulate data for the linear model

Create innov as a vector of random Gaussian variates with mean zero and standard
deviation 0.2.

sigma = 0.2;

innov = sigma*randn(numObs,1);

y = [X1 zeros(bp,size(X2,2)); zeros(numObs - bp,size(X1,2)) X2]*[beta1; beta2]...

 + innov;

Conduct the two break point tests indicated in Coeffs. Because there is an intercept in
the predictor matrix X already, specify to suppress its inclusion in the linear model that
chowtest fits.

chowtest(X,y,bp,'Intercept',false,'Coeffs',Coeffs,'Display','summary');

RESULTS SUMMARY

Test 1

Sample size: 50

Breakpoint: 44

Test type: breakpoint

Coefficients tested: 1 0 1 0 0

Statistic: 5.7102

Critical value: 3.2317

P value: 0.0066

Significance level: 0.0500

9 Functions — Alphabetical List

9-120

Decision: Reject coefficient stability

Test 2

Sample size: 50

Breakpoint: 44

Test type: breakpoint

Coefficients tested: 0 1 0 1 1

Statistic: 0.2497

Critical value: 2.8387

P value: 0.8611

Significance level: 0.0500

Decision: Fail to reject coefficient stability

At the default significance level, the Chow test correctly rejects the null hypothesis that
there are no structural breaks at period bp for the intercept and the second coefficient,
and correctly failed to reject the null hypothesis for the other coefficients.

Compare the break point test results to the results of the forecast test.

chowtest(X,y,bp,'Intercept',false,'Coeffs',Coeffs,'Test','forecast',...

 'Display','summary');

RESULTS SUMMARY

Test 1

Sample size: 50

Breakpoint: 44

Test type: forecast

Coefficients tested: 1 0 1 0 0

Statistic: 3.7637

Critical value: 2.8451

P value: 0.0182

 chowtest

9-121

Significance level: 0.0500

Decision: Reject coefficient stability

Test 2

Sample size: 50

Breakpoint: 44

Test type: forecast

Coefficients tested: 0 1 0 1 1

Statistic: 0.2135

Critical value: 2.6123

P value: 0.9293

Significance level: 0.0500

Decision: Fail to reject coefficient stability

In this case, the inferences from the tests are equivalent to those for the break point test.

• “Check Model Assumptions for Chow Test” on page 3-112
• “Power of the Chow Test” on page 3-123

Input Arguments

X — Predictor data
numeric matrix

Predictor data for the multiple linear regression model, specified as a numObs-
by-numPreds numeric matrix.

numObs is the number of observations and numPreds is the number of predictor
variables.
Data Types: double

y — Response data
numeric vector

9 Functions — Alphabetical List

9-122

Response data for the multiple linear regression model, specified as a numObs-by-1
numeric vector.
Data Types: double

Tbl — Combined predictor and response data
tabular array

Combined predictor and response data for the multiple linear regression model, specified
as a numObs-by-numPreds + 1 tabular array.

The first numPreds columns of Tbl are the predictor data, and the last column is the
response data.
Data Types: table

bp — Break points
positive integer | vector of positive integers

Break points for the tests, specified as a positive integer or a vector of positive integers.

Each break point is an index of a specific observation (row) in the data. The element
bp(j) specifies to split the data into the initial and complementary samples indexed by
1:bp(j) and (bp(j) + 1):numObs, respectively.

Data Types: double

Notes

• NaNs in the data indicate missing values. chowtest removes missing values using
list-wise deletion. Removal of rows in the data reduces the effective sample size and
changes the time base of the series.

• If bp is a scalar, then the number of tests, numTests, is the common dimension of
name-value pair argument values. In this case, chowtest uses the same bp in each
test. Otherwise, the length of bp determines numTests, and chowtest runs separate
tests for each value in bp.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 chowtest

9-123

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Intercept',false,'Test','forecast' specifies to exclude an intercept
term from the regression model and to conduct a forecast test.

'Intercept' — Indicate whether to include intercept
true (default) | false | logical vector

Indicate whether to include an intercept when chowtest fits the regression model,
specified as the comma-separated pair consisting of 'Intercept' and true, false, or a
logical vector of length numTests.

Value Description

true chowtest includes an intercept when
fitting the regression model. numCoeffs =
numPreds + 1.

false chowtest does not include an intercept
when fitting the regression model.
numCoeffs = numPreds.

Example: 'Intercept',false(3,1)

Data Types: logical

'Test' — Type of Chow test to conduct
'breakpoint' (default) | 'forecast' | cell vector of strings

Type of Chow test to conduct, specified as the comma-separated pair consisting of
'Test' and a string or cell vector of strings of length numTests.

Value Description

'breakpoint' (default) • chowtest directly assesses coefficient
equality constraints using an F statistic.

• Both subsamples must have more than
numCoeffs observations.

'forecast' • chowtest assess forecast performance
using a modified F statistic.

• The initial subsample must have more
than numCoeffs observations.

9 Functions — Alphabetical List

9-124

For details on the value of numCoeffs, see the 'Intercept' and 'Coeffs' name-value
pair arguments.
Example: 'Test',{'breakpoint' 'forecast'}

Data Types: char | cell

'Coeffs' — Flags indicating which elements of β to test for equality
logical vector | logical array

Flags indicating which elements of β to test for equality, specified as the comma-
separated pair consisting of a logical vector or array. Vector values must be of length
numCoeffs. Array values must be of size numTests-by-numCoeffs.

If 'Intercept' contains mixed logical values:

• numCoeffs is numPreds + 1
• chowtest ignores values in the first column of 'Coeffs' for models without an

intercept.

For example, suppose the regression model has three predictors (numPreds is 3) in
a linear model, and you want to conduct two Chow tests (numTests is 2). Each test
includes all regression parameters in the linear model. Also, you want chowtest to fit
an intercept in the linear model for the first test only. Therefore, Intercept must be
the logical array [1 0]. Because there is at least one model for which chowtest fits
an intercept, Coeffs must be a 2-by-4 logical array (numTests is 2 and numCoeffs
is numPreds + 1). The elements of Coeffs(:,1) correspond to whether to test the
intercept irrespective of its presence in the model. Therefore, one way to specify Coeffs
is true(2,4). For the second test, chowtest does not fit an intercept, and so ignores
the value true in Coeffs(2,1). Because chowtest ignores Coeffs(2,1), Coeffs =
[true(1,4); false true(1,3)] yields the same result.

The default is true(numTests,numCoeffs), which tests all of β for all tests.

Example: 'Coeffs',[false true; true true]

'Alpha' — Nominal significance levels
0.05 (default) | numeric scalar | numeric vector

Nominal significance levels for the tests, specified as the comma-separated pair
consisting of 'Alpha' and a numeric scalar or vector of length numTests. All elements
of Alpha must be in the interval (0,1).

 chowtest

9-125

Example: 'Alpha',[0.5 0.1]

Data Types: double

'Display' — Flag indicating whether to display test results in command window
'off' | 'summary'

Flag indicating whether to display test results in the command window, specified as the
comma-separated pair consisting of 'Display' and 'off' or 'summary'.

Value Description Default Value When

'off' No display numTests = 1
'summary' For each test, display test

information and results
numTests > 1

Example: 'Display','off'

Data Types: char

Notes

• chowtest expands scalar and single-string input argument values, other than
'Display', to the size of numTests. Vector values and 'Coeffs' arrays must share
a common dimension, equal to numTests.

• If any of bp, Intercept, Test, or Alpha are row vectors, then all output arguments
are row vectors.

Output Arguments

h — Test decisions
logical scalar | logical vector

Test decisions, returned as a logical scalar or logical vector of length numTests.

The null hypothesis (H0) of the Chow test is that the coefficients (β) selected by Coeffs
are identical across subsamples.

• 1 indicates rejection of H0.

9 Functions — Alphabetical List

9-126

• 0 indicates failure to reject H0.

pValue — p-values
numeric scalar | numeric vector

p-values, returned as a numeric scalar or vector of length numTests.

stat — Test statistics
numeric scalar | numeric vector

Test statistics, returned as a numeric scalar or vector of length numTests. For details,
see “Chow Tests” on page 9-126.

cValue — Critical values for the tests
numeric scalar | numeric vector

Critical values for the tests, returned as a numeric scalar or vector of length numTests.
Alpha determines the critical values.

More About

Chow Tests

Chow tests assess the stability of the coefficients (β) in a multiple linear regression
model of the form y = Xβ + ε. Chow (1960) introduces two variations: the break point and
forecast tests [1].

The break point test is a standard F test from the analysis of covariance. The forecast
test makes use of the standard theory of prediction intervals. Chow’s contribution is
to place both tests general linear hypothesis framework, and develop appropriate test
statistics for testing subsets of coefficients (see Coeffs). For test-statistic formulae, see
[1].

Tips

• Chow tests assume continuity of the innovations variance across structural changes.
Heteroscedasticity can distort the size and power of the test. You should verify the
innovations-variance-continuity assumption holds before using the test results for
inference.

• If both subsamples contain more than numCoeffs observations, then you can conduct
a forecast test instead of a break point test. However, the forecast test might have

 chowtest

9-127

lower power relative to the break point test [1]. Nevertheless, Wilson (1978) suggests
conducting the forecast test in the presence of unknown specification errors .

• You can apply the forecast test to cases where both subsamples have size greater than
numCoeffs, where you would typically apply a breakpoint test. In such cases, the
forecast test might have significantly reduced power relative to a break point test
[1]. Nevertheless, Wilson (1978) suggests use of the forecast test in the presence of
unknown specification errors [4].

• The forecast test is based on the unbiased predictions, with zero mean error, which
result from stable coefficients. However, zero mean forecast error does not, in general,
guarantee coefficient stability. Thus, forecast tests are most effective in checking for
structural breaks, rather than model continuity [3].

• To obtain diagnostic statistics for each subsample, such as regression coefficient
estimates, their standard errors, error sums of squares, etc., pass the appropriate
data to fitlm. For details on working with LinearModel model objects, see “Multiple
Linear Regression”.

References

[1] Chow, G. C. “Tests of Equality Between Sets of Coefficients in Two Linear
Regressions.” Econometrica. Vol. 28, 1960, pp. 591–605.

[2] Fisher, F. M. “Tests of Equality Between Sets of Coefficients in Two Linear
Regressions: An Expository Note.” Econometrica. Vol. 38, 1970, pp. 361–66.

[3] Rea, J. D. “Indeterminacy of the Chow Test When the Number of Observations is
Insufficient.” Econometrica. Vol. 46, 1978, p. 229.

[4] Wilson, A. L. “When is the Chow Test UMP?” The American Statistician. Vol. 32,
1978, pp. 66–68.

See Also
fitlm | LinearModel

Introduced in R2015b

9 Functions — Alphabetical List

9-128

collintest

Belsley collinearity diagnostics

Syntax

collintest(X)

collintest(X,Name,Value)

sValue = collintest(___)

[sValue,condIdx,VarDecomp] = collintest(___)

Description

collintest(X) displays Belsley collinearity diagnostics for assessing the strength and
sources of collinearity among variables in the matrix or tabular array X.

collintest(X,Name,Value) uses additional options specified by one or more
Name,Value pairs.

sValue = collintest(___) returns the singular values in decreasing order, using
any of the previous input arguments.

[sValue,condIdx,VarDecomp] = collintest(___) additionally returns the
condition indices and variance decomposition proportions.

Examples

Display Belsley Collinearity Diagnostics

Display collinearity diagnostics for multiple time series.

Load data of Canadian inflation and interest rates.

load Data_Canada

 collintest

9-129

Display the Belsley collinearity diagnostics, using all default options.

collintest(DataTable)

Variance Decomposition

 sValue condIdx INF_C INF_G INT_S INT_M INT_L

 2.1748 1 0.0012 0.0018 0.0003 0.0000 0.0001

 0.4789 4.5413 0.0261 0.0806 0.0035 0.0006 0.0012

 0.1602 13.5795 0.3386 0.3802 0.0811 0.0011 0.0137

 0.1211 17.9617 0.6138 0.5276 0.1918 0.0004 0.0193

 0.0248 87.8245 0.0202 0.0099 0.7233 0.9979 0.9658

Only the last row in the display has a condition index larger than the default tolerance,
30. In this row, the last three variables (in the last three columns) have variance-
decomposition proportions exceeding the default tolerance, 0.5. This suggests that the
variables INT_S, INT_M, and INT_L exhibit multicollinearity.

Plot Belsley Collinearity Diagnostics

Plot collinearity diagnostics for multiple time series.

Load data of Canadian inflation and interest rates.

load Data_Canada

Plot the Belsley collinearity diagnostics using the plot option.

collintest(DataTable,'plot','on')

Variance Decomposition

 sValue condIdx INF_C INF_G INT_S INT_M INT_L

 2.1748 1 0.0012 0.0018 0.0003 0.0000 0.0001

 0.4789 4.5413 0.0261 0.0806 0.0035 0.0006 0.0012

 0.1602 13.5795 0.3386 0.3802 0.0811 0.0011 0.0137

 0.1211 17.9617 0.6138 0.5276 0.1918 0.0004 0.0193

 0.0248 87.8245 0.0202 0.0099 0.7233 0.9979 0.9658

9 Functions — Alphabetical List

9-130

The plot corresponds to the values in the last row of variance-decomposition proportions,
which is the only one with a condition index larger than the default tolerance, 30. The
last three variables in this row have variance-decomposition proportions exceeding the
default tolerance, 0.5, indicated by red markers in the plot.

Return Belsley Collinearity Diagnostics

Compute collinearity diagnostics for multiple time series and return the singular values,
condition indices, and variance-decomposition proportions.

Load data of Canadian inflation and interest rates.

load Data_Canada

 collintest

9-131

Compute the Belsley collinearity diagnostics. Turn off the results display using the
display option.

[sv,conIdx,varDecomp] = collintest(DataTable,'display',...

 'off');

There is no display of the results.

Display the contents of varDecomp.

varDecomp

varDecomp =

 0.0012 0.0018 0.0003 0.0000 0.0001

 0.0261 0.0806 0.0035 0.0006 0.0012

 0.3386 0.3802 0.0811 0.0011 0.0137

 0.6138 0.5276 0.1918 0.0004 0.0193

 0.0202 0.0099 0.7233 0.9979 0.9658

The output argument varDecomp is a matrix of the variance-decomposition proportions.
sv is a vector of singular values in descending order, and condIdx is a vector of
condition indices in ascending order.

Input Arguments

X — Input regression variables
numeric matrix | tabular array

Input regression variables, specified as a numObs-by-numVars numeric matrix or tabular
array. Each column of X corresponds to a variable, and each row corresponds to an
observation. For models with an intercept, X should contain a column of ones.

collintest scales the columns of X to unit length before processing. Data in X should
not be centered.

If X is a tabular array, then the variables must be numeric.

Data Types: double | table

9 Functions — Alphabetical List

9-132

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'plot','on','tolIdx',35 displays a results plot with a tolerance index of
35

'varNames' — Variable names
cell vector of strings

Variable names used in displays and plots of the results, specified as the comma-
separated pair consisting of 'varNames' and a cell vector of strings. varNames must
have length numVars, and each cell corresponds to a variable name. If an intercept
term is present, then varNames must include the intercept term (e.g., include the name
'Const'). The software truncates all variable names to the first five characters.

• If X is a matrix, then the default value of varNames is the cell vector of strings
{'var1','var2',...}.

• If X is a tabular array, then the default value of varNames is the property
X.Properties.VariableNames.

Example: 'varNames',{'Const','AGE','BBD'}

Data Types: cell

'display' — Display results indicator
'on' (default) | 'off'

Display results indicator for whether or not to display results in the Command Window,
specified as the comma-separated pair consisting of 'display' and one of 'on' or
'off'. If you specify the value 'on', then all outputs are displayed in tabular form.

Example: 'display','off'

'plot' — Plot results indicator
'off' (default) | 'on'

Plot results indicator for whether or not to plot results, specified as the comma-separated
pair consisting of 'plot' and one of 'on' or 'off'.

 collintest

9-133

• If you specify the value 'on', then the plot shows the critical rows of the output
VarDecomp, that is, those rows with condition indices above the input tolerance
tolIdx.

• If a group of at least two variables in a critical row have variance-decomposition
proportions above the input tolerance tolProp, then the group is identified with red
markers.

Example: 'plot','on'

'tolIdx' — Condition index tolerance
30 (default) | scalar value of at least 1

Condition index tolerance, specified as the comma-separated pair consisting of 'tolIdx'
and a scalar value of at least one. collintest uses the tolerance to decide which indices
are large enough to infer a near dependency in the data. The tolIdx value is only used
when plot has the value 'on'.

Example: 'tolIdx',25

'tolProp' — Variance-decomposition proportion tolerance
0.5 (default) | scalar between 0 and 1

Variance-decomposition proportion tolerance, specified as the comma-separated pair
consisting of 'tolProp' and a scalar value between zero and one. collintest uses the
tolerance to decide which variables are involved in any near dependency. The tolProp
value is only used when plot has the value 'on'.

Example: 'tolProp',0.4

Output Arguments

sValue — Singular values
vector in descending order

Singular values of scaled X, returned as a vector. The elements of sValue are in
descending order.

condIdx — Condition indices
vector in ascending order

Condition indices, returned as a vector with elements in ascending order. All condition
indices have value between one and the condition number of scaled X. Large indices

9 Functions — Alphabetical List

9-134

identify near dependencies among the variables in X. The size of the indices is a measure
of how near dependencies are to collinearity.

VarDecomp — Variance-decomposition proportions
matrix

Variance-decomposition proportions, returned as a numVars-by-numVars matrix.
Large proportions, combined with a large condition index, identify groups of variables
involved in near dependencies. The size of the proportions is a measure of how badly the
regression is degraded by the dependency.

More About

Belsley Collinearity Diagnostics

Belsley collinearity diagnostics assess the strength and sources of collinearity among
variables in a multiple linear regression model.

To assess collinearity, the software computes singular values of the scaled variable
matrix, X, and then converts them to condition indices. The conditional indices identify
the number and strength of any near dependencies between variables in the variable
matrix. The software decomposes the variance of the ordinary least squares (OLS)
estimates of the regression coefficients in terms of the singular values to identify
variables involved in each near dependency, and the extent to which the dependencies
degrade the regression.

Condition Indices

The condition indices for a scaled matrix X identify the number and strength of any near
dependencies in X.

For scaled matrix X with p columns and singular values S S S p() () ()1 2≥ ≥ ≥… , the

condition indices for the columns of X are S S j() () ,1 j = 1,...,p.

All condition indices are bounded between one and the condition number.

Condition Number

The condition number of a scaled matrix X is an overall diagnostic for detecting
collinearity.

 collintest

9-135

For scaled matrix X with p columns and singular values S S S p() () ()1 2≥ ≥ ≥… , the

condition number is S S p() () .1

The condition number achieves its lower bound of one when the columns of scaled X are
orthonormal. The condition number rises as variates exhibit greater dependency.

A limitation of the condition number as a diagnostic is that it fails to provide specifics on
the strength and sources of any near dependencies.

Multiple Linear Regression Model

A multiple linear regression model is a model of the form Y X= +b e . X is a design
matrix of regression variables, and β is a vector of regression coefficients.

Singular Values

The singular values of a scaled matrix X are the diagonal elements of the matrix S in the
singular-value decomposition USV ¢

.

In descending order, the singular values of the scaled matrix X with p columns are
S S S p() () ()1 2≥ ≥ ≥… .

Variance-Decomposition Proportions

Variance-decomposition proportions identify groups of variates involved in near
dependencies, and the extent to which the dependencies degrade the regression.

From the singular value decomposition USV ¢ of scaled design matrix X (with p columns),
let:

• V be the matrix of orthonormal eigenvectors of ¢X X

• S S S p() () ()1 2≥ ≥ ≥… be the ordered diagonal elements of the matrix S

The variance of the OLS estimate of the ith multiple linear regression coefficient, βi, is
proportional to the sum

V i S V i S V i p S p(,) (,) (,) ,() () ()1 22
1
2 2

2
2 2 2

+ + +…

9 Functions — Alphabetical List

9-136

where V i j(,) denotes the (i,j)th element of V.

The (i,j)th variance-decomposition proportion is the proportion of the jth term in the sum
relative to the entire sum, j = 1,...,p.

The terms S j()
2

 are the eigenvalues of scaled ¢X X . Thus, large variance-decomposition
proportions correspond to small eigenvalues of ¢X X , a common diagnostic for
collinearity. The singular-value decomposition provides a more direct, numerically stable
view of the eigensystem of scaled ¢X X .

Tips

• For purposes of collinearity diagnostics, Belsley [1] shows that column scaling of the
design matrix, X, is always desirable. However, he also shows that centering the data
in X is undesirable. For models with an intercept, if you center the data in X, then the
role of the constant term in any near dependency is hidden, and yields misleading
diagnostics.

• Tolerances for identifying large condition indices and variance-decomposition
proportions are comparable to critical values in standard hypothesis tests. Experience
determines the most useful tolerance, but experiments suggest the collintest
defaults are good starting points [1].

References

[1] Belsley, D. A., E. Kuh, and R. E. Welsh. Regression Diagnostics. New York, NY: John
Wiley & Sons, Inc., 1980.

[2] Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lϋtkepohl, and T. C. Lee. The Theory and
Practice of Econometrics. New York, NY: John Wiley & Sons, Inc., 1985.

See Also
corrplot

Introduced in R2012a

 Conditional Variance Model Properties

9-137

Conditional Variance Model Properties
Specify conditional variance model functional form and parameter values

Conditional variance model properties specify the functional form and parameter values
of garch, egarch, and gjr model objects.

Modify the functional form of the model or set values for parameters by changing
property values. Use dot notation to refer to a particular model object and property.
For example, one way to include a conditional mean offset to a GARCH(1,1) model for
estimation is to enter:

Mdl = garch(1,1);

Mdl.Offset = NaN;

For more information about conditional variance model objects, see:

• Using garch Objects
• Using egarch Objects
• Using gjr Objects

For GARCH, EGARCH, and GJR Models

P — Largest lag among past conditional variance terms
nonnegative integer

This property is read only.

Largest lag among the past conditional variance terms, specified as a nonnegative
integer. That is, P is the degree of the GARCH polynomial.

For GARCH and GJR models, P also specifies the minimum number of presample
conditional variances the software requires to initiate the model. For EGARCH models, P
specifies the largest lag among all past log conditional variances.

If you use name-value pair arguments to create a conditional variance model, then the
software implements one of these alternatives:

• If you specify 'GARCHLags', then P is the largest lag therein.
• If you specify 'GARCH', then P is the number of elements therein.

9 Functions — Alphabetical List

9-138

• Otherwise, P is 0.

Data Types: double

Q — Largest lag among past innovation terms
nonnegative integer

This property is read only.

Largest lag among the past innovation terms, specified as a nonnegative integer. That is:

• For GARCH models, Q is the degree of the ARCH polynomial.
• For EGARCH and GJR models, Q is the maximum degree between the ARCH and

leverage polynomials.

Q also specifies the minimum number of presample innovations the software needs to
initiate the model.

If you use name-value pair arguments to create a conditional variance model, then the
software implements one of these alternatives:

• If you specify 'ARCHLags', then Q is the largest lag therein.
• If you specify 'ARCH', then Q is the number of elements therein.
• Otherwise, Q is 0.
• For EGARCH and GJR models, Q is the maximum between the largest ARCH lag (as

determined by the previous items) and the largest leverage lag.

Note: For EGARCH and GJR models, the software defines the property Q as
the largest lag associated with nonzero ARCH and Leverage coefficients, or
max(ARCHLags,LeverageLags). Typically, the number and corresponding lags of
nonzero ARCH and Leverage coefficients are equivalent, but this is not a requirement. In
other words, the lengths of ARCH and Leverage might differ.

Data Types: double

Constant — Conditional variance model constant
NaN (default) | scalar

Conditional variance model constant, specified as a scalar.

 Conditional Variance Model Properties

9-139

For GARCH and GJR models, Constant is positive.

Data Types: double

GARCH — Coefficients corresponding to nonzero past conditional variance terms
cell vector of NaNs (default) | cell vector of scalars

Coefficients corresponding to nonzero past conditional variance terms, specified as a cell
vector of scalars. For GARCH and GJR models, GARCH contains positive coefficients.

If you did not specify 'GARCHLags' to create the model object, then the coefficients in
GARCH correspond to lags 1 through P.

If you specified 'GARCHLags' to create the model object, then the elements of GARCH
correspond to the elements of GARCHLags. That is, the conditional variance that is
GARCHLag(j) periods in the past has coefficient GARCH{j}. The length of GARCH and
GARCHLags are equivalent.

The software subjects GARCH coefficients to a near-zero tolerance exclusion test. That is,
the software:

1 Creates lag operator polynomials for each of the GARCH component
2 Compares each coefficient to the default lag operator zero tolerance, 1e-12
3 Includes a coefficient in the model if its magnitude is greater than 1e-12, and

excludes the coefficient otherwise (i.e., the software considers excluded coefficients
sufficiently close to zero).

For details, see LagOp.
Data Types: cell

ARCH — Coefficients corresponding to nonzero past innovation terms
cell vector of NaNs (default) | cell vector of scalars

Coefficients corresponding to the nonzero past innovation terms, specified as a cell
vector of scalars. For GARCH and GJR models, ARCH contains the positive coefficients
associated with the squared innovation terms. For EGARCH models, ARCH contains the
coefficients associated with the magnitude of the nonzero past standardized innovations.

If you did not specify 'ARCHLags' to create the model object, then the coefficients in
ARCH correspond to lags 1 through the length of ARCH.

9 Functions — Alphabetical List

9-140

If you specified 'ARCHLags' to create the model object, then the elements of ARCH
correspond to the elements of ARCHLags. That is, the innovation that is ARCHLags(j)
periods in the past has coefficient ARCH{j}. The length of ARCH and ARCHLags are
equivalent.

The software subjects ARCH coefficients to a near-zero tolerance exclusion test. That is,
the software:

1 Creates lag operator polynomials for each of the ARCH component
2 Compares each coefficient to the default lag operator zero tolerance, 1e-12
3 Includes a coefficient in the model if its magnitude is greater than 1e-12, and

excludes the coefficient otherwise (i.e., the software considers excluded coefficients
sufficiently close to zero).

For details, see LagOp.
Data Types: cell

UnconditionalVariance — Model unconditional variance
positive scalar

This property is read only.

The model unconditional variance s
e

2 , specified as a positive scalar.

• For GARCH models,

s
k

g a
e
2

1 1
1

=
- -

= =Â Â()

.

ii

P
jj

Q

• For EGARCH models,

s
k

g
e
2

1
1

=
-

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô

=Â
exp

()

.

ii

P

This estimator is biased for the true unconditional variance.
• For GJR models,

 Conditional Variance Model Properties

9-141

s k

g a x
e
2

1 1 1
1

1

2

=
- - -Ê

Ë
Á

ˆ
¯
˜= = =Â Â Âii

P
jj

Q
jj

Q
.

In the formulas, κ is the conditional variance model constant.
Data Types: double

Offset — Innovation mean model offset
0 (default) | scalar

Innovation mean model offset, or additive constant, specified as a scalar.
Data Types: double

Distribution — Conditional probability distribution of underlying disturbance process
data structure

Conditional probability distribution of the underlying disturbance process, specified as a
data structure.

The Name field stores the name of the distribution, which contains the string
'Gaussian' for the Gaussian distribution or 't' for the t distribution.

If Name is 't', then Distribution also contains the DoF field, which is the t-
distribution degrees of freedom.

By default, Distribution is struct('Name','Gaussian'). When you create the
model object, if you specify that the innovations process has a t distribution using the
'Distribution' name-value pair argument, then the DoF field is NaN by default.

Example: Mdl.Distribution = struct('t',5);

Data Types: struct

For EGARCH and GJR Models

Leverage — Coefficients corresponding to nonzero past leverage terms
cell vector of NaNs (default) | cell vector of scalars

Coefficients corresponding to the nonzero past leverage terms, specified as a cell vector of
scalars.

9 Functions — Alphabetical List

9-142

If you do not specify 'LeverageLags' to create the model object, then the coefficients in
Leverage correspond to lags 1 through the length of Leverage.

If you specify 'LeverageLags' to create the model object, then the elements of
Leverage correspond to the elements of LeverageLags. That is, the innovation that
is LeverageLags(j) periods in the past has coefficient Leverage{j}. The length of
Leverage and LeverageLags are equivalent.

The software subjects Leverage coefficients to a near-zero tolerance exclusion test. That
is, the software:

1 Creates lag operator polynomials for each of the Leverage component
2 Compares each coefficient to the default lag operator zero tolerance, 1e-12
3 Includes a coefficient in the model if its magnitude is greater than 1e-12, and

excludes the coefficient otherwise (i.e., the software considers excluded coefficients
sufficiently close to zero).

For details, see LagOp.
Data Types: cell

See Also
egarch | garch | gjr

More About
• “Conditional Variance Models” on page 6-2
• “GARCH Model” on page 6-3
• “EGARCH Model” on page 6-4
• “GJR Model” on page 6-6

Introduced in R2012a

 corrplot

9-143

corrplot
Plot variable correlations

Syntax

corrplot(X)

corrplot(X,Name,Value)

R = corrplot(___)

[R,PValue] = corrplot(___)

Description

corrplot(X) creates a matrix of plots showing correlations among pairs of variables in
X. Histograms of the variables appear along the matrix diagonal; scatter plots of variable
pairs appear off diagonal. The slopes of the least-squares reference lines in the scatter
plots are equal to the displayed correlation coefficients.

corrplot(X,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

R = corrplot(___) returns the correlation matrix of X displayed in the plots. You can
use any of the previous input arguments.

[R,PValue] = corrplot(___) additionally returns the p-values corresponding to the
elements of R, used to test the null hypothesis of no correlation against the alternative of
a nonzero correlation.

Examples

Plot Pearson's Correlation Coefficients

Plot correlations between multiple time series.

Load data on Canadian inflation and interest rates.

9 Functions — Alphabetical List

9-144

load Data_Canada

Plot the Pearson's linear correlation coefficients between all pairs of variables.

corrplot(DataTable)

The correlation plot shows that the short-term, medium-term, and long-term interest
rates are highly correlated.

 corrplot

9-145

To examine the timestamp of a datum, enter gname(dates) into the Command
Window, and the software presents an interactive cross hair over the plot. To expose the
timestamp of a datum, click it using the cross hair.

Plot and Test Kendall's Rank Correlation Coefficients

Plot Kendall's rank correlations between multiple time series. Conduct a hypothesis test
to determine which correlations are significantly different from zero.

Load data on Canadian inflation and interest rates.

load Data_Canada

Plot the Kendall's rank correlation coefficients between all pairs of variables. Specify a
hypothesis test to determine which correlations are significantly different from zero.

corrplot(DataTable,'type','Kendall','testR','on')

9 Functions — Alphabetical List

9-146

The correlation coefficients highlighted in red indicate which pairs of variables have
correlations significantly different from zero. For these time series, all pairs of variables
have correlations significantly different from zero.

Conduct Right-Tailed Correlation Tests

Test for correlations greater than zero between multiple time series.

Load data on Canadian inflation and interest rates.

load Data_Canada

 corrplot

9-147

Return the pairwise Pearson's correlations and corresponding p-values for testing the
null hypothesis of no correlation against the right-tailed alternative that the correlations
are greater than zero.

[R,PValue] = corrplot(DataTable,'tail','right');

PValue

PValue =

 1.0000 0.0000 0.0000 0.0000 0.0000

 0.0000 1.0000 0.0000 0.0000 0.0001

 0.0000 0.0000 1.0000 0.0000 0.0000

 0.0000 0.0000 0.0000 1.0000 0.0000

 0.0000 0.0001 0.0000 0.0000 1.0000

9 Functions — Alphabetical List

9-148

The output PValue has pairwise p-values all less than the default 0.05 significance level,
indicating that all pairs of variables have correlation significantly greater than zero.

Input Arguments

X — Data series
numeric matrix | tabular array

Data series that corrplot uses to plot correlations, specified as a numObs-by-numVars
numeric matrix or tabular array. X consists of numObs observations made on numVars
variables, and plots the correlations between the numVars variables.

 corrplot

9-149

If X is a tabular array, then the variables must be numeric.

Data Types: double | table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'tails','right','alpha',0.1 specifies right-tailed tests at the 0.1
significance level

'type' — Correlation coefficient
'Pearson' (default) | 'Kendall' | 'Spearman'

Correlation coefficient to compute, specified as the comma-separated pair consisting of
'type' and one of the following:

'Pearson' Pearson’s linear correlation coefficient
'Kendall' Kendall’s rank correlation coefficient (τ)
'Spearman' Spearman’s rank correlation coefficient (ρ)

Example: 'type','Kendall'

'rows' — Option for handling rows with NaN values
'pairwise' (default) | 'all' | 'complete'

Option for handling rows with NaN values, specified as the comma-separated pair
consisting of 'rows' and one of the following:

'all' Use all rows, regardless of NaNs.
'complete' Use only rows with no NaNs.
'pairwise' Use rows with no NaNs in column i or j to compute R(i,j).

Example: 'rows','complete'

9 Functions — Alphabetical List

9-150

'tail' — Alternative hypothesis
'both' (default) | 'right' | 'left'

Alternative hypothesis (Ha) used to compute the p-values, specified as the comma-
separated pair consisting of 'tail' and one of the following:

'both' Ha: Correlation is not zero.
'right' Ha: Correlation is greater than zero.
'left' Ha: Correlation is less than zero.

Example: 'tail','left'

'varNames' — Variable names
cell array of strings

Variable names to be used in the plots, specified as the comma-separated pair consisting
of 'varNames' and a cell array of strings with numVars names. All variable names are
truncated to the first five characters.

• If X is a matrix, then the default variable names are {'var1','var2',...}.
• If X is a tabular array, then the default variable names are

X.Properties.VariableNames.

Example: 'varNames',{'CPF','AGE','BBD'}

'testR' — Significance tests indicator
'off' (default) | 'on'

Significance tests indicator for whether or not to test for significant correlations, specified
as the comma-separated pair consisting of 'testR' and one of 'off' or 'on'. If you
specify the value 'on', significant correlations are highlighted in red in the correlation
matrix plot.
Example: 'testR','on'

'alpha' — Significance level
0.05 (default) | scalar between 0 and 1

Significance level for tests of correlation, specified as a scalar between 0 and 1.
Example: 'alpha',0.01

 corrplot

9-151

Output Arguments

R — Correlations
matrix

Correlations between pairs of variables in X that are displayed in the plots, returned as a
numVars-by-numVars matrix.

PValue — p-values
matrix

p-values corresponding to significance tests on the elements of R, returned as a numVars-
by-numVars matrix. The p-values are used to test the hypothesis of no correlation
against the alternative of nonzero correlation.

More About

Tips

• The option 'rows','pairwise', which is the default, can return a correlation
matrix that is not positive definite. The 'complete' option always returns a positive-
definite matrix, but in general the estimates are based on fewer observations.

• Use gname to identify points in the plots.

Algorithms

The software computes:

• p-values for Pearson’s correlation by transforming the correlation to create a t-
statistic with numObs – 2 degrees of freedom. The transformation is exact when X is
normal.

• p-values for Kendall’s and Spearman’s rank correlations using either the exact
permutation distributions (for small sample sizes) or large-sample approximations.

• p-values for two-tailed tests by doubling the more significant of the two one-tailed p-
values.

See Also
collintest | corr | gname

9 Functions — Alphabetical List

9-152

Introduced in R2012a

 crosscorr

9-153

crosscorr
Sample cross-correlation

Syntax

crosscorr(y1,y2)

crosscorr(y1,y2,numLags)

crosscorr(y1,y2,numLags,numSTD)

xcf = crosscorr(y1,y2)

xcf = crosscorr(y1,y2,numLags)

xcf = crosscorr(y1,y2,numLags,numSTD)

[xcf,lags,bounds] = crosscorr(___)

Description

crosscorr(y1,y2) plots the sample cross correlation (XCF) between the two
univariate, stochastic time series y1 and y2 with confidence bounds.

crosscorr(y1,y2,numLags) plots the XCF, where numLags indicates the number of
lags in the sample XCF.

crosscorr(y1,y2,numLags,numSTD) plots the XCF, where numSTD specifies the
number of standard deviations of the sample XCF estimation error.

xcf = crosscorr(y1,y2) returns the sample cross-correlation function (XCF)
between the two univariate, stochastic time series y1 and y2.

xcf = crosscorr(y1,y2,numLags) returns the XCF, where numLags specifies the
number of lags in the sample XCF.

xcf = crosscorr(y1,y2,numLags,numSTD) returns the XCF, where numSTD
specifies the number of standard deviations of the sample ACF estimation error.

[xcf,lags,bounds] = crosscorr(___) additionally returns the lags (lags)
corresponding to the ACF and the approximate upper and lower confidence bounds
(bounds), using any of the input arguments in the previous syntaxes.

9 Functions — Alphabetical List

9-154

Examples

Plot the Cross Covariance of Two Time Series

Generate 100 random deviates from a Gaussian distribution with mean 0 and variance 1.

rng(1); % For reproducibility

x = randn(100,1);

Create a 4-period delayed version of x.

y = lagmatrix(x,4);

Compute and plot the XCF.

y(isnan(y)) = 0; % crosscorr does not accept NaNs

[XCF,lags,bounds] = crosscorr(x,y);

bounds

crosscorr(x,y)

bounds =

 0.2000

 -0.2000

 crosscorr

9-155

bounds displays the upper and lower confidence bounds, which are the horizontal lines
in the XCF plot. As you should expect, XCF peaks at lag 4.

Specify More Lags for the Cross-Correlation Plot

Specify the AR(1) model for the first series:

where is Gaussian with mean 0 and variance 1.

MdlY1 = arima('AR',0.3,'Constant',2,'Variance',1);

Simulate data from Mdl.

9 Functions — Alphabetical List

9-156

rng(1);

T = 1000;

y1 = simulate(MdlY1,T);

Simulate data for the second series by inducing correlation at lag 36.

y2 = [randn(36,1);y1(1:end-36)+randn(T-36,1)*0.1];

Plot the XCF using the default settings.

figure

crosscorr(y1,y2,[],3)

The plot does not indicate significant cross-correlation between the two series.

 crosscorr

9-157

Plot the XCF for 60 lags on either side of lag 0.

figure

crosscorr(y1,y2,60,3)

The plot shows significant correlation at lag 36, as expected.

Input Arguments

y1 — First observed univariate time series
vector

9 Functions — Alphabetical List

9-158

First observed univariate time series for which the software computes or plots the XCF,
specified as a vector. The last element of y1 contains the most recent observation.

Data Types: double

y2 — Second observed univariate time series
vector

Second observed univariate time series for which the software computes or plots the
XCF, specified as a vector. The last element of y2 contains the most recent observation.

Data Types: double

numLags — Number of lags
min(20,min(length(y1),length(y2))-1) (default) | positive integer

Number of lags of the XCF that the software returns or plots, specified as a positive
integer. crosscorr returns the XCF at lags 0, ±1, ±2,... ±numLags.

For example, crosscorr(y1,y2,10) plots the XCF for lags 0, ±1, ±2,...,±10.

numSTD — Number of standard deviations
2 (default) | positive scalar

Number of standard deviations for the sample XCF estimation error assuming y1 and
y2 are uncorrelated. For example, crosscorr(y1,y2,[],1.5) plots the XCF with
estimation error bounds 1.5 standard deviations away from 0.

The default (numSTD = 2) corresponds to approximate 95% confidence bounds.

Output Arguments

xcf — Sample XCF
vector

Sample XCF between the univariate time series y1 and y2, returned as a vector of length
2*numLags + 1.

The elements of xcf correspond to lags 0, ±1, ±2,... ±numLags, with the center element
containing the XCF for lag 0.

The software returns xcf in the same orientation as y1.

 crosscorr

9-159

lags — Sample XCF lags
vector

Sample XCF lags, returned as a vector. Specifically, lags = -numLags:numLags.

bounds — Approximate confidence bounds
vector

Approximate confidence bounds of the XCF assuming y1 and y2 are uncorrelated,
returned as a two-element vector.

More About

Sample Cross Correlation

The sample cross covariance function is an estimate of the covariance between two time
series, y1t and y2t, at lags k = 0, ±1, ±2,....

For data pairs (y11,y21), (y12,y22),...,(y1T,y2T), an estimate of the lag k cross-covariance is

c k
T

T

y y y y k

y

y y
t

T k

t t k

t

T k1 2

1
0 1 2

1

1

1 1 2 2

1

2

()

; , , ,,

=

-() -() =
=

-

+

=

+

Â

Â

…

tt t ky y y k-() -() = - -

Ï

Ì

Ô
Ô

Ó

Ô
Ô -2 1 1 0 1 2, ; , , ,

,

…

where y
1 and y

2 are the sample means of the series.

The sample standard deviations of the series are:

•
s c

y y y1 1 1
0= (), where c Var yy y

1 1
0 1() ().=

•
s c

y y y2 2 2
0= () , where c Var yy y

2 2
0 2() ().=

An estimate of the cross-correlation is

r
c

s
k

k

s
ky y

y y

y y
1 2

1 2

1 2

0 1 2()
()

, , ,;= = ± ± ….

9 Functions — Alphabetical List

9-160

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
crosscorr | filter | parcorr

Introduced before R2006a

 disp

9-161

disp

Class: dssm

Display summary information for diffuse state-space model

Syntax

disp(Mdl)

disp(Mdl,params)

disp(___ ,Name,Value)

Description

disp(Mdl) displays summary information for the diffuse state-space model (dssm model
object) Mdl. The display includes the state and observation equations as a system of
scalar equations to facilitate model verification. The display also includes the coefficient
dimensionalities, notation, and initial state distribution types.

The software displays unknown parameter values using c1 for the first unknown
parameter, c2 for the second unknown parameter, and so on.

For time-varying models with more than 20 different sets of equations, the software
displays the first and last 10 groups in terms of time (the last group is the latest).

disp(Mdl,params) displays the dssm model Mdl and applies initial values to the model
parameters (params).

disp(___ ,Name,Value) displays Mdl using additional options specified by one or
more Name,Value pair arguments. For example, you can specify the number of digits to
display after the decimal point for model coefficients, or the number of terms per row for
state and observation equations. You can use any of the input arguments in the previous
syntaxes.

9 Functions — Alphabetical List

9-162

Tips

• The software always displays explicitly specified state-space models (that is, models
you create without using a parameter-to-matrix mapping function). Try explicitly
specifying state-space models first so that you can verify them using disp.

• A parameter-to-matrix function that you specify to create Mdl is a black box to the
software. Therefore, the software might not display complex, implicitly defined state-
space models.

Input Arguments

Mdl — Diffuse state-space model
dssm model object

Diffuse state-space model, specified as a dssm model object returned by dssm or estimate.

params — Initial values for unknown parameters
[] (default) | numeric vector

Initial values for unknown parameters, specified as a numeric vector.

The elements of params correspond to the unknown parameters in the state-space model
matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and covariance
matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise, following the order A, B, C, D, Mean0, Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-to-
matrix mapping function), then you must set initial parameter values for the state-
space model matrices, initial state values, and state types within the parameter-to-
matrices mapping function.

To set the type of initial state distribution, see dssm.
Data Types: double

 disp

9-163

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'MaxStateEq' — Maximum number of equations to display
100 (default) | positive integer

Maximum number of equations to display, specified as the comma-separated pair
consisting of 'MaxStateEq' and a positive integer. If the maximum number of states
among all periods is no larger than MaxStateEq, then the software displays the model
equation by equation.
Example: 'MaxStateEq',10

Data Types: double

'NumDigits' — Number of digits to display after decimal point
2 (default) | nonnegative integer

Number of digits to display after the decimal point for known or estimated model
coefficients, specified as the comma-separated pair consisting of 'NumDigits' and a
nonnegative integer.
Example: 'NumDigits',0

Data Types: double

'Period' — Period to display state and observation equations
positive integer

Period to display state and observation equations for time-varying state-space models,
specified as the comma-separated pair consisting of 'Period' and a positive integer.

By default, the software displays state and observation equations for all periods.

If Period exceeds the maximum number of observations that the model supports, then
the software displays state and observation equations for all periods. If the model has
more than 20 different sets of equations, then the software displays the first and last 10
groups in terms of time (the last group is the latest).
Example: 'Period',120

9 Functions — Alphabetical List

9-164

Data Types: double

'PredictorsPerRow' — Number of equation terms to display per row
5 (default) | positive integer

Number of equation terms to display per row, specified as the comma-separated pair
consisting of 'PredictorsPerRow' and a positive integer.

Example: 'PredictorsPerRow',3

Data Types: double

Algorithms

• If you implicitly create Mdl, and if the software cannot infer locations for unknown
parameters from the parameter-to-matrix function, then the software evaluates these
parameters using their initial values and displays them as numeric values. This
evaluation can occur when the parameter-to-matrix function has a random, unknown
coefficient, which is a convenient form for a Monte Carlo study.

• The software displays the initial state distributions as numeric values. This type
of display occurs because, in many cases, the initial distribution depends on the
values of the state equation matrices A and B. These values are often a complicated
function of unknown parameters. In such situations, the software does not display
the initial distribution symbolically. Additionally, if Mean0 and Cov0 contain
unknown parameters, then the software evaluates and displays numeric values for
the unknown parameters.

Examples

Verify Explicitly Created Diffuse State-Space Model

An important step in state-space model analysis is to ensure that the software
interpretes the state and observation equation matrices as you intend. Use disp to help
you verify the diffuse state-space model.

Define a diffuse state-space model, where the state equation is an AR(2) model, and the
observation equation is the difference between the current and previous state plus the
observation error. Symbolically, the state-space model is

 disp

9-165

Assume the initial state distribution is diffuse.

There are three states: is the AR(2) process, represents , and is the
AR(2) model constant.

Define the state-transition matrix.

A = [0.6 0.2 0.5; 1 0 0; 0 0 1];

Define the state-disturbance-loading matrix.

B = [0.3; 0; 0];

Define the measurement-sensitivity matrix.

C = [1 -1 0];

Define the observation-innovation matrix.

D = 0.1;

Specify the state-space model using dssm. Identify the type of initial state distributions
(StateType) by noting the following:

• is an AR(2) process with diffuse initial distribution.
• is the same AR(2) process as .
• is the constant 1 for all periods.

StateType = [2 2 1];

Mdl = dssm(A,B,C,D,'StateType',StateType);

Mdl is a dssm model.

9 Functions — Alphabetical List

9-166

Verify the diffuse state-space model using disp.

disp(Mdl)

State-space model type: dssm

State vector length: 3

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations:

x1(t) = (0.60)x1(t-1) + (0.20)x2(t-1) + (0.50)x3(t-1) + (0.30)u1(t)

x2(t) = x1(t-1)

x3(t) = x3(t-1)

Observation equation:

y1(t) = x1(t) - x2(t) + (0.10)e1(t)

Initial state distribution:

Initial state means

 x1 x2 x3

 0 0 1

Initial state covariance matrix

 x1 x2 x3

 x1 Inf 0 0

 x2 0 Inf 0

 x3 0 0 0

State types

 x1 x2 x3

 Diffuse Diffuse Constant

 disp

9-167

Cov0 has infinite variance for the AR(2) states.

Display Diffuse State-Space Model with Initial Values

Create a diffuse state-space model containing two independent, autoregressive states,
and where the observations are the deterministic sum of the two states. Symbolically, the
system of equations is

Specify the state-transition matrix.

A = [NaN 0; 0 NaN];

Specify the state-disturbance-loading matrix.

B = [NaN 0; 0 NaN];

Specify the measurement-sensitivity matrix.

C = [1 1];

Create the diffuse state-space model by using dssm. Specify that the first state is
stationary and the second is diffuse.

StateType = [0; 2];

Mdl = dssm(A,B,C,'StateType',StateType);

Mdl is a dssm model object.

Display the state-space model. Specify initial values for the unknown parameters and the
initial state means and covariance matrix as follows:

• .
• .

9 Functions — Alphabetical List

9-168

params = [0.1; 0.1; 0.2; 0.2];

disp(Mdl,params)

State-space model type: dssm

State vector length: 2

Observation vector length: 1

State disturbance vector length: 2

Observation innovation vector length: 0

Sample size supported by model: Unlimited

Unknown parameters for estimation: 4

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c3)u1(t)

x2(t) = (c2)x2(t-1) + (c4)u2(t)

Observation equation:

y1(t) = x1(t) + x2(t)

Initial state distribution:

Initial state means

 x1 x2

 0 0

Initial state covariance matrix

 x1 x2

 x1 0.04 0

 x2 0 Inf

State types

 x1 x2

 Stationary Diffuse

 disp

9-169

The software computes the initial state mean and variance of the stationary state using
its stationary distribution.

Explicitly Create and Display Time-Varying Diffuse State-Space Model

From periods 1 through 50, the state model is a diffuse AR(2) and a stationary MA(1)
model, and the observation model is the sum of the two states. From periods 51 through
100, the state model includes the first AR(2) model only. Symbolically, the state-space
model is, for periods 1 through 50,

for period 51,

and for periods 52 through 100,

Specify the state-transition coefficient matrix.

A1 = {[NaN NaN 0 0; 1 0 0 0; 0 0 0 NaN; 0 0 0 0]};

A2 = {[NaN NaN 0 0; 1 0 0 0]};

A3 = {[NaN NaN; 1 0]};

A = [repmat(A1,50,1);A2;repmat(A3,49,1)];

Specify the state-disturbance-loading coefficient matrix.

B1 = {[NaN 0 0 0; 0 0 0 0; 0 0 1 0; 0 0 1 0]};

B2 = {[NaN 0 0 0; 0 0 0 0]};

B3 = {[NaN 0; 0 0]};

B = [repmat(B1,50,1);B2;repmat(B3,49,1)];

9 Functions — Alphabetical List

9-170

Specify the measurement-sensitivity coefficient matrix.

C1 = {[NaN 0 NaN 0]};

C3 = {[NaN 0]};

C = [repmat(C1,50,1);repmat(C3,50,1)];

Specify the observation-distrubance coefficient matrix.

D1 = {NaN};

D3 = {NaN};

D = [repmat(D1,50,1);repmat(D3,50,1)];

Create the diffuse state-space model. Specify that the initial state distributions are
diffuse for the states composing the AR model and stationary for those composing the MA
model.

StateType = [2; 2; 0; 0];

Mdl = dssm(A,B,C,D,'StateType',StateType);

Mdl is an dssm model object.

The model is large and contains a different set of parameters for each period. The
software displays state and observation equations for the first 10 and last 10 periods. You
can choose which periods to display the equations for using the 'Period' name-value
pair argument.

Display the diffuse state-space model, and use 'Period' display the state and
observation equations for the 50th, 51st, and 52nd periods.

disp(Mdl,'Period',50)

disp(Mdl,'Period',51)

disp(Mdl,'Period',52)

State-space model type: dssm

State vector length: Time-varying

Observation vector length: 1

State disturbance vector length: Time-varying

Observation innovation vector length: 1

Sample size supported by model: 100

Unknown parameters for estimation: 600

State variables: x1, x2,...

State disturbances: u1, u2,...

 disp

9-171

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations (in period 50):

x1(t) = (c148)x1(t-1) + (c149)x2(t-1) + (c300)u1(t)

x2(t) = x1(t-1)

x3(t) = (c150)x4(t-1) + u3(t)

x4(t) = u3(t)

Time-varying transition matrix A contains unknown parameters:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40

c41 c42 c43 c44 c45 c46 c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60

c61 c62 c63 c64 c65 c66 c67 c68 c69 c70 c71 c72 c73 c74 c75 c76 c77 c78 c79 c80

c81 c82 c83 c84 c85 c86 c87 c88 c89 c90 c91 c92 c93 c94 c95 c96 c97 c98 c99 c100

c101 c102 c103 c104 c105 c106 c107 c108 c109 c110 c111 c112 c113 c114 c115 c116 c117 c118 c119 c120

c121 c122 c123 c124 c125 c126 c127 c128 c129 c130 c131 c132 c133 c134 c135 c136 c137 c138 c139 c140

c141 c142 c143 c144 c145 c146 c147 c148 c149 c150 c151 c152 c153 c154 c155 c156 c157 c158 c159 c160

c161 c162 c163 c164 c165 c166 c167 c168 c169 c170 c171 c172 c173 c174 c175 c176 c177 c178 c179 c180

c181 c182 c183 c184 c185 c186 c187 c188 c189 c190 c191 c192 c193 c194 c195 c196 c197 c198 c199 c200

c201 c202 c203 c204 c205 c206 c207 c208 c209 c210 c211 c212 c213 c214 c215 c216 c217 c218 c219 c220

c221 c222 c223 c224 c225 c226 c227 c228 c229 c230 c231 c232 c233 c234 c235 c236 c237 c238 c239 c240

c241 c242 c243 c244 c245 c246 c247 c248 c249 c250

Time-varying state disturbance loading matrix B contains unknown parameters:

c251 c252 c253 c254 c255 c256 c257 c258 c259 c260 c261 c262 c263 c264 c265 c266 c267 c268 c269 c270

c271 c272 c273 c274 c275 c276 c277 c278 c279 c280 c281 c282 c283 c284 c285 c286 c287 c288 c289 c290

c291 c292 c293 c294 c295 c296 c297 c298 c299 c300 c301 c302 c303 c304 c305 c306 c307 c308 c309 c310

c311 c312 c313 c314 c315 c316 c317 c318 c319 c320 c321 c322 c323 c324 c325 c326 c327 c328 c329 c330

c331 c332 c333 c334 c335 c336 c337 c338 c339 c340 c341 c342 c343 c344 c345 c346 c347 c348 c349 c350

Observation equation (in period 50):

y1(t) = (c449)x1(t) + (c450)x3(t) + (c550)e1(t)

Time-varying measurement sensitivity matrix C contains unknown parameters:

c351 c352 c353 c354 c355 c356 c357 c358 c359 c360 c361 c362 c363 c364 c365 c366 c367 c368 c369 c370

c371 c372 c373 c374 c375 c376 c377 c378 c379 c380 c381 c382 c383 c384 c385 c386 c387 c388 c389 c390

c391 c392 c393 c394 c395 c396 c397 c398 c399 c400 c401 c402 c403 c404 c405 c406 c407 c408 c409 c410

c411 c412 c413 c414 c415 c416 c417 c418 c419 c420 c421 c422 c423 c424 c425 c426 c427 c428 c429 c430

c431 c432 c433 c434 c435 c436 c437 c438 c439 c440 c441 c442 c443 c444 c445 c446 c447 c448 c449 c450

c451 c452 c453 c454 c455 c456 c457 c458 c459 c460 c461 c462 c463 c464 c465 c466 c467 c468 c469 c470

c471 c472 c473 c474 c475 c476 c477 c478 c479 c480 c481 c482 c483 c484 c485 c486 c487 c488 c489 c490

c491 c492 c493 c494 c495 c496 c497 c498 c499 c500

Time-varying observation innovation loading matrix D contains unknown parameters:

c501 c502 c503 c504 c505 c506 c507 c508 c509 c510 c511 c512 c513 c514 c515 c516 c517 c518 c519 c520

c521 c522 c523 c524 c525 c526 c527 c528 c529 c530 c531 c532 c533 c534 c535 c536 c537 c538 c539 c540

9 Functions — Alphabetical List

9-172

c541 c542 c543 c544 c545 c546 c547 c548 c549 c550 c551 c552 c553 c554 c555 c556 c557 c558 c559 c560

c561 c562 c563 c564 c565 c566 c567 c568 c569 c570 c571 c572 c573 c574 c575 c576 c577 c578 c579 c580

c581 c582 c583 c584 c585 c586 c587 c588 c589 c590 c591 c592 c593 c594 c595 c596 c597 c598 c599 c600

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types

 x1 x2 x3 x4

 Diffuse Diffuse Stationary Stationary

State-space model type: dssm

State vector length: Time-varying

Observation vector length: 1

State disturbance vector length: Time-varying

Observation innovation vector length: 1

Sample size supported by model: 100

Unknown parameters for estimation: 600

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations (in period 51):

x1(t) = (c151)x1(t-1) + (c152)x2(t-1) + (c301)u1(t)

x2(t) = x1(t-1)

Time-varying transition matrix A contains unknown parameters:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40

c41 c42 c43 c44 c45 c46 c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60

c61 c62 c63 c64 c65 c66 c67 c68 c69 c70 c71 c72 c73 c74 c75 c76 c77 c78 c79 c80

c81 c82 c83 c84 c85 c86 c87 c88 c89 c90 c91 c92 c93 c94 c95 c96 c97 c98 c99 c100

c101 c102 c103 c104 c105 c106 c107 c108 c109 c110 c111 c112 c113 c114 c115 c116 c117 c118 c119 c120

c121 c122 c123 c124 c125 c126 c127 c128 c129 c130 c131 c132 c133 c134 c135 c136 c137 c138 c139 c140

c141 c142 c143 c144 c145 c146 c147 c148 c149 c150 c151 c152 c153 c154 c155 c156 c157 c158 c159 c160

c161 c162 c163 c164 c165 c166 c167 c168 c169 c170 c171 c172 c173 c174 c175 c176 c177 c178 c179 c180

c181 c182 c183 c184 c185 c186 c187 c188 c189 c190 c191 c192 c193 c194 c195 c196 c197 c198 c199 c200

c201 c202 c203 c204 c205 c206 c207 c208 c209 c210 c211 c212 c213 c214 c215 c216 c217 c218 c219 c220

c221 c222 c223 c224 c225 c226 c227 c228 c229 c230 c231 c232 c233 c234 c235 c236 c237 c238 c239 c240

 disp

9-173

c241 c242 c243 c244 c245 c246 c247 c248 c249 c250

Time-varying state disturbance loading matrix B contains unknown parameters:

c251 c252 c253 c254 c255 c256 c257 c258 c259 c260 c261 c262 c263 c264 c265 c266 c267 c268 c269 c270

c271 c272 c273 c274 c275 c276 c277 c278 c279 c280 c281 c282 c283 c284 c285 c286 c287 c288 c289 c290

c291 c292 c293 c294 c295 c296 c297 c298 c299 c300 c301 c302 c303 c304 c305 c306 c307 c308 c309 c310

c311 c312 c313 c314 c315 c316 c317 c318 c319 c320 c321 c322 c323 c324 c325 c326 c327 c328 c329 c330

c331 c332 c333 c334 c335 c336 c337 c338 c339 c340 c341 c342 c343 c344 c345 c346 c347 c348 c349 c350

Observation equation (in period 51):

y1(t) = (c451)x1(t) + (c551)e1(t)

Time-varying measurement sensitivity matrix C contains unknown parameters:

c351 c352 c353 c354 c355 c356 c357 c358 c359 c360 c361 c362 c363 c364 c365 c366 c367 c368 c369 c370

c371 c372 c373 c374 c375 c376 c377 c378 c379 c380 c381 c382 c383 c384 c385 c386 c387 c388 c389 c390

c391 c392 c393 c394 c395 c396 c397 c398 c399 c400 c401 c402 c403 c404 c405 c406 c407 c408 c409 c410

c411 c412 c413 c414 c415 c416 c417 c418 c419 c420 c421 c422 c423 c424 c425 c426 c427 c428 c429 c430

c431 c432 c433 c434 c435 c436 c437 c438 c439 c440 c441 c442 c443 c444 c445 c446 c447 c448 c449 c450

c451 c452 c453 c454 c455 c456 c457 c458 c459 c460 c461 c462 c463 c464 c465 c466 c467 c468 c469 c470

c471 c472 c473 c474 c475 c476 c477 c478 c479 c480 c481 c482 c483 c484 c485 c486 c487 c488 c489 c490

c491 c492 c493 c494 c495 c496 c497 c498 c499 c500

Time-varying observation innovation loading matrix D contains unknown parameters:

c501 c502 c503 c504 c505 c506 c507 c508 c509 c510 c511 c512 c513 c514 c515 c516 c517 c518 c519 c520

c521 c522 c523 c524 c525 c526 c527 c528 c529 c530 c531 c532 c533 c534 c535 c536 c537 c538 c539 c540

c541 c542 c543 c544 c545 c546 c547 c548 c549 c550 c551 c552 c553 c554 c555 c556 c557 c558 c559 c560

c561 c562 c563 c564 c565 c566 c567 c568 c569 c570 c571 c572 c573 c574 c575 c576 c577 c578 c579 c580

c581 c582 c583 c584 c585 c586 c587 c588 c589 c590 c591 c592 c593 c594 c595 c596 c597 c598 c599 c600

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types

 x1 x2 x3 x4

 Diffuse Diffuse Stationary Stationary

State-space model type: dssm

State vector length: Time-varying

Observation vector length: 1

State disturbance vector length: Time-varying

Observation innovation vector length: 1

Sample size supported by model: 100

Unknown parameters for estimation: 600

9 Functions — Alphabetical List

9-174

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations (in period 52):

x1(t) = (c153)x1(t-1) + (c154)x2(t-1) + (c302)u1(t)

x2(t) = x1(t-1)

Time-varying transition matrix A contains unknown parameters:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40

c41 c42 c43 c44 c45 c46 c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60

c61 c62 c63 c64 c65 c66 c67 c68 c69 c70 c71 c72 c73 c74 c75 c76 c77 c78 c79 c80

c81 c82 c83 c84 c85 c86 c87 c88 c89 c90 c91 c92 c93 c94 c95 c96 c97 c98 c99 c100

c101 c102 c103 c104 c105 c106 c107 c108 c109 c110 c111 c112 c113 c114 c115 c116 c117 c118 c119 c120

c121 c122 c123 c124 c125 c126 c127 c128 c129 c130 c131 c132 c133 c134 c135 c136 c137 c138 c139 c140

c141 c142 c143 c144 c145 c146 c147 c148 c149 c150 c151 c152 c153 c154 c155 c156 c157 c158 c159 c160

c161 c162 c163 c164 c165 c166 c167 c168 c169 c170 c171 c172 c173 c174 c175 c176 c177 c178 c179 c180

c181 c182 c183 c184 c185 c186 c187 c188 c189 c190 c191 c192 c193 c194 c195 c196 c197 c198 c199 c200

c201 c202 c203 c204 c205 c206 c207 c208 c209 c210 c211 c212 c213 c214 c215 c216 c217 c218 c219 c220

c221 c222 c223 c224 c225 c226 c227 c228 c229 c230 c231 c232 c233 c234 c235 c236 c237 c238 c239 c240

c241 c242 c243 c244 c245 c246 c247 c248 c249 c250

Time-varying state disturbance loading matrix B contains unknown parameters:

c251 c252 c253 c254 c255 c256 c257 c258 c259 c260 c261 c262 c263 c264 c265 c266 c267 c268 c269 c270

c271 c272 c273 c274 c275 c276 c277 c278 c279 c280 c281 c282 c283 c284 c285 c286 c287 c288 c289 c290

c291 c292 c293 c294 c295 c296 c297 c298 c299 c300 c301 c302 c303 c304 c305 c306 c307 c308 c309 c310

c311 c312 c313 c314 c315 c316 c317 c318 c319 c320 c321 c322 c323 c324 c325 c326 c327 c328 c329 c330

c331 c332 c333 c334 c335 c336 c337 c338 c339 c340 c341 c342 c343 c344 c345 c346 c347 c348 c349 c350

Observation equation (in period 52):

y1(t) = (c452)x1(t) + (c552)e1(t)

Time-varying measurement sensitivity matrix C contains unknown parameters:

c351 c352 c353 c354 c355 c356 c357 c358 c359 c360 c361 c362 c363 c364 c365 c366 c367 c368 c369 c370

c371 c372 c373 c374 c375 c376 c377 c378 c379 c380 c381 c382 c383 c384 c385 c386 c387 c388 c389 c390

c391 c392 c393 c394 c395 c396 c397 c398 c399 c400 c401 c402 c403 c404 c405 c406 c407 c408 c409 c410

c411 c412 c413 c414 c415 c416 c417 c418 c419 c420 c421 c422 c423 c424 c425 c426 c427 c428 c429 c430

c431 c432 c433 c434 c435 c436 c437 c438 c439 c440 c441 c442 c443 c444 c445 c446 c447 c448 c449 c450

c451 c452 c453 c454 c455 c456 c457 c458 c459 c460 c461 c462 c463 c464 c465 c466 c467 c468 c469 c470

c471 c472 c473 c474 c475 c476 c477 c478 c479 c480 c481 c482 c483 c484 c485 c486 c487 c488 c489 c490

c491 c492 c493 c494 c495 c496 c497 c498 c499 c500

Time-varying observation innovation loading matrix D contains unknown parameters:

c501 c502 c503 c504 c505 c506 c507 c508 c509 c510 c511 c512 c513 c514 c515 c516 c517 c518 c519 c520

c521 c522 c523 c524 c525 c526 c527 c528 c529 c530 c531 c532 c533 c534 c535 c536 c537 c538 c539 c540

 disp

9-175

c541 c542 c543 c544 c545 c546 c547 c548 c549 c550 c551 c552 c553 c554 c555 c556 c557 c558 c559 c560

c561 c562 c563 c564 c565 c566 c567 c568 c569 c570 c571 c572 c573 c574 c575 c576 c577 c578 c579 c580

c581 c582 c583 c584 c585 c586 c587 c588 c589 c590 c591 c592 c593 c594 c595 c596 c597 c598 c599 c600

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types

 x1 x2 x3 x4

 Diffuse Diffuse Stationary Stationary

The software attributes a different set of coefficients for each period. You might
experience numerical issues when you estimate such models. To reuse parameters among
groups of periods, consider creating a parameter-to-matrix mapping function.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
dssm | estimate | filter | forecast | smooth | ssm

More About
• “What Are State-Space Models?” on page 8-3

Introduced in R2015b

9 Functions — Alphabetical List

9-176

disp

Class: ssm

Display summary information for state-space model

Syntax

disp(Mdl)

disp(Mdl,params)

disp(___ ,Name,Value)

Description

disp(Mdl) displays summary information for the state-space model (ssm model object)
Mdl. The display includes the state and observation equations as a system of scalar
equations to facilitate model verification. The display also includes the coefficient
dimensionalities, notation, and initial state distribution types.

The software displays unknown parameter values using c1 for the first unknown
parameter, c2 for the second unknown parameter, and so on.

For time-varying models with more than 20 different sets of equations, the software
displays the first and last 10 groups in terms of time (the last group is the latest).

disp(Mdl,params) displays the ssm model Mdl and applies initial values to the model
parameters (params).

disp(___ ,Name,Value) displays the ssm model with additional options specified by
one or more Name,Value pair arguments. For example, you can specify the number of
digits to display after the decimal point for model coefficients, or the number of terms per
row for state and observation equations. You can use any of the input arguments in the
previous syntaxes.

 disp

9-177

Tips

• The software always displays explicitly specified state-space models (that is, models
you create without using a parameter-to-matrix mapping function). Try explicitly
specifying state-space models first so that you can verify them using disp.

• A parameter-to-matrix function that you specify to create Mdl is a black box to the
software. Therefore, the software might not display complex, implicitly defined state-
space models.

Input Arguments

Mdl — Standard state-space model
ssm model object

Standard state-space model, specified as an ssm model object returned by ssm or
estimate.

params — Initial values for unknown parameters
[] (default) | numeric vector

Initial values for unknown parameters, specified as a numeric vector.

The elements of params correspond to the unknown parameters in the state-space model
matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and covariance
matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise, following the order A, B, C, D, Mean0, Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-to-
matrix mapping function), then you must set initial parameter values for the state-
space model matrices, initial state values, and state types within the parameter-to-
matrices mapping function.

To set the type of initial state distribution, see ssm.
Data Types: double

9 Functions — Alphabetical List

9-178

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'MaxStateEq' — Maximum number of equations to display
100 (default) | positive integer

Maximum number of equations to display, specified as the comma-separated pair
consisting of 'MaxStateEq' and a positive integer. If the maximum number of states
among all periods is no larger than MaxStateEq, then the software displays the model
equation by equation.
Example: 'MaxStateEq',10

Data Types: double

'NumDigits' — Number of digits to display after decimal point
2 (default) | nonnegative integer

Number of digits to display after the decimal point for known or estimated model
coefficients, specified as the comma-separated pair consisting of 'NumDigits' and a
nonnegative integer.
Example: 'NumDigits',0

Data Types: double

'Period' — Period to display state and observation equations
positive integer

Period to display state and observation equations for time-varying state-space models,
specified as the comma-separated pair consisting of 'Period' and a positive integer.

By default, the software displays state and observation equations for all periods.

If Period exceeds the maximum number of observations that the model supports, then
the software displays state and observation equations for all periods. If the model has
more than 20 different sets of equations, then the software displays the first and last 10
groups in terms of time (the last group is the latest).
Example: 'Period',120

 disp

9-179

Data Types: double

'PredictorsPerRow' — Number of equation terms to display per row
5 (default) | positive integer

Number of equation terms to display per row, specified as the comma-separated pair
consisting of 'PredictorsPerRow' and a positive integer.

Example: 'PredictorsPerRow',3

Data Types: double

Examples

Verify Explicitly Created State-Space Model

An important step in state-space model analysis is to ensure that the software
interpretes the state and observation equation matrices as you intend. Use disp to help
you verify the state-space model.

Define a state-space model, where the state equation is an AR(2) model, and the
observation equation is the difference between the current and previous state plus the
observation error. Symbolically, the state-space model is

There are three states: is the AR(2) process, represents , and is the
AR(2) model constant.

Define the state-transition matrix.

A = [0.6 0.2 0.5; 1 0 0; 0 0 1];

Define the state-disturbance-loading matrix.

9 Functions — Alphabetical List

9-180

B = [0.3; 0; 0];

Define the measurement-sensitivity matrix.

C = [1 -1 0];

Define the observation-innovation matrix.

D = 0.1;

Specify the state-space model using ssm. Set the initial-state mean (Mean0) and
covariance matrix (Cov0). Identify the type of initial state distributions (StateType) by
noting the following:

• is a stationary, AR(2) process.
• is also a stationary, AR(2) process.
• is the constant 1 for all periods.

Mean0 = [0; 0; 1]; % The mean of the AR(2)

varAR2 = 0.3*(1 - 0.2)/((1 + 0.2)*((1 - 0.2)^2 - 0.6^2)); % The variance of the AR(2)

Cov1AR2 = 0.6*0.3/((1 + 0.2)*((1 - 0.2)^2) - 0.6^2); % The covariance of the AR(2)

Cov0 = zeros(3);

Cov0(1:2,1:2) = varAR2*eye(2) + Cov1AR2*flip(eye(2));

StateType = [0; 0; 1];

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType);

Mdl is an ssm model.

Verify the state-space model using disp.

disp(Mdl)

State-space model type: ssm

State vector length: 3

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

 disp

9-181

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations:

x1(t) = (0.60)x1(t-1) + (0.20)x2(t-1) + (0.50)x3(t-1) + (0.30)u1(t)

x2(t) = x1(t-1)

x3(t) = x3(t-1)

Observation equation:

y1(t) = x1(t) - x2(t) + (0.10)e1(t)

Initial state distribution:

Initial state means

 x1 x2 x3

 0 0 1

Initial state covariance matrix

 x1 x2 x3

 x1 0.71 0.44 0

 x2 0.44 0.71 0

 x3 0 0 0

State types

 x1 x2 x3

 Stationary Stationary Constant

Display State-Space Model and Initial Values

Define a state-space model containing two independent, autoregressive states, and where
the observations are the deterministic sum of the two states. Symbolically, the system of
equations is

Specify the state-transition matrix.

A = [NaN 0; 0 NaN];

9 Functions — Alphabetical List

9-182

Specify the state-disturbance-loading matrix.

B = [NaN 0; 0 NaN];

Specify the measurement-sensitivity matrix.

C = [1 1];

Specify an empty matrix for the observation distrubance matrix.

D = [];

Use ssm to define the state-space model. Specify the initial state means and covariance
matrix to as unknown parameters. Specify that the states are stationary.

Mean0 = nan(2,1);

Cov0 = nan(2,2);

StateType = zeros(2,1);

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType);

Mdl is an ssm model containing unknown parameters.

Use disp to display the state-space model. Specify initial values for the unknown
parameters and the initial state means and covariance matrix as follows:

• .
• .
• and .
• .

params = [0.1; 0.1; 0.2; 0.2; 1; 0.5; 1; 0; 0; 1];

disp(Mdl,params)

State-space model type: ssm

State vector length: 2

Observation vector length: 1

State disturbance vector length: 2

Observation innovation vector length: 0

Sample size supported by model: Unlimited

Unknown parameters for estimation: 10

 disp

9-183

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c3)u1(t)

x2(t) = (c2)x2(t-1) + (c4)u2(t)

Observation equation:

y1(t) = x1(t) + x2(t)

Initial state distribution:

Initial state means

 x1 x2

 1 0.50

Initial state covariance matrix

 x1 x2

 x1 1 0

 x2 0 1

State types

 x1 x2

 Stationary Stationary

Explicitly Create and Display Time-Varying State-Space Model

From periods 1 through 50, the state model is an AR(2) and an MA(1) model, and the
observation model is the sum of the two states. From periods 51 through 100, the state
model includes the first AR(2) model only. Symbolically, the state-space model is, for
periods 1 through 50,

for period 51,

9 Functions — Alphabetical List

9-184

and for periods 52 through 100,

Specify the state-transition coefficient matrix.

A1 = {[NaN NaN 0 0; 1 0 0 0; 0 0 0 NaN; 0 0 0 0]};

A2 = {[NaN NaN 0 0; 1 0 0 0]};

A3 = {[NaN NaN; 1 0]};

A = [repmat(A1,50,1);A2;repmat(A3,49,1)];

Specify the state-disturbance-loading coefficient matrix.

B1 = {[NaN 0;0 0; 0 1; 0 1]};

B2 = {[NaN; 0]};

B3 = {[NaN; 0]};

B = [repmat(B1,50,1);B2;repmat(B3,49,1)];

Specify the measurement-sensitivity coefficient matrix.

C1 = {[NaN 0 NaN 0]};

C3 = {[NaN 0]};

C = [repmat(C1,50,1);repmat(C3,50,1)];

Specify the observation-distrubance coefficient matrix.

D1 = {NaN};

D3 = {NaN};

D = [repmat(D1,50,1);repmat(D3,50,1)];

Specify the state-space model. Set the initial state means and covariance matrix to
unknown parameters. Specify that the initial state distributions are stationary.

Mean0 = nan(4,1);

Cov0 = nan(4,4);

StateType = [0; 0; 0; 0];

 disp

9-185

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType);

Mdl is an ssm model.

The model is large and contains a different set of parameters for each period. The
software displays state and observation equations for the first 10 and last 10 periods. You
can choose which periods to display the equations for using the 'Period' name-value
pair argument.

Display the state-space model, and use 'Period' to display the state and observation
equations for the 50th, 51st, and 52nd periods.

disp(Mdl,'Period',50)

disp(Mdl,'Period',51)

disp(Mdl,'Period',52)

State-space model type: ssm

State vector length: Time-varying

Observation vector length: 1

State disturbance vector length: Time-varying

Observation innovation vector length: 1

Sample size supported by model: 100

Unknown parameters for estimation: 620

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations (in period 50):

x1(t) = (c148)x1(t-1) + (c149)x2(t-1) + (c300)u1(t)

x2(t) = x1(t-1)

x3(t) = (c150)x4(t-1) + u2(t)

x4(t) = u2(t)

Time-varying transition matrix A contains unknown parameters:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40

c41 c42 c43 c44 c45 c46 c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60

c61 c62 c63 c64 c65 c66 c67 c68 c69 c70 c71 c72 c73 c74 c75 c76 c77 c78 c79 c80

c81 c82 c83 c84 c85 c86 c87 c88 c89 c90 c91 c92 c93 c94 c95 c96 c97 c98 c99 c100

c101 c102 c103 c104 c105 c106 c107 c108 c109 c110 c111 c112 c113 c114 c115 c116 c117 c118 c119 c120

c121 c122 c123 c124 c125 c126 c127 c128 c129 c130 c131 c132 c133 c134 c135 c136 c137 c138 c139 c140

9 Functions — Alphabetical List

9-186

c141 c142 c143 c144 c145 c146 c147 c148 c149 c150 c151 c152 c153 c154 c155 c156 c157 c158 c159 c160

c161 c162 c163 c164 c165 c166 c167 c168 c169 c170 c171 c172 c173 c174 c175 c176 c177 c178 c179 c180

c181 c182 c183 c184 c185 c186 c187 c188 c189 c190 c191 c192 c193 c194 c195 c196 c197 c198 c199 c200

c201 c202 c203 c204 c205 c206 c207 c208 c209 c210 c211 c212 c213 c214 c215 c216 c217 c218 c219 c220

c221 c222 c223 c224 c225 c226 c227 c228 c229 c230 c231 c232 c233 c234 c235 c236 c237 c238 c239 c240

c241 c242 c243 c244 c245 c246 c247 c248 c249 c250

Time-varying state disturbance loading matrix B contains unknown parameters:

c251 c252 c253 c254 c255 c256 c257 c258 c259 c260 c261 c262 c263 c264 c265 c266 c267 c268 c269 c270

c271 c272 c273 c274 c275 c276 c277 c278 c279 c280 c281 c282 c283 c284 c285 c286 c287 c288 c289 c290

c291 c292 c293 c294 c295 c296 c297 c298 c299 c300 c301 c302 c303 c304 c305 c306 c307 c308 c309 c310

c311 c312 c313 c314 c315 c316 c317 c318 c319 c320 c321 c322 c323 c324 c325 c326 c327 c328 c329 c330

c331 c332 c333 c334 c335 c336 c337 c338 c339 c340 c341 c342 c343 c344 c345 c346 c347 c348 c349 c350

Observation equation (in period 50):

y1(t) = (c449)x1(t) + (c450)x3(t) + (c550)e1(t)

Time-varying measurement sensitivity matrix C contains unknown parameters:

c351 c352 c353 c354 c355 c356 c357 c358 c359 c360 c361 c362 c363 c364 c365 c366 c367 c368 c369 c370

c371 c372 c373 c374 c375 c376 c377 c378 c379 c380 c381 c382 c383 c384 c385 c386 c387 c388 c389 c390

c391 c392 c393 c394 c395 c396 c397 c398 c399 c400 c401 c402 c403 c404 c405 c406 c407 c408 c409 c410

c411 c412 c413 c414 c415 c416 c417 c418 c419 c420 c421 c422 c423 c424 c425 c426 c427 c428 c429 c430

c431 c432 c433 c434 c435 c436 c437 c438 c439 c440 c441 c442 c443 c444 c445 c446 c447 c448 c449 c450

c451 c452 c453 c454 c455 c456 c457 c458 c459 c460 c461 c462 c463 c464 c465 c466 c467 c468 c469 c470

c471 c472 c473 c474 c475 c476 c477 c478 c479 c480 c481 c482 c483 c484 c485 c486 c487 c488 c489 c490

c491 c492 c493 c494 c495 c496 c497 c498 c499 c500

Time-varying observation innovation loading matrix D contains unknown parameters:

c501 c502 c503 c504 c505 c506 c507 c508 c509 c510 c511 c512 c513 c514 c515 c516 c517 c518 c519 c520

c521 c522 c523 c524 c525 c526 c527 c528 c529 c530 c531 c532 c533 c534 c535 c536 c537 c538 c539 c540

c541 c542 c543 c544 c545 c546 c547 c548 c549 c550 c551 c552 c553 c554 c555 c556 c557 c558 c559 c560

c561 c562 c563 c564 c565 c566 c567 c568 c569 c570 c571 c572 c573 c574 c575 c576 c577 c578 c579 c580

c581 c582 c583 c584 c585 c586 c587 c588 c589 c590 c591 c592 c593 c594 c595 c596 c597 c598 c599 c600

Initial state distribution:

Initial state means

 x1 x2 x3 x4

 NaN NaN NaN NaN

Initial state covariance matrix

 x1 x2 x3 x4

 x1 NaN NaN NaN NaN

 x2 NaN NaN NaN NaN

 x3 NaN NaN NaN NaN

 x4 NaN NaN NaN NaN

 disp

9-187

State types

 x1 x2 x3 x4

 Stationary Stationary Stationary Stationary

State-space model type: ssm

State vector length: Time-varying

Observation vector length: 1

State disturbance vector length: Time-varying

Observation innovation vector length: 1

Sample size supported by model: 100

Unknown parameters for estimation: 620

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations (in period 51):

x1(t) = (c151)x1(t-1) + (c152)x2(t-1) + (c301)u1(t)

x2(t) = x1(t-1)

Time-varying transition matrix A contains unknown parameters:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40

c41 c42 c43 c44 c45 c46 c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60

c61 c62 c63 c64 c65 c66 c67 c68 c69 c70 c71 c72 c73 c74 c75 c76 c77 c78 c79 c80

c81 c82 c83 c84 c85 c86 c87 c88 c89 c90 c91 c92 c93 c94 c95 c96 c97 c98 c99 c100

c101 c102 c103 c104 c105 c106 c107 c108 c109 c110 c111 c112 c113 c114 c115 c116 c117 c118 c119 c120

c121 c122 c123 c124 c125 c126 c127 c128 c129 c130 c131 c132 c133 c134 c135 c136 c137 c138 c139 c140

c141 c142 c143 c144 c145 c146 c147 c148 c149 c150 c151 c152 c153 c154 c155 c156 c157 c158 c159 c160

c161 c162 c163 c164 c165 c166 c167 c168 c169 c170 c171 c172 c173 c174 c175 c176 c177 c178 c179 c180

c181 c182 c183 c184 c185 c186 c187 c188 c189 c190 c191 c192 c193 c194 c195 c196 c197 c198 c199 c200

c201 c202 c203 c204 c205 c206 c207 c208 c209 c210 c211 c212 c213 c214 c215 c216 c217 c218 c219 c220

c221 c222 c223 c224 c225 c226 c227 c228 c229 c230 c231 c232 c233 c234 c235 c236 c237 c238 c239 c240

c241 c242 c243 c244 c245 c246 c247 c248 c249 c250

Time-varying state disturbance loading matrix B contains unknown parameters:

c251 c252 c253 c254 c255 c256 c257 c258 c259 c260 c261 c262 c263 c264 c265 c266 c267 c268 c269 c270

c271 c272 c273 c274 c275 c276 c277 c278 c279 c280 c281 c282 c283 c284 c285 c286 c287 c288 c289 c290

c291 c292 c293 c294 c295 c296 c297 c298 c299 c300 c301 c302 c303 c304 c305 c306 c307 c308 c309 c310

c311 c312 c313 c314 c315 c316 c317 c318 c319 c320 c321 c322 c323 c324 c325 c326 c327 c328 c329 c330

c331 c332 c333 c334 c335 c336 c337 c338 c339 c340 c341 c342 c343 c344 c345 c346 c347 c348 c349 c350

9 Functions — Alphabetical List

9-188

Observation equation (in period 51):

y1(t) = (c451)x1(t) + (c551)e1(t)

Time-varying measurement sensitivity matrix C contains unknown parameters:

c351 c352 c353 c354 c355 c356 c357 c358 c359 c360 c361 c362 c363 c364 c365 c366 c367 c368 c369 c370

c371 c372 c373 c374 c375 c376 c377 c378 c379 c380 c381 c382 c383 c384 c385 c386 c387 c388 c389 c390

c391 c392 c393 c394 c395 c396 c397 c398 c399 c400 c401 c402 c403 c404 c405 c406 c407 c408 c409 c410

c411 c412 c413 c414 c415 c416 c417 c418 c419 c420 c421 c422 c423 c424 c425 c426 c427 c428 c429 c430

c431 c432 c433 c434 c435 c436 c437 c438 c439 c440 c441 c442 c443 c444 c445 c446 c447 c448 c449 c450

c451 c452 c453 c454 c455 c456 c457 c458 c459 c460 c461 c462 c463 c464 c465 c466 c467 c468 c469 c470

c471 c472 c473 c474 c475 c476 c477 c478 c479 c480 c481 c482 c483 c484 c485 c486 c487 c488 c489 c490

c491 c492 c493 c494 c495 c496 c497 c498 c499 c500

Time-varying observation innovation loading matrix D contains unknown parameters:

c501 c502 c503 c504 c505 c506 c507 c508 c509 c510 c511 c512 c513 c514 c515 c516 c517 c518 c519 c520

c521 c522 c523 c524 c525 c526 c527 c528 c529 c530 c531 c532 c533 c534 c535 c536 c537 c538 c539 c540

c541 c542 c543 c544 c545 c546 c547 c548 c549 c550 c551 c552 c553 c554 c555 c556 c557 c558 c559 c560

c561 c562 c563 c564 c565 c566 c567 c568 c569 c570 c571 c572 c573 c574 c575 c576 c577 c578 c579 c580

c581 c582 c583 c584 c585 c586 c587 c588 c589 c590 c591 c592 c593 c594 c595 c596 c597 c598 c599 c600

Initial state distribution:

Initial state means

 x1 x2 x3 x4

 NaN NaN NaN NaN

Initial state covariance matrix

 x1 x2 x3 x4

 x1 NaN NaN NaN NaN

 x2 NaN NaN NaN NaN

 x3 NaN NaN NaN NaN

 x4 NaN NaN NaN NaN

State types

 x1 x2 x3 x4

 Stationary Stationary Stationary Stationary

State-space model type: ssm

State vector length: Time-varying

Observation vector length: 1

State disturbance vector length: Time-varying

Observation innovation vector length: 1

Sample size supported by model: 100

Unknown parameters for estimation: 620

 disp

9-189

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations (in period 52):

x1(t) = (c153)x1(t-1) + (c154)x2(t-1) + (c302)u1(t)

x2(t) = x1(t-1)

Time-varying transition matrix A contains unknown parameters:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c32 c33 c34 c35 c36 c37 c38 c39 c40

c41 c42 c43 c44 c45 c46 c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60

c61 c62 c63 c64 c65 c66 c67 c68 c69 c70 c71 c72 c73 c74 c75 c76 c77 c78 c79 c80

c81 c82 c83 c84 c85 c86 c87 c88 c89 c90 c91 c92 c93 c94 c95 c96 c97 c98 c99 c100

c101 c102 c103 c104 c105 c106 c107 c108 c109 c110 c111 c112 c113 c114 c115 c116 c117 c118 c119 c120

c121 c122 c123 c124 c125 c126 c127 c128 c129 c130 c131 c132 c133 c134 c135 c136 c137 c138 c139 c140

c141 c142 c143 c144 c145 c146 c147 c148 c149 c150 c151 c152 c153 c154 c155 c156 c157 c158 c159 c160

c161 c162 c163 c164 c165 c166 c167 c168 c169 c170 c171 c172 c173 c174 c175 c176 c177 c178 c179 c180

c181 c182 c183 c184 c185 c186 c187 c188 c189 c190 c191 c192 c193 c194 c195 c196 c197 c198 c199 c200

c201 c202 c203 c204 c205 c206 c207 c208 c209 c210 c211 c212 c213 c214 c215 c216 c217 c218 c219 c220

c221 c222 c223 c224 c225 c226 c227 c228 c229 c230 c231 c232 c233 c234 c235 c236 c237 c238 c239 c240

c241 c242 c243 c244 c245 c246 c247 c248 c249 c250

Time-varying state disturbance loading matrix B contains unknown parameters:

c251 c252 c253 c254 c255 c256 c257 c258 c259 c260 c261 c262 c263 c264 c265 c266 c267 c268 c269 c270

c271 c272 c273 c274 c275 c276 c277 c278 c279 c280 c281 c282 c283 c284 c285 c286 c287 c288 c289 c290

c291 c292 c293 c294 c295 c296 c297 c298 c299 c300 c301 c302 c303 c304 c305 c306 c307 c308 c309 c310

c311 c312 c313 c314 c315 c316 c317 c318 c319 c320 c321 c322 c323 c324 c325 c326 c327 c328 c329 c330

c331 c332 c333 c334 c335 c336 c337 c338 c339 c340 c341 c342 c343 c344 c345 c346 c347 c348 c349 c350

Observation equation (in period 52):

y1(t) = (c452)x1(t) + (c552)e1(t)

Time-varying measurement sensitivity matrix C contains unknown parameters:

c351 c352 c353 c354 c355 c356 c357 c358 c359 c360 c361 c362 c363 c364 c365 c366 c367 c368 c369 c370

c371 c372 c373 c374 c375 c376 c377 c378 c379 c380 c381 c382 c383 c384 c385 c386 c387 c388 c389 c390

c391 c392 c393 c394 c395 c396 c397 c398 c399 c400 c401 c402 c403 c404 c405 c406 c407 c408 c409 c410

c411 c412 c413 c414 c415 c416 c417 c418 c419 c420 c421 c422 c423 c424 c425 c426 c427 c428 c429 c430

c431 c432 c433 c434 c435 c436 c437 c438 c439 c440 c441 c442 c443 c444 c445 c446 c447 c448 c449 c450

c451 c452 c453 c454 c455 c456 c457 c458 c459 c460 c461 c462 c463 c464 c465 c466 c467 c468 c469 c470

c471 c472 c473 c474 c475 c476 c477 c478 c479 c480 c481 c482 c483 c484 c485 c486 c487 c488 c489 c490

c491 c492 c493 c494 c495 c496 c497 c498 c499 c500

Time-varying observation innovation loading matrix D contains unknown parameters:

c501 c502 c503 c504 c505 c506 c507 c508 c509 c510 c511 c512 c513 c514 c515 c516 c517 c518 c519 c520

9 Functions — Alphabetical List

9-190

c521 c522 c523 c524 c525 c526 c527 c528 c529 c530 c531 c532 c533 c534 c535 c536 c537 c538 c539 c540

c541 c542 c543 c544 c545 c546 c547 c548 c549 c550 c551 c552 c553 c554 c555 c556 c557 c558 c559 c560

c561 c562 c563 c564 c565 c566 c567 c568 c569 c570 c571 c572 c573 c574 c575 c576 c577 c578 c579 c580

c581 c582 c583 c584 c585 c586 c587 c588 c589 c590 c591 c592 c593 c594 c595 c596 c597 c598 c599 c600

Initial state distribution:

Initial state means

 x1 x2 x3 x4

 NaN NaN NaN NaN

Initial state covariance matrix

 x1 x2 x3 x4

 x1 NaN NaN NaN NaN

 x2 NaN NaN NaN NaN

 x3 NaN NaN NaN NaN

 x4 NaN NaN NaN NaN

State types

 x1 x2 x3 x4

 Stationary Stationary Stationary Stationary

The software attributes a different set of coefficients for each period. You might
experience numerical issues when you estimate such models. To reuse parameters among
groups of periods, consider creating a parameter-to-matrix mapping function.

• “Create State-Space Model with Random State Coefficient” on page 8-38

Algorithms

• If you implicitly create Mdl, and if the software cannot infer locations for unknown
parameters from the parameter-to-matrix function, then the software evaluates these
parameters using their initial values and displays them as numeric values. This
evaluation can occur when the parameter-to-matrix function has a random, unknown
coefficient, which is a convenient form for a Monte Carlo study.

• The software displays the initial state distributions as numeric values. This type
of display occurs because, in many cases, the initial distribution depends on the
values of the state equation matrices A and B. These values are often a complicated
function of unknown parameters. In such situations, the software does not display
the initial distribution symbolically. Additionally, if Mean0 and Cov0 contain

 disp

9-191

unknown parameters, then the software evaluates and displays numeric values for
the unknown parameters.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
estimate | filter | forecast | simulate | smooth | ssm

More About
• “What Are State-Space Models?” on page 8-3

9 Functions — Alphabetical List

9-192

dssm class

Create diffuse state-space model

Description
dssm creates a linear diffuse state-space model with independent Gaussian state
disturbances and observation innovations. A diffuse state-space model contains diffuse
states, and variances of the initial distributions of diffuse states are Inf. All diffuse
states are independent of each other and all other states. The software implements the
diffuse Kalman filter for filtering, smoothing, and parameter estimation.

You can:

• Specify a time-invariant or time-varying model.
• Specify whether states are stationary, static, or nonstationary.
• Specify the state-transition, state-disturbance-loading, measurement-sensitivity, or

observation-innovation matrices:

• Explicitly by providing the matrices
• Implicitly by providing a function that maps the parameters to the matrices, that

is, a parameter-to-matrix mapping function

After creating a diffuse state-space model containing unknown parameters, you can
estimate its parameters by passing the created dssm model object and data to estimate.
The estimate function builds the likelihood function using the diffuse Kalman filter.

Use a completely specified model (that is, all parameter values of the model are known)
to:

• Filter or smooth states using filter or smooth, respectively. These functions apply the
diffuse Kalman filter and data to the state-space model.

• Forecast states or observations using forecast.

Construction
Mdl = dssm(A,B,C) creates a diffuse state-space model (Mdl) using state-transition
matrix A, state-disturbance-loading matrix B, and measurement-sensitivity matrix C.

 dssm class

9-193

Mdl = dssm(A,B,C,D) creates a diffuse state-space model using state-transition
matrix A, state-disturbance-loading matrix B, measurement-sensitivity matrix C, and
observation-innovation matrix D.

Mdl = dssm(___ ,Name,Value) uses any of the input arguments in the previous
syntaxes and additional options that you specify by one or more Name,Value pair
arguments.

Mdl = dssm(ParamMap) creates a diffuse state-space model using a parameter-to-
matrix mapping function (ParamMap) that you write. The function maps a vector of
parameters to the matrices A, B, and C. Optionally, ParamMap can map parameters to
D, Mean0, Cov0. To specify the types of states, the function can return StateType. To
accommodate a regression component in the observation equation, ParamMap can also
return deflated observation data.

Mdl = dssm(SSMMdl) converts a state-space model object (SSMMdl) to a diffuse state-
space model object (Mdl). dssm sets all initial variances of diffuse states in SSMMdl.Cov0
to Inf.

Input Arguments

A — State-transition coefficient matrix
matrix | cell vector of matrices

State-transition coefficient matrix for explicit state-space model creation, specified as a
matrix or cell vector of matrices.

The state-transition coefficient matrix, At, specifies how the states, xt, are expected to
transition from period t – 1 to t, for all t = 1,...,T. That is, the expected state-transition
equation at period t is E(xt|xt–1) = Atxt–1.

For time-invariant state-space models, specify A as an m-by-m matrix, where m is the
number of states per period.

For time-varying state-space models, specify A as a T-dimensional cell array, where
A{t} contains an mt-by-mt – 1 state-transition coefficient matrix. If the number of states
changes from period t – 1 to t, then mt ≠ mt – 1.

NaN values in any coefficient matrix indicate unique, unknown parameters in the state-
space model. A contributes:

9 Functions — Alphabetical List

9-194

• sum(isnan(A(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in A at each period.

• numParamsA unknown parameters to time-varying state-space models, where
numParamsA = sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),A,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in A.

You cannot specify A and ParamMap simultaneously.

Data Types: double | cell

B — State-disturbance-loading coefficient matrix
matrix | cell vector of matrices

State-disturbance-loading coefficient matrix for explicit state-space model creation,
specified as a matrix or cell vector of matrices.

The state disturbances, ut, are independent Gaussian random variables with mean 0 and
standard deviation 1. The state-disturbance-loading coefficient matrix, Bt, specifies the
additive error structure in the state-transition equation from period t – 1 to t, for all t =
1,...,T. That is, the state-transition equation at period t is xt = Atxt–1 + Btut.

For time-invariant state-space models, specify B as an m-by-k matrix, where m is the
number of states and k is the number of state disturbances per period. B*B' is the state-
disturbance covariance matrix for all periods.

For time-varying state-space models, specify B as a T-dimensional cell array, where B{t}
contains an mt-by-kt state-disturbance-loading coefficient matrix. If the number of states
or state disturbances changes at period t, then the matrix dimensions between B{t-1}
and B{t} vary. B{t}*B{t}' is the state-disturbance covariance matrix for period t.

NaN values in any coefficient matrix indicate unique, unknown parameters in the state-
space model. B contributes:

• sum(isnan(B(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in B at each period.

• numParamsB unknown parameters to time-
varying state-space models, where numParamsB =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),B,'UniformOutput',0))).

 dssm class

9-195

In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in B.

You cannot specify B and ParamMap simultaneously.

Data Types: double | cell

C — Measurement-sensitivity coefficient matrix
matrix | cell vector of matrices

Measurement-sensitivity coefficient matrix for explicit state-space model creation,
specified as a matrix or cell vector of matrices.

The measurement-sensitivity coefficient matrix, Ct, specifies how the states are expected
to linearly combine at period t to form the observations, yt, for all t = 1,...,T. That is, the
expected observation equation at period t is E(yt|xt) = Ctxt.

For time-invariant state-space models, specify C as an n-by-m matrix, where n is the
number of observations and m is the number of states per period.

For time-varying state-space models, specify C as a T-dimensional cell array, where C{t}
contains an nt-by-mt measurement-sensitivity coefficient matrix. If the number of states
or observations changes at period t, then the matrix dimensions between C{t-1} and
C{t} vary.

NaN values in any coefficient matrix indicate unique, unknown parameters in the state-
space model. C contributes:

• sum(isnan(C(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in C at each period.

• numParamsC unknown parameters to time-
varying state-space models, where numParamsC =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),C,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in C.

You cannot specify C and ParamMap simultaneously.

Data Types: double | cell

D — Observation-innovation coefficient matrix
[] (default) | matrix | cell vector of matrices

9 Functions — Alphabetical List

9-196

Observation-innovation coefficient matrix for explicit state-space model creation,
specified as a matrix or cell vector of matrices.

The observation innovations, εt, are independent Gaussian random variables with mean
0 and standard deviation 1. The observation-innovation coefficient matrix, Dt, specifies
the additive error structure in the observation equation at period t, for all t = 1,...,T. That
is, the observation equation at period t is yt = Ctxt + Dtεt.

For time-invariant state-space models, specify D as an n-by-h matrix, where n is the
number of observations and h is the number of observation innovations per period. D*D'
is the observation-innovation covariance matrix for all periods.

For time-varying state-space models, specify D as a T-dimensional cell array, where D{t}
contains an nt-by-ht matrix. If the number of observations or observation innovations
changes at period t, then the matrix dimensions between D{t-1} and D{t} vary.
D{t}*D{t}' is the observation-innovation covariance matrix for period t.

NaN values in any coefficient matrix indicate unique, unknown parameters in the state-
space model. D contributes:

• sum(isnan(D(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in D at each period.

• numParamsD unknown parameters to time-
varying state-space models, where numParamsD =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),D,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in D.

By default, D is an empty matrix indicating no observation innovations in the state-space
model.

You cannot specify D and ParamMap simultaneously.

Data Types: double | cell

ParamMap — Parameter-to-matrix mapping function
empty array ([]) (default) | function handle

Parameter-to-matrix mapping function for implicit state-space model creation, specified
as a function handle.

 dssm class

9-197

ParamMap must be a function that takes at least one input argument and returns at
least three output arguments. The requisite input argument is a vector of unknown
parameters, and the requisite output arguments correspond to the coefficient matrices
A, B, and C, respectively. If your parameter-to-mapping function requires the input
parameter vector argument only, then implicitly create a diffuse state-space model by
entering the following:

Mdl = dssm(@ParamMap)

In general, you can write an intermediate function, for example, ParamFun, using this
syntax:

function [A,B,C,D,Mean0,Cov0,StateType,DeflateY] = ...

 ParamFun(params,...otherInputArgs...)

In this general case, create the diffuse state-space model by entering

Mdl = dssm(@(params)ParamMap(params,...otherInputArgs...))

However:

• Follow the order of the output arguments.
• params is a vector, and each element corresponds to an unknown parameter.
• ParamFun must return A, B, and C, which correspond to the state-transition, state-

disturbance-loading, and measurement-sensitivity coefficient matrices, respectively.
• If you specify more input arguments than the parameter vector (params), such as

observed responses and predictors, then implicitly create the diffuse state-space
model using the syntax pattern

Mdl = dssm(@(params)ParamFun(params,y,z))

• For the optional output arguments D, Mean0, Cov0, StateType, and DeflateY:

• The optional output arguments correspond to the observation-innovation
coefficient matrix D and the name-value pair arguments Mean0, Cov0, and
StateType.

• To skip specifying an optional output argument, set the argument to [] in the
function body. For example, to skip specifying D, then set D = []; in the function.

• DeflateY is the deflated-observation data, which accommodates a regression
component in the observation equation. For example, in this function, which has
a linear regression component, Y is the vector of observed responses and Z is the
vector of predictor data.

9 Functions — Alphabetical List

9-198

function [A,B,C,D,Mean0,Cov0,StateType,DeflateY] = ParamFun(params,Y,Z)

 ...

 DeflateY = Y - params(9) - params(10)*Z;

 ...

end

• For the default values of Mean0, Cov0, and StateType, see “Algorithms” on page
9-996.

• It is best practice to:

• Load the data to the MATLAB Workspace before specifying the model.
• Create the parameter-to-matrix mapping function as its own file.

If you specify ParamMap, then you cannot specify any name-value pair arguments or any
other input arguments.
Data Types: function_handle

SSMMdl — State-space model
ssm model object

State-space model to convert to a diffuse state-space model, specified as an ssm model
object.

dssm sets all initial variances of diffuse states in SSMMdl.Cov0 to Inf.

To use the diffuse Kalman filter for filtering, smoothing, and parameter estimation
instead of the standard Kalman filter, convert a state-space model to a diffuse state-
space model.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Mean0' — Initial state mean
numeric vector

Initial state mean for explicit state-space model creation, specified as the comma-
separated pair consisting of 'Mean0' and a numeric vector with length equal to the
number of initial states. For the default values, see “Algorithms” on page 9-996.

 dssm class

9-199

If you specify ParamMap, then you cannot specify Mean0. Instead, specify the initial state
mean in the parameter-to-matrix mapping function.
Data Types: double

'Cov0' — Initial state covariance matrix
square matrix

Initial state covariance matrix for explicit state-space model creation, specified as the
comma-separated pair consisting of 'Cov0' and a square matrix with dimensions equal
to the number of initial states. For the default values, see “Algorithms” on page 9-996.

If you specify ParamMap, then you cannot specify Cov0. Instead, specify the initial state
covariance in the parameter-to-matrix mapping function.
Data Types: double

'StateType' — Initial state distribution indicator
0 | 1 | 2

Initial state distribution indicator for explicit state-space model creation, specified as
the comma-separated pair consisting of 'StateType' and a numeric vector with length
equal to the number of initial states. This table summarizes the available types of initial
state distributions.

Value Initial State Distribution Type

0 Stationary (for example, ARMA models)
1 The constant 1 (that is, the state is 1 with

probability 1)
2 Diffuse or nonstationary (for example,

random walk model, seasonal linear time
series) or static state

For example, suppose that the state equation has two state variables: The first state
variable is an AR(1) process, and the second state variable is a random walk. Specify the
initial distribution types by setting 'StateType',[0; 2].

If you specify ParamMap, then you cannot specify Mean0. Instead, specify the initial state
distribution indicator in the parameter-to-matrix mapping function.

For the default values, see “Algorithms” on page 9-996.

9 Functions — Alphabetical List

9-200

Data Types: double

Properties

A — State-transition coefficient matrix
matrix | cell vector of matrices | empty array ([])

State-transition coefficient matrix for explicitly created state-space models, specified as
a matrix, a cell vector of matrices, or an empty array ([]). For implicitly created state-
space models and before estimation, A is [] and read only.

The state-transition coefficient matrix, At, specifies how the states, xt, are expected to
transition from period t – 1 to t, for all t = 1,...,T. That is, the expected state-transition
equation at period t is E(xt|xt–1) = Atxt–1.

For time-invariant state-space models, A is an m-by-m matrix, where m is the number of
states per period.

For time-varying state-space models, A is a T-dimensional cell array, where A{t}
contains an mt-by-mt – 1 state-transition coefficient matrix. If the number of states
changes from period t – 1 to t, then mt ≠ mt – 1.

NaN values in any coefficient matrix indicate unknown parameters in the state-space
model. A contributes:

• sum(isnan(A(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in A at each period.

• numParamsA unknown parameters to time-varying state-space models, where
numParamsA = sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),A,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in A.

Data Types: double | cell

B — State-disturbance-loading coefficient matrix
matrix | cell vector of matrices | empty array ([])

State-disturbance-loading coefficient matrix for explicitly created state-space models,
specified as a matrix, a cell vector of matrices, or an empty array ([]). For implicitly
created state-space models and before estimation, B is [] and read only.

 dssm class

9-201

The state disturbances, ut, are independent Gaussian random variables with mean 0 and
standard deviation 1. The state-disturbance-loading coefficient matrix, Bt, specifies the
additive error structure in the state-transition equation from period t – 1 to t, for all t =
1,...,T. That is, the state-transition equation at period t is xt = Atxt–1 + Btut.

For time-invariant state-space models, B is an m-by-k matrix, where m is the number of
states and k is the number of state disturbances per period. B*B' is the state-disturbance
covariance matrix for all periods.

For time-varying state-space models, B is a T-dimensional cell array, where B{t}
contains an mt-by-kt state-disturbance-loading coefficient matrix. If the number of states
or state disturbances changes at period t, then the matrix dimensions between B{t-1}
and B{t} vary. B{t}*B{t}' is the state-disturbance covariance matrix for period t.

NaN values in any coefficient matrix indicate unknown parameters in the state-space
model. B contributes:

• sum(isnan(B(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in B at each period.

• numParamsB unknown parameters to time-
varying state-space models, where numParamsB =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),B,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in B.

Data Types: double | cell

C — Measurement-sensitivity coefficient matrix
matrix | cell vector of matrices | empty array ([])

Measurement-sensitivity coefficient matrix for explicitly created state-space models,
specified as a matrix, a cell vector of matrices, or an empty array ([]). For implicitly
created state-space models and before estimation, C is [] and read only.

The measurement-sensitivity coefficient matrix, Ct, specifies how the states are expected
to combine linearly at period t to form the observations, yt, for all t = 1,...,T. That is, the
expected observation equation at period t is E(yt|xt) = Ctxt.

For time-invariant state-space models, C is an n-by-m matrix, where n is the number of
observations and m is the number of states per period.

9 Functions — Alphabetical List

9-202

For time-varying state-space models, C is a T-dimensional cell array, where C{t}
contains an nt-by-mt measurement-sensitivity coefficient matrix. If the number of states
or observations changes at period t, then the matrix dimensions between C{t-1} and
C{t} vary.

NaN values in any coefficient matrix indicate unknown parameters in the state-space
model. C contributes:

• sum(isnan(C(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in C at each period.

• numParamsC unknown parameters to time-
varying state-space models, where numParamsC =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),C,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in C.

Data Types: double | cell

D — Observation-innovation coefficient matrix
matrix | cell vector of matrices | empty array ([])

Observation-innovation coefficient matrix for explicitly created state-space models,
specified as a matrix, a cell vector of matrices, or an empty array ([]). For implicitly
created state-space models and before estimation, D is [] and read only.

The observation innovations, εt, are independent Gaussian random variables with mean
0 and standard deviation 1. The observation-innovation coefficient matrix, Dt, specifies
the additive error structure in the observation equation at period t, for all t = 1,...,T. That
is, the observation equation at period t is yt = Ctxt + Dtεt.

For time-invariant state-space models, D is an n-by-h matrix, where n is the number
of observations and h is the number of observation innovations per period. D*D' is the
observation-innovation covariance matrix for all peroids.

For time-varying state-space models, D is a T-dimensional cell array, where D{t}
contains an nt-by-ht matrix. If the number of observations or observation innovations
changes at period t, then the matrix dimensions between D{t-1} and D{t} vary.
D{t}*D{t}' is the state-disturbance covariance matrix for period t.

NaN values in any coefficient matrix indicate unknown parameters in the state-space
model. D contributes:

 dssm class

9-203

• sum(isnan(D(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in D at each period.

• numParamsD unknown parameters to time-
varying state-space models, where numParamsD =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),D,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in D.

Data Types: double | cell

Mean0 — Initial state mean
numeric vector | empty array ([])

Initial state mean, specified as a numeric vector or an empty array ([]). Mean0 has
length equal to the number of initial states (size(A,1) or size(A{1},1)).

Mean0 is the mean of the Gaussian distribution of the states at period 0.

For implicitly created state-space models and before estimation, Mean0 is [] and read
only. However, estimate specifies Mean0 after estimation.

Data Types: double

Cov0 — Initial state covariance matrix
square matrix | empty array ([])

Initial state covariance matrix, specified as a square matrix or an empty array ([]). Cov0
has dimensions equal to the number of initial states (size(A,1) or size(A{1},1)).

Cov0 is the covariance of the Gaussian distribution of the states at period 0.

For implicitly created state-space models and before estimation, Cov0 is [] and read
only. However, estimate specifies Cov0 after estimation.

Diagonal elements of Cov0 that have value Inf correspond to diffuse initial state
distributions. This specification indicates complete ignorance or no prior knowledge
of the initial state value. Subsequently, the software filters, smooths, and estimates
parameters in the presence of diffuse initial state distributions using the diffuse Kalman
filter. To use the standard Kalman filter for diffuse states instead, set each diagonal
element of Cov0 to a large, positive value, for example, 1e7. This specification suggests
relatively weak knowledge of the initial state value.

9 Functions — Alphabetical List

9-204

Data Types: double

StateType — Initial state distribution type
numeric vector | empty array ([])

Initial state distribution indicator, specified as a numeric vector or empty array ([]).
StateType has length equal to the number of initial states.

For implicitly created state-space models or models with unknown parameters,
StateType is [] and read only.

This table summarizes the available types of initial state distributions.

Value Initial State Distribution Type

0 Stationary (e.g., ARMA models)
1 The constant 1 (that is, the state is 1 with

probability 1)
2 Nonstationary (e.g., random walk model,

seasonal linear time series) or static state.

For example, suppose that the state equation has two state variables: The first state
variable is an AR(1) process, and the second state variable is a random walk. Then,
StateType is [0; 2].

For nonstationary states, dssm sets Cov0 to Inf by default. Subsequently, the software
assumes that diffuse states are uncorrelated and implements the diffuse Kalman filter
for filtering, smoothing, and parameter estimation. This specification imposes no prior
knowledge on the initial state values of diffuse states.
Data Types: double

ParamMap — Parameter-to-matrix mapping function
function handle | empty array ([])

Parameter-to-matrix mapping function, specified as a function handle or an empty array
([]). ParamMap completely specifies the structure of the state-space model. That is,
ParamMap defines A, B, C, D, and, optionally, Mean0, Cov0, and StateType. For explicitly
created state-space models, ParamMap is [] and read only.

Data Types: function_handle

 dssm class

9-205

Methods

disp Display summary information for diffuse
state-space model

estimate Maximum likelihood parameter estimation
of diffuse state-space models

filter Forward recursion of diffuse state-space
models

forecast Forecast states and observations of diffuse
state-space models

refine Refine initial parameters to aid diffuse
state-space model estimation

smooth Backward recursion of diffuse state-space
models

Definitions

Static State

A static state does not change in value throughout the sample, that is, P x x
t t+ =() =

1
1

for all t = 1,...,T.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Explicitly Create Diffuse State-Space Model Containing Known and Unknown Parameters

Create a diffuse state-space model containing two independent states, and , and
an observation, , that is the deterministic sum of the two states at time . is an AR(1)
model with a constant and is a random walk. Symbolically, the state-space model is

9 Functions — Alphabetical List

9-206

The state disturbances, and , are standard Gaussian random variables.

Specify the state-transition matrix.

A = [NaN NaN 0; 0 1 0; 0 0 1];

The NaN values indicate unknown parameters.

Specify the state-disturbance-loading matrix.

B = [NaN 0; 0 0; 0 NaN];

Specify the measurement-sensitivity matrix.

C = [1 0 1];

Create a vector that specifies the state types. In this example:

• is a stationary AR(1) model, so its state type is 0.
• is a placeholder for the constant in the AR(1) model. Because the constant

is unknown and is expressed in the first equation, is 1 for the entire series.
Therefore, its state type is 1.

• is a nonstationary, random walk with drift, so its state type is 2.

StateType = [0 1 2];

Create the state-space model using dssm.

Mdl = dssm(A,B,C,'StateType',StateType)

Mdl =

 dssm class

9-207

State-space model type: dssm

State vector length: 3

Observation vector length: 1

State disturbance vector length: 2

Observation innovation vector length: 0

Sample size supported by model: Unlimited

Unknown parameters for estimation: 4

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c2)x2(t-1) + (c3)u1(t)

x2(t) = x2(t-1)

x3(t) = x3(t-1) + (c4)u2(t)

Observation equation:

y1(t) = x1(t) + x3(t)

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types

 x1 x2 x3

 Stationary Constant Diffuse

Mdl is a dssm model object containing unknown parameters. A detailed summary of Mdl
prints to the Command Window. If you do not specify the initial state covariance matrix,
then the initial variance of is Inf.

It is good practice to verify that the state and observation equations are correct. If the
equations are not correct, then expand the state-space equation and verify it manually.

Explicitly Create Diffuse State-Space Model Containing Observation Error

Create a diffuse state-space model containing two random walk states. The observations
are the sum of the two states, plus Gaussian error. Symbolically, the equation is

9 Functions — Alphabetical List

9-208

Define the state-transition matrix.

A = [1 0; 0 1];

Define the state-disturbance-loading matrix.

B = [NaN 0; 0 NaN];

Define the measurement-sensitivity matrix.

C = [1 1];

Define the observation-innovation matrix.

D = NaN;

Create a vector that specifies that both states are nonstationary.

StateType = [2; 2];

Create the state-space model using dssm.

 Mdl = dssm(A,B,C,D,'StateType',StateType)

Mdl =

State-space model type: dssm

State vector length: 2

Observation vector length: 1

State disturbance vector length: 2

Observation innovation vector length: 1

Sample size supported by model: Unlimited

Unknown parameters for estimation: 3

State variables: x1, x2,...

State disturbances: u1, u2,...

 dssm class

9-209

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = x1(t-1) + (c1)u1(t)

x2(t) = x2(t-1) + (c2)u2(t)

Observation equation:

y1(t) = x1(t) + x2(t) + (c3)e1(t)

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types

 x1 x2

 Diffuse Diffuse

Mdl is an dssm model containing unknown parameters. A detailed summary of Mdl
prints to the Command Window.

Pass the data and Mdl to estimate to estimate the parameters. During estimation, the
initial state variances are Inf, and estimate implements the diffuse Kalman filter.

Create Known Diffuse State-Space Model with Initial State Values

Create a diffuse state-space model, where:

• The state is a stationary AR(2) model with , , and a constant
0.5. The state disturbance is a mean zero Gaussian random variable with standard
deviation 0.3.

• The state is a random walk. The state disturbance is a mean zero Gaussian
random variable with standard deviation 0.05.

• The observation is the difference between the current and previous value in the
AR(2) state, plus a mean 0 Gaussian observation innovation with standard deviation
0.1.

• The observation is the random walk state plus a mean 0 Gaussian observation
innovation with standard deviation 0.02.

Symbolically, the state-space model is

9 Functions — Alphabetical List

9-210

The model has four states: is the AR(2) process, represents , is the AR(2)
model constant, and is the random walk.

Define the state-transition matrix.

A = [0.6 0.2 0.5 0; 1 0 0 0; 0 0 1 0; 0 0 0 1];

Define the state-disturbance-loading matrix.

B = [0.3 0; 0 0; 0 0; 0 0.05];

Define the measurement-sensitivity matrix.

C = [1 -1 0 0; 0 0 0 1];

Define the observation-innovation matrix.

D = [0.1; 0.02];

Use dssm to create the state-space model. Identify the type of initial state distributions
(StateType) by noting the following:

• is a stationary AR(2) process.
• is also a stationary AR(2) process.
• is the constant 1 for all periods.
• is nonstationary.

Set the initial state means (Mean0) to 0. The initial state mean for constant states must
be 1.

Mean0 = [0; 0; 1; 0];

StateType = [0; 0; 1; 2];

 dssm class

9-211

Mdl = dssm(A,B,C,D,'Mean0',Mean0,'StateType',StateType)

Mdl =

State-space model type: dssm

State vector length: 4

Observation vector length: 2

State disturbance vector length: 2

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations:

x1(t) = (0.60)x1(t-1) + (0.20)x2(t-1) + (0.50)x3(t-1) + (0.30)u1(t)

x2(t) = x1(t-1)

x3(t) = x3(t-1)

x4(t) = x4(t-1) + (0.05)u2(t)

Observation equations:

y1(t) = x1(t) - x2(t) + (0.10)e1(t)

y2(t) = x4(t) + (0.02)e1(t)

Initial state distribution:

Initial state means

 x1 x2 x3 x4

 0 0 1 0

Initial state covariance matrix

 x1 x2 x3 x4

 x1 0.21 0.16 0 0

 x2 0.16 0.21 0 0

 x3 0 0 0 0

 x4 0 0 0 Inf

State types

 x1 x2 x3 x4

 Stationary Stationary Constant Diffuse

9 Functions — Alphabetical List

9-212

Mdl is a dssm model object. dssm sets the initial state:

• Covariance matrix for the stationary states to the asymptotic covariance of the AR(2)
model

• Variance for constant states to 0
• Variance for diffuse states to Inf

You can display or modify properties of Mdl using dot notation. For example, display the
initial state covariance matrix.

Mdl.Cov0

ans =

 0.2143 0.1607 0 0

 0.1607 0.2143 0 0

 0 0 0 0

 0 0 0 Inf

Reset the initial state means for the stationary states to their asymptotic values.

Mdl.Mean0(1:2) = 0.5/(1-0.2-0.6);

Mdl.Mean0

ans =

 2.5000

 2.5000

 1.0000

 0

Implicitly Create Time-Invariant State-Space Model

Use a parameter mapping function to create a time-invariant state-space model, where
the state model is AR(1) model. The states are observed with bias, but without random
error. Set the initial state mean and variance, and specify that the state is stationary.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state. Symbolically, the model is

 dssm class

9-213

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = timeInvariantParamMap(params)

% Time-invariant state-space model parameter mapping function example. This

% function maps the vector params to the state-space matrices (A, B, C, and

% D), the initial state value and the initial state variance (Mean0 and

% Cov0), and the type of state (StateType). The state model is AR(1)

% without observation error.

 varu1 = exp(params(2)); % Positive variance constraint

 A = params(1);

 B = sqrt(varu1);

 C = params(3);

 D = [];

 Mean0 = 0.5;

 Cov0 = 100;

 StateType = 0;

end

Save this code as a file named timeInvariantParamMap.m to a folder on your
MATLAB® path.

Create the state-space model by passing the function timeInvariantParamMap as a
function handle to ssm.

Mdl = ssm(@timeInvariantParamMap);

ssm implicitly creates the state-space model. Usually, you cannot verify implicitly defined
state-space models.

Convert Standard to Diffuse State-Space Model

By default, ssm assigns a large scalar (1e7) to the initial state variance of all
diffuse states in a standard state-space model. Using this specification, the software
subsequently estimates, filters, and smooths a standard state-space model using the
standard Kalman filter. A standard state-space model treatment is an approximation to
results from an analysis that treats diffuse states using infinite variance. To implement

9 Functions — Alphabetical List

9-214

the diffuse Kalman filter instead, convert the standard state-space model to a diffuse
state-space model. This conversion attributes infinite variance to all diffuse states.

Explicitly create a two-dimensional standard state-space model. Specify that the
first state equation is and that the second state equation is

. Specify that the first observation equation is
and that the second observation equation is . Specify that the states are
diffuse and nonstationary, respectively.

A = [1 0; 0 0.2];

B = [1 0; 0 1];

C = [1 0;0 1];

D = [1 0; 0 1];

StateType = [2 0];

SSMMdl = ssm(A,B,C,D,'StateType',StateType)

SSMMdl =

State-space model type: ssm

State vector length: 2

Observation vector length: 2

State disturbance vector length: 2

Observation innovation vector length: 2

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations:

x1(t) = x1(t-1) + u1(t)

x2(t) = (0.20)x2(t-1) + u2(t)

Observation equations:

y1(t) = x1(t) + e1(t)

y2(t) = x2(t) + e2(t)

Initial state distribution:

Initial state means

 dssm class

9-215

 x1 x2

 0 0

Initial state covariance matrix

 x1 x2

 x1 1.00e+07 0

 x2 0 1.04

State types

 x1 x2

 Diffuse Stationary

SSMMdl is an ssm model object. In some cases, ssm can detect the state type, but it
is good practice to specify whether the state is stationary, diffuse, or the constant 1.
Because the model does not contain any unknown parameters, ssm infers the initial state
distributions.

Convert SSMMdl to a diffuse state-space model.

Mdl = dssm(SSMMdl)

Mdl =

State-space model type: dssm

State vector length: 2

Observation vector length: 2

State disturbance vector length: 2

Observation innovation vector length: 2

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations:

x1(t) = x1(t-1) + u1(t)

x2(t) = (0.20)x2(t-1) + u2(t)

Observation equations:

y1(t) = x1(t) + e1(t)

9 Functions — Alphabetical List

9-216

y2(t) = x2(t) + e2(t)

Initial state distribution:

Initial state means

 x1 x2

 0 0

Initial state covariance matrix

 x1 x2

 x1 Inf 0

 x2 0 1.04

State types

 x1 x2

 Diffuse Stationary

Mdl is a dssm model object. The structures of Mdl and SSMMdl are equivalent, except
that the initial state variance of the state in Mdl is Inf rather than 1e7.

To see the difference between the two models, simulate 10 periods of data from a state-
space model that is similar to SSMMdl. Set the initial state covariance matrix to .

SimMdl = SSMMdl;

SimMdl.Cov0 = eye(2);

T = 10;

rng(1); % For reproducibility

y = simulate(SimMdl,T);

Obtain filtered and smoothed states from Mdl and DSSMMdl using the simulated data.

fSSMMdl = filter(SSMMdl,y);

fMdl = filter(Mdl,y);

sSSMMdl = smooth(SSMMdl,y);

sMdl = smooth(Mdl,y);

Plot the filtered and smoothed states.

figure;

subplot(2,1,1)

plot(1:T,y(:,1),'-o',1:T,fSSMMdl(:,1),'-d',1:T,fMdl(:,1),'-*');

title('Filtered States for x_{1,t}')

legend('Simulated Data','Filtered States -- SSMMdl','Filtered States -- Mdl');

 dssm class

9-217

subplot(2,1,2)

plot(1:T,y(:,1),'-o',1:T,sSSMMdl(:,1),'-d',1:T,sMdl(:,1),'-*');

title('Smoothed States for x_{1,t}')

legend('Simulated Data','Smoothed States -- SSMMdl','Smoothed States -- Mdl');

figure;

subplot(2,1,1)

plot(1:T,y(:,2),'-o',1:T,fSSMMdl(:,2),'-d',1:T,fMdl(:,2),'-*');

title('Filtered States for x_{2,t}')

legend('Simulated Data','Filtered States -- SSMMdl','Filtered States -- Mdl');

subplot(2,1,2)

plot(1:T,y(:,2),'-o',1:T,sSSMMdl(:,2),'-d',1:T,sMdl(:,2),'-*');

title('Smoothed States for x_{2,t}')

legend('Simulated Data','Smoothed States -- SSMMdl','Smoothed States -- Mdl');

9 Functions — Alphabetical List

9-218

Besides apparent transient behavior in the random walk, the filtered and smoothed
states between the standard and diffuse state-space models appear nearly equivalent.
The slight difference occurs because filter and smooth set all diffuse state estimates in
the diffuse state-space model to 0 while they implement the diffuse Kalman filter. Once
the covariance matrices of the smoothed states attain full rank, filter and smooth
switch to using the standard Kalman filter. In this case, the switching time occurs after
the first period.

• “Implicitly Create Time-Varying Diffuse State-Space Model” on page 8-35
• “Implicitly Create Diffuse State-Space Model Containing Regression Component” on

page 8-30

 dssm class

9-219

Tip

• Specify ParamMap in a more general or complex setting, where, for example:

• The initial state values are parameters.
• In time-varying models, you want to use the same parameters for more than one

period.
• You want to impose parameter constraints.

• You can create a dssm model object that does not contain any diffuse states. However,
subsequent computations, for example, filtering and parameter estimation, can be
inefficient. If all states have stationary distributions or are the constant 1, then create
an ssm model object instead.

Algorithms

• Default values for Mean0 and Cov0:

• If you explicitly specify the state-space model (that is, you provide the coefficient
matrices A, B, C, and optionally D), then:

• For stationary states, the software generates the initial value using the
stationary distribution. If you provide all values in the coefficient matrices
(that is, your model has no unknown parameters), then dssm generates the
initial values. Otherwise, the software generates the initial values during
estimation.

• For states that are always the constant 1, dssm sets Mean0 to 1 and Cov0 to 0.
• For diffuse states, the software sets Mean0 to 0 and Cov0 to Inf by default.

• If you implicitly specify the state-space model (that is, you provide the parameter
vector to the coefficient-matrices-mapping function ParamMap), then the software
generates the initial values during estimation.

• For static states that do not equal 1 throughout the sample, the software cannot
assign a value to the degenerate, initial state distribution. Therefore, set static states
to 2 using the name-value pair argument StateType. Subsequently, the software
treats static states as nonstationary and assigns the static state a diffuse initial
distribution.

9 Functions — Alphabetical List

9-220

• It is best practice to set StateType for each state. By default, the software generates
StateType, but this behavior might not be accurate. For example, the software
cannot distinguish between a constant 1 state and a static state.

• The software cannot infer StateType from data because the data theoretically
comes from the observation equation. The realizations of the state equation are
unobservable.

• dssm models do not store observed responses or predictor data. Supply the data
wherever necessary using the appropriate input or name-value pair arguments.

• Suppose that you want to create a diffuse state-space model using a parameter-to-
matrix mapping function with this signature:

[A,B,C,D,Mean0,Cov0,StateType,DeflateY] = paramMap(params,Y,Z)

and you specify the model using an anonymous function

Mdl = dssm(@(params)paramMap(params,Y,Z))

The observed responses Y and predictor data Z are not input arguments in the
anonymous function. If Y and Z exist in the MATLAB Workspace before you create
Mdl, then the software establishes a link to them. Otherwise, if you pass Mdl to
estimate, the software throws an error.

The link to the data established by the anonymous function overrides all other
corresponding input argument values of estimate. This distinction is important
particularly when conducting a rolling window analysis. For details, see “Rolling-
Window Analysis of Time-Series Models” on page 8-168.

Alternatives

Create an ssm model object instead of a dssm model object when:

• The model does not contain any diffuse states.
• The diffuse states are correlated with each other or to other states.
• You want to implement the standard Kalman filter.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

 dssm class

9-221

See Also
ssm

More About
• “What Are State-Space Models?” on page 8-3
• “Rolling-Window Analysis of Time-Series Models” on page 8-168

Introduced in R2015b

9 Functions — Alphabetical List

9-222

egarch

Create EGARCH conditional variance model object

Create an egarch model object to represent an exponential generalized autoregressive
conditional heteroscedastic (EGARCH) model. The EGARCH(P,Q) conditional variance
model includes P past log conditional variances composing the GARCH polynomial, and
Q past standardized innovations composing the ARCH and leverage polynomials.

Use egarch to create a model with known or unknown coefficients, and then estimate
any unknown coefficients from data using estimate. You can also simulate or forecast
conditional variances from fully specified models using simulate or forecast,
respectively.

For more information about egarch model objects, see Using egarch Objects.

Syntax

Mdl = egarch

Mdl = egarch(P,Q)

Mdl = egarch(Name,Value)

Description

Mdl = egarch creates a zero-degree conditional variance EGARCH model object.

Mdl = egarch(P,Q) creates an EGARCH model with GARCH polynomial degree P, and
ARCH and leverage polynomials having degree Q.

Mdl = egarch(Name,Value) creates an EGARCH model with additional options
specified by one or more Name,Value pair arguments. For example, you can specify
a conditional variance model constant, the number of ARCH polynomial lags, and the
innovation distribution.

 egarch

9-223

Examples

Create Default EGARCH Model

Create a default egarch model object and specify its parameter values using dot
notation.

Create an EGARCH(0,0) model.

Mdl = egarch

Mdl =

 EGARCH(0,0) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 0

 Constant: NaN

 GARCH: {}

 ARCH: {}

 Leverage: {}

Mdl is an egarch model. It contains an unknown constant, its offset is 0, and the
innovation distribution is 'Gaussian'. The model does not have GARCH, ARCH, or
leverage polynomials.

Specify two unknown ARCH and leverage coefficients for lags one and two using dot
notation.

Mdl.ARCH = {NaN NaN};

Mdl.Leverage = {NaN NaN};

Mdl

Mdl =

 EGARCH(0,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 2

 Constant: NaN

 GARCH: {}

9 Functions — Alphabetical List

9-224

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

The Q, ARCH, and Leverage properties update to 2, {NaN NaN}, {NaN NaN},
respectively. The two ARCH and leverage coefficients are associated with lags 1 and 2.

Create EGARCH Model Using Shorthand Syntax

Create an egarch model object using the shorthand notation egarch(P,Q), where P
is the degree of the GARCH polynomial and Q is the degree of the ARCH and leverage
polynomial.

Create an EGARCH(3,2) model.

Mdl = egarch(3,2)

Mdl =

 EGARCH(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

Mdl is an egarch model object. All properties of Mdl, except P, Q, and Distribution,
are NaN values. By default, the software:

• Includes a conditional variance model constant
• Excludes a conditional mean model offset (i.e., the offset is 0)
• Includes all lag terms in the GARCH polynomial up to lag P
• Includes all lag terms in the ARCH and leverage polynomials up to lag Q

Mdl specifies only the functional form of an EGARCH model. Because it contains
unknown parameter values, you can pass Mdl and time-series data to estimate to
estimate the parameters.

Create EGARCH Model

Create an egarch model object using name-value pair arguments.

 egarch

9-225

Specify an EGARCH(1,1) model. By default, the conditional mean model offset is zero.
Specify that the offset is NaN. Include a leverage term.

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN)

Mdl =

 EGARCH(1,1) Conditional Variance Model with Offset:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Offset: NaN

Mdl is an egarch model object. The software sets all parameters to NaN, except P, Q, and
Distribution.

Since Mdl contains NaN values, Mdl is appropriate for estimation only. Pass Mdl and
time-series data to estimate. For a continuation of this example, see “Estimate
EGARCH Model”.

Create EGARCH Model with Known Coefficients

Create an EGARCH(1,1) model with mean offset,

where

and is an independent and identically distributed standard Gaussian process.

Mdl = egarch('Constant',0.0001,'GARCH',0.75,...

 'ARCH',0.1,'Offset',0.5,'Leverage',{-0.3 0 0.01})

9 Functions — Alphabetical List

9-226

Mdl =

 EGARCH(1,3) Conditional Variance Model with Offset:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 3

 Constant: 0.0001

 GARCH: {0.75} at Lags [1]

 ARCH: {0.1} at Lags [1]

 Leverage: {-0.3 0.01} at Lags [1 3]

 Offset: 0.5

egarch assigns default values to any properties you do not specify with name-value pair
arguments. An alternative way to specify the leverage component is 'Leverage',{-0.3
0.01},'LeverageLags',[1 3].

• “Specify EGARCH Models Using egarch” on page 6-19
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify the Conditional Variance Model Innovation Distribution” on page 6-48
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53

Input Arguments

P — Number of past consecutive, logged conditional variance terms
nonnegative integer

Number of past consecutive, logged conditional variance terms to include in the GARCH
polynomial, specified as a nonnegative integer. That is, P is the degree of the GARCH
polynomial, where the polynomial includes each lag term from t – 1 to t – P.

You can specify P using the egarch(P,Q) shorthand syntax only. You cannot specify P
in conjunction with Name,Value pair arguments.

If P > 0, then you must specify Q as a positive integer.

Example: egarch(3,2)

Data Types: double

 egarch

9-227

Q — Number of past consecutive standardized innovation terms
nonnegative integer

Number of past consecutive standardized innovation terms to include in the ARCH and
leverage polynomials, specified as a nonnegative integer. That is, Q is the degree of the
ARCH and leverage polynomials, where each polynomial includes each lag term from t –
1 to t – Q. Also, Q specifies the minimum number of presample innovations the software
requires to initiate the model.

You can specify this property when using the egarch(P,Q) shorthand syntax only. You
cannot specify Q in conjunction with Name,Value pair arguments.

If P > 0, then you must specify Q as a positive integer.

Example: egarch(3,2)

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Constant',0.5,'ARCHLags',2,'Distribution',struct('Name','t','DoF',5)

specifies a conditional variance model constant of 0.5, two standardized innovation terms
at lags 1 and 2 of the ARCH polynomial (but no leverage terms), and a t distribution with
5 degrees of freedom for the innovations.

'Constant' — Conditional variance model constant
NaN (default) | scalar

Conditional variance model constant, specified as the comma-separated pair consisting of
'Constant' and a scalar.

Example: 'Constant',-0.5

Data Types: double

'GARCH' — Coefficients corresponding to past logged conditional variance terms
cell vector of NaNs (default) | cell vector of scalars

9 Functions — Alphabetical List

9-228

Coefficients corresponding to the past logged conditional variance terms that compose the
GARCH polynomial, specified as the comma-separated pair consisting of 'GARCH' and a
cell vector of scalars.

If you specify GARCHLags, then GARCH is an equivalent-length cell vector of coefficients
associated with the lags in GARCHLags. Otherwise, GARCH is a P-element cell vector of
coefficients corresponding to lags 1, 2,..., P.

The coefficients must compose a stationary GARCH polynomial. For details, see
“EGARCH Model” on page 9-232.

By default, GARCH is a cell vector of NaNs of length P (the degree of the GARCH
polynomial) or numel(GARCHLags).

Example: 'GARCH',{0.1 0 0 0.02}

Data Types: cell

'ARCH' — Coefficients corresponding to magnitude of past standardized innovation terms
cell vector of NaNs (default) | cell vector of scalars

Coefficients corresponding to the magnitude of the past standardized innovation terms
that compose the ARCH polynomial, specified as the comma-separated pair consisting of
'ARCH' and a cell vector of scalars.

If you do not specify ARCHLags, then ARCH is a cell vector of coefficients corresponding to
lags 1 through the number of elements in ARCH.

If you specify ARCHLags, then ARCH is an equivalent-length cell vector of coefficients
associated with the lags in ARCHLags.

By default, ARCH is a cell vector of NaNs with the same length as the ARCH polynomial
degree or numel(ARCHLags).

Example: 'ARCH',{0.5 0 0.2}

Data Types: cell

'Leverage' — Coefficients corresponding to past standardized innovation terms
cell vector of NaNs (default) | cell vector of scalars

Coefficients corresponding to the past standardized innovation terms that compose the
leverage polynomial, specified as the comma-separated pair consisting of 'Leverage'
and a cell vector of scalars.

 egarch

9-229

If you specify LeverageLags, then Leverage is an equivalent-length cell vector of
coefficients associated with the lags in LeverageLags. Otherwise, Leverage is a
cell vector of coefficients corresponding to lags 1 through the number of elements in
Leverage.

By default, Leverage is a cell vector of NaNs with the same length as the leverage
polynomial degree or numel(LeverageLags).

Example: 'Leverage',{-0.1 0 0 0.03}

'Offset' — Innovation mean model offset
0 (default) | scalar

Innovation mean model offset or additive constant, specified as the comma-separated
pair consisting of 'Offset' and a scalar.

Example: 'Offset',0.1

Data Types: double

'GARCHLags' — Lags associated with GARCH polynomial coefficients
vector of positive integers

Lags associated with the GARCH polynomial coefficients, specified as the comma-
separated pair consisting of 'GARCHLags' and a vector of positive integers. The
maximum value of GARCHLags determines P, the GARCH polynomial degree.

If you specify GARCH, then GARCHLags is an equivalent-length vector of positive integers
specifying the lags of the corresponding coefficients in GARCH. Otherwise, GARCHLags
indicates the lags of unknown coefficients in the GARCH polynomial.

By default, GARCHLags is a vector containing the integers 1 through P.

Example: 'GARCHLags',[1 2 4 3]

Data Types: double

'ARCHLags' — Lags associated with ARCH polynomial coefficients
vector of positive integers

Lags associated with the ARCH polynomial coefficients, specified as the comma-
separated pair consisting of 'ARCHLags' and a vector of positive integers. The maximum
value of ARCHLags determines the ARCH polynomial degree.

9 Functions — Alphabetical List

9-230

If you specify ARCH, then ARCHLags is an equivalent-length vector of positive integers
specifying the lags of the corresponding coefficients in ARCH. Otherwise, ARCHLags
indicates the lags of unknown coefficients in the ARCH polynomial.

By default, ARCHLags is a vector containing the integers 1 through the ARCH polynomial
degree.
Example: 'ARCHLags',[3 1 2]

Data Types: double

'LeverageLags' — Lags associated with leverage polynomial coefficients
vector of positive integers

Lags associated with the leverage polynomial coefficients, specified as the comma-
separated pair consisting of 'LeverageLags' and a vector of positive integers. The
maximum value of LeverageLags determines the leverage polynomial degree.

If you specify Leverage, then LeverageLags is an equivalent-length vector of positive
integers specifying the lags of the corresponding coefficients in LeverageLags.
Otherwise, LeverageLags indicates the lags of unknown coefficients in the leverage
polynomial.

By default, LeverageLags is a vector containing the integers 1 through the leverage
polynomial degree.
Example: 'LeverageLags',1:4

Data Types: double

'Distribution' — Conditional probability distribution of innovation process
'Gaussian' (default) | string | structure array

Conditional probability distribution of the innovation process, specified as the comma-
separated pair consisting of 'Distribution' and a string or a structure array.

This table contains the available distributions.

Distribution String Structure Array

Gaussian 'Gaussian' struct('Name','Gaussian')

t 't'

By default, DoF is NaN.
struct('Name','t','DoF',DoF)

DoF > 2 or DoF = NaN

 egarch

9-231

Example: 'Distribution',struct('Name','t','DoF',10)

Data Types: char | struct

Notes:

• All GARCH, ARCH and Leverage coefficients are subject to a near-zero tolerance
exclusion test. That is, the software:

1 Creates lag operator polynomials for each of the GARCH, ARCH and Leverage
components.

2 Compares each coefficient to the default lag operator zero tolerance, 1e-12.
3 Includes a coefficient in the model if its magnitude is greater than 1e-12,

and excludes the coefficient otherwise. In other words, the software considers
excluded coefficients to be sufficiently close to zero.

For details, see LagOp.
• The lengths of ARCH and Leverage might differ. The difference can occur because the

software defines the property Q as the largest lag associated with nonzero ARCH and
Leverage coefficients, or max(ARCHLags,LeverageLags). Typically, the number
and corresponding lags of nonzero ARCH and Leverage coefficients are equivalent,
but this is not a requirement.

Output Arguments

Mdl — EGARCH model
egarch model object

EGARCH model, returned as an egarch model object.

For the property descriptions of Mdl, see Conditional Variance Model Properties.

If Mdl contains unknown parameters (indicated by NaNs), then you can specify them
using dot notation. Alternatively, you can pass Mdl and time series data to estimate to
obtain estimates.

If Mdl is fully specified, then you can simulate or forecast conditional variances using
simulate or forecast, respectively.

9 Functions — Alphabetical List

9-232

More About

EGARCH Model

An EGARCH model is an innovations process that addresses conditional
heteroscedasticity. Specifically, the model posits that the current conditional variance is
the sum of these linear processes:

• Past logged conditional variances (the GARCH component or polynomial)
• Magnitudes of past standardized innovations (the ARCH component or polynomial)
• Past standardized innovations (the leverage component or polynomial)

Consider the time series

yt t= +m e ,

where e s
t t t

z= . The EGARCH(P,Q) conditional variance process, s
t

2 , has the form

log logs k g s a
e

s

e

st i
i

P

t i j

t j

t j

t j

t j

E2

1

2= + + -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

Í
=

-
-

-

-

-
Â ÍÍ

˘

˚

˙
˙

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

= =

-

-
Â Â
j

Q

j
j

Q
t j

t j1 1

x
e

s
.

The table shows how the variables correspond to the properties of the garch model
object.

Variable Description Property

μ Innovation mean model
constant offset

'Offset'

κ > 0 Conditional variance model
constant

'Constant'

γj GARCH component
coefficients

'GARCH'

αj ARCH component
coefficients

'ARCH'

ξj Leverage component
coefficients

'Leverage'

 egarch

9-233

Variable Description Property

zt Series of independent
random variables with
mean 0 and variance 1

'Distribution'

If zt is Gaussian, then

E E z
t j

t j
t j

e

s p

-

-
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= { } =

2
.

If zt is t distributed with ν > 2 degrees of freedom, then

E E z
t j

t j
t j

e

s
n

p

n

n
-

-
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= { } = -

-Ê
ËÁ

ˆ
¯̃

Ê
Ë
Á

ˆ
¯
˜

2

1

2

2

G

G
.

To ensure a stationary EGARCH model, all roots of the GARCH lag operator polynomial,
()1 1- - -g gL L

P

P
… , must lie outside of the unit circle.

The EGARCH model is unique from the GARCH and GJR models because it models the
logarithm of the variance. By modeling the logarithm, positivity constraints on the model
parameters are relaxed. However, forecasts of conditional variances from an EGARCH
model are biased, because by Jensen’s inequality,

E E
t t

() exp{ (log)}.s s
2 2

≥

EGARCH models are appropriate when positive and negative shocks of equal magnitude
do not contribute equally to volatility [1].

Tips

• An EGARCH(1,1) specification is complex enough for most applications. Typically
in these models, the GARCH and ARCH coefficients are positive, and the leverage
coefficients are negative. If you get these signs, then large unanticipated downward
shocks increase the variance. If you get signs opposite to those expected, you might

9 Functions — Alphabetical List

9-234

encounter difficulties inferring volatility sequences and forecasting. A negative ARCH
coefficient is particularly problematic. In this case, an EGARCH model might not be
the best choice for your application.

• “Conditional Variance Models” on page 6-2
• “EGARCH Model” on page 6-4

References

[1] Tsay, R. S. Analysis of Financial Time Series. 3rd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2010.

See Also
estimate | filter | forecast | infer | print | simulate

Introduced in R2012a

 Using egarch Objects

9-235

Using egarch Objects
EGARCH conditional variance time series model

Description

An egarch model object specifies the functional form and stores the parameter values
of a exponential generalized autoregressive conditional heteroscedastic (EGARCH)
model. “Definitions” on page 9- attempt to address volatility clustering in an
innovations process. Volatility clustering occurs when an innovations process does not
exhibit significant autocorrelation, but the variance of the process changes with time.
EGARCH models are appropriate when positive and negative shocks of equal magnitude
might not contribute equally to volatility [1].

The EGARCH(P,Q) conditional variance model includes:

• P past log conditional variances that compose the GARCH component polynomial
• Q past standardized innovations that compose the ARCH and leverage component

polynomials

To create an egarch model object, use egarch. Specify only the GARCH and ARCH
(and leverage) polynomial degrees P and Q, respectively, using the shorthand syntax
egarch(P,Q). Then, pass the model and time series data to estimate to fit the model
to the data. Or, specify the values of some parameters, and then estimate others.

Use a completely specified model (i.e., all parameter values of the model are known) to:

• Simulate conditional variances or responses using simulate
• Forecast conditional variances using forecast

Examples

Create EGARCH Model

Create an egarch model object using name-value pair arguments.

Specify an EGARCH(1,1) model. By default, the conditional mean model offset is zero.
Specify that the offset is NaN. Include a leverage term.

9 Functions — Alphabetical List

9-236

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN)

Mdl =

 EGARCH(1,1) Conditional Variance Model with Offset:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

 Offset: NaN

Mdl is an egarch model object. The software sets all parameters to NaN, except P, Q, and
Distribution.

Since Mdl contains NaN values, Mdl is appropriate for estimation only. Pass Mdl and
time-series data to estimate. For a continuation of this example, see “Estimate
EGARCH Model”.

Create EGARCH Model Using Shorthand Syntax

Create an egarch model object using the shorthand notation egarch(P,Q), where P
is the degree of the GARCH polynomial and Q is the degree of the ARCH and leverage
polynomial.

Create an EGARCH(3,2) model.

Mdl = egarch(3,2)

Mdl =

 EGARCH(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Using egarch Objects

9-237

 Leverage: {NaN NaN} at Lags [1 2]

Mdl is an egarch model object. All properties of Mdl, except P, Q, and Distribution,
are NaN values. By default, the software:

• Includes a conditional variance model constant
• Excludes a conditional mean model offset (i.e., the offset is 0)
• Includes all lag terms in the GARCH polynomial up to lag P
• Includes all lag terms in the ARCH and leverage polynomials up to lag Q

Mdl specifies only the functional form of an EGARCH model. Because it contains
unknown parameter values, you can pass Mdl and time-series data to estimate to
estimate the parameters.

Access EGARCH Model Properties

Access the properties of a created egarch model object using dot notation.

Create an egarch model object.

Mdl = egarch(3,2)

Mdl =

 EGARCH(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

Remove the second GARCH term from the model. That is, specify that the GARCH
coefficient of the second lagged conditional variance is 0.

Mdl.GARCH{2} = 0

Mdl =

9 Functions — Alphabetical List

9-238

 EGARCH(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

The GARCH polynomial has two unknown parameters corresponding to lags 1 and 3.

Display the distribution of the disturbances.

Mdl.Distribution

ans =

 Name: 'Gaussian'

The disturbances are Gaussian with mean 0 and variance 1.

Specify that the underlying disturbances have a t distribution with five degrees of
freedom.

Mdl.Distribution = struct('Name','t','DoF',5)

Mdl =

 EGARCH(3,2) Conditional Variance Model:

 Distribution: Name = 't', DoF = 5

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

Specify that the ARCH coefficients are 0.2 for the first lag and 0.1 for the second lag.

 Using egarch Objects

9-239

Mdl.ARCH = {0.2 0.1}

Mdl =

 EGARCH(3,2) Conditional Variance Model:

 Distribution: Name = 't', DoF = 5

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {0.2 0.1} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

To estimate the remaining parameters, you can pass Mdl and your data to estimate and
use the specified parameters as equality constraints. Or, you can specify the rest of the
parameter values, and then simulate or forecast conditional variances from the GARCH
model by passing the fully specified model to simulate or forecast, respectively.

Estimate EGARCH Model

Fit an EGARCH model to an annual time series of Danish nominal stock returns from
1922-1999. The example follows from “Create EGARCH Model”.

Load the Data_Danish data set. Plot the nominal returns (RN).

load Data_Danish;

nr = DataTable.RN;

figure;

plot(dates,nr);

hold on;

plot([dates(1) dates(end)],[0 0],'r:'); % Plot y = 0

hold off;

title('Danish Nominal Stock Returns');

ylabel('Nominal return (%)');

xlabel('Year');

9 Functions — Alphabetical List

9-240

The nominal return series seems to have a nonzero conditional mean offset and seems to
exhibit volatility clustering. That is, the variability is smaller for earlier years than it is
for later years. For this example, assume that an EGARCH(1,1) model is appropriate for
this series.

Create an EGARCH(1,1) model. The conditional mean offset is zero by default. To
estimate the offset, specify that it is NaN. Include a leverage lag.

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN);

Fit the EGARCH(1,1) model to the data.

EstMdl = estimate(Mdl,nr);

 Using egarch Objects

9-241

 EGARCH(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.62723 0.744007 -0.843043

 GARCH{1} 0.774189 0.23628 3.27658

 ARCH{1} 0.386361 0.373606 1.03414

 Leverage{1} -0.00249918 0.19222 -0.0130016

 Offset 0.10325 0.0377269 2.73676

EstMdl is a fully specified egarch model object. That is, it does not contain NaN values.
You can assess the adequacy of the model by generating residuals using infer, and then
analyzing them.

To simulate conditional variances or responses, pass EstMdl to simulate. See “Simulate
EGARCH Model Observations and Conditional Variances”.

To forecast innovations, pass EstMdl to forecast. See “Forecast EGARCH Model
Conditional Variances”.

Simulate EGARCH Model Observations and Conditional Variances

Simulate conditional variance or response paths from a fully specified egarch model
object. That is, simulate from an estimated egarch model or a known egarch model in
which you specify all parameter values. This example follows from “Estimate EGARCH
Model”.

Load the Data_Danish data set.

load Data_Danish;

rn = DataTable.RN;

Create an EGARCH(1,1) model with an unknown conditional mean offset. Fit the model
to the annual, nominal return series. Include a leverage term.

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN);

EstMdl = estimate(Mdl,rn);

 EGARCH(1,1) Conditional Variance Model:

9 Functions — Alphabetical List

9-242

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.62723 0.744007 -0.843043

 GARCH{1} 0.774189 0.23628 3.27658

 ARCH{1} 0.386361 0.373606 1.03414

 Leverage{1} -0.00249918 0.19222 -0.0130016

 Offset 0.10325 0.0377269 2.73676

Simulate 100 paths of conditional variances and responses from the estimated EGARCH
model.

numObs = numel(rn); % Sample size (T)

numPaths = 100; % Number of paths to simulate

rng(1); % For reproducibility

[VSim,YSim] = simulate(EstMdl,numObs,'NumPaths',numPaths);

VSim and YSim are T-by- numPaths matrices. Rows correspond to a sample period, and
columns correspond to a simulated path.

Plot the average and the 97.5% and 2.5% percentiles of the simulate paths. Compare the
simulation statistics to the original data.

VSimBar = mean(VSim,2);

VSimCI = quantile(VSim,[0.025 0.975],2);

YSimBar = mean(YSim,2);

YSimCI = quantile(YSim,[0.025 0.975],2);

figure;

subplot(2,1,1);

h1 = plot(dates,VSim,'Color',0.8*ones(1,3));

hold on;

h2 = plot(dates,VSimBar,'k--','LineWidth',2);

h3 = plot(dates,VSimCI,'r--','LineWidth',2);

hold off;

title('Simulated Conditional Variances');

ylabel('Cond. var.');

xlabel('Year');

subplot(2,1,2);

h1 = plot(dates,YSim,'Color',0.8*ones(1,3));

hold on;

 Using egarch Objects

9-243

h2 = plot(dates,YSimBar,'k--','LineWidth',2);

h3 = plot(dates,YSimCI,'r--','LineWidth',2);

hold off;

title('Simulated Nominal Returns');

ylabel('Nominal return (%)');

xlabel('Year');

legend([h1(1) h2 h3(1)],{'Simulated path' 'Mean' 'Confidence bounds'},...

 'FontSize',7,'Location','NorthWest');

Forecast EGARCH Model Conditional Variances

Forecast conditional variances from a fully specified egarch model object. That is,
forecast from an estimated egarch model or a known egarch model in which you specify
all parameter values. The example follows from “Estimate EGARCH Model”.

9 Functions — Alphabetical List

9-244

Load the Data_Danish data set.

load Data_Danish;

nr = DataTable.RN;

Create an EGARCH(1,1) model with an unknown conditional mean offset and include a
leverage term. Fit the model to the annual nominal return series.

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN);

EstMdl = estimate(Mdl,nr);

 EGARCH(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.62723 0.744007 -0.843043

 GARCH{1} 0.774189 0.23628 3.27658

 ARCH{1} 0.386361 0.373606 1.03414

 Leverage{1} -0.00249918 0.19222 -0.0130016

 Offset 0.10325 0.0377269 2.73676

Forecast the conditional variance of the nominal return series 10 years into the future
using the estimated EGARCH model. Specify the entire returns series as presample
observations. The software infers presample conditional variances using the presample
observations and the model.

numPeriods = 10;

vF = forecast(EstMdl,numPeriods,'Y0',nr);

Plot the forecasted conditional variances of the nominal returns. Compare the forecasts
to the observed conditional variances.

v = infer(EstMdl,nr);

figure;

plot(dates,v,'k:','LineWidth',2);

hold on;

plot(dates(end):dates(end) + 10,[v(end);vF],'r','LineWidth',2);

title('Forecasted Conditional Variances of Nominal Returns');

ylabel('Conditional variances');

 Using egarch Objects

9-245

xlabel('Year');

legend({'Estimation sample cond. var.','Forecasted cond. var.'},...

 'Location','Best');

• “Specify EGARCH Models Using egarch” on page 6-19
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Infer Conditional Variances and Residuals” on page 6-77
• “Compare Conditional Variance Models Using Information Criteria” on page 6-87
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104
• “Forecast a Conditional Variance Model” on page 6-126

9 Functions — Alphabetical List

9-246

Properties
Conditional Variance Model Properties Specify conditional variance model

functional form and parameter values

Object Functions
estimate Fit conditional variance model to data
filter Filter disturbances through conditional

variance model
forecast Forecast conditional variances from

conditional variance models
infer Infer conditional variances of conditional

variance models
print Display parameter estimation results for

conditional variance models
simulate Monte Carlo simulation of conditional

variance models

Create Object

Create egarch models using egarch.

You can specify an egarch model as part of a composition of conditional mean and
variance models. For details, see arima.

See Also
arima | garch | gjr

More About
• “Conditional Variance Models” on page 6-2
• “EGARCH Model” on page 6-4

Introduced in R2012a

 egcitest

9-247

egcitest
Engle-Granger cointegration test

Syntax

[h,pValue,stat,cValue,reg1,reg2] = egcitest(Y)

[h,pValue,stat,cValue,reg1,reg2] = egcitest(Y,Name,Value)

Description

Engle-Granger tests assess the null hypothesis of no cointegration among the time series
in Y. The test regresses Y(:,1) on Y(:,2:end), then tests the residuals for a unit root.

[h,pValue,stat,cValue,reg1,reg2] = egcitest(Y) performs the Engle-Granger
test on a data matrix Y.

[h,pValue,stat,cValue,reg1,reg2] = egcitest(Y,Name,Value) performs the
Engle-Granger test on a data matrix Y with additional options specified by one or more
Name,Value pair arguments.

Input Arguments

Y

numObs-by-numDims matrix representing numObs observations of a numDims-
dimensional time series y(t), with the last observation the most recent. Y cannot have
more than 12 columns. Observations containing NaN values are removed.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

9 Functions — Alphabetical List

9-248

'creg'

String or cell vector of strings indicating the form of the cointegrating regression, where
y1 = Y(:,1) is regressed on Y2 = Y(:,2:end)and optional deterministic terms in X:
y1 = Xa + Y2b + ε
Values are

• nc—no constant or trend in X
• c—constant but no trend in X
• ct —constant and linear trend in X
• ctt —constant, linear trend, and quadratic trend in X

Default: c

'cvec'

Vector or cell vector of vectors containing coefficients [a;b] to be held fixed in the
cointegrating regression. The length of a is 0, 1, 2 or 3, depending on creg, with
coefficient order: constant, linear trend, quadratic trend. The length of b is numDims − 1.
It is assumed that the coefficient of y1 = Y(:,1) has been normalized to 1. NaN values
indicate coefficients to be estimated. If cvec is completely specified (no NaN values), no
cointegrating regression is performed.

Default: Completely unspecified cointegrating vector (all NaN values).

'rreg'

String or cell vector of strings indicating the form of the residual regression. Values are
ADF, for an augmented Dickey-Fuller test of residuals from the cointegrating regression,
or PP, for a Phillips-Perron test. Test statistics are computed by calling adftest and
pptest with the model parameter set to AR, assuming data have been demeaned or
detrended, as necessary, in the cointegrating regression.

Default: ADF

'lags'

Scalar or vector of nonnegative integers indicating the number of lags used in the
residual regression. The meaning of the parameter depends on the value of rreg (see the
documentation for the lags parameter in adftest and pptest).

 egcitest

9-249

Default: 0

'test'

String or cell vector of strings indicating the type of test statistic computed from the
residual regression. Values are t1 (a “τ test”) or t2 (a “z test”). The meaning of the
parameter depends on the value of rreg (see the documentation for the test parameter in
adftest and pptest).

Default: t1

'alpha'

Scalar or vector of nominal significance levels for the tests. Values must be between
0.001 and 0.999.

Default: 0.05

Single-element parameter values are expanded to the length of any vector value (the
number of tests). Vector values must have equal length. If any value is a row vector, all
outputs are row vectors.

Output Arguments

h

Vector of Boolean decisions for the tests, with length equal to the number of tests.
Values of h equal to 1 (true) indicate rejection of the null in favor of the alternative of
cointegration. Values of h equal to 0 (false) indicate a failure to reject the null.

pValue

Vector of p-values of the test statistics, with length equal to the number of tests. p-values
are left-tail probabilities.

stat

Vector of test statistics, with length equal to the number of tests. The statistic depends
on the rreg and test values (see the documentation for adftest and pptest).

9 Functions — Alphabetical List

9-250

cValue

Vector of critical values for the tests, with length equal to the number of tests. Values
are for left-tail probabilities. Since residuals are estimated rather than observed, critical
values are different from those used in adftest or pptest (unless the cointegrating
vector is completely specified by cvec). egcitest loads tables of critical values from the
file Data_EGCITest.mat, then linearly interpolates test values from the tables. Critical
values in the tables were computed using methods described in [3].

reg1

Structure of regression statistics from the cointegrating regression.

reg2

Structure of regression statistics from the residual regression.

The number of records in reg1 and reg2 equals the number of tests. Each record has the
following fields:

num Length of the regression response y, with NaNs removed
size Effective sample size, adjusted for lags, difference*
names Regression coefficient names
coeff Estimated coefficient values
se Estimated coefficient standard errors
Cov Estimated coefficient covariance matrix
tStats t statistics of coefficients and p-values
FStat F statistic and p-value
yMu Mean of y, adjusted for lags, difference*
ySigma Standard deviation of y, adjusted for lags, difference*
yHat Fitted values of y, adjusted for lags, difference*
res Regression residuals
DWStat Durbin-Watson statistic
SSR Regression sum of squares
SSE Error sum of squares

 egcitest

9-251

SST Total sum of squares
MSE Mean squared error
RMSE Standard error of the regression
RSq R2 statistic
aRSq Adjusted R2 statistic
LL Loglikelihood of data under Gaussian innovations
AIC Akaike information criterion
BIC Bayesian (Schwarz) information criterion
HQC Hannan-Quinn information criterion

*Lagging and differencing a time series reduces the sample size. Absent any presample
values, if y(t) is defined for t = 1:N, then the lagged series y(t−k) is defined for t = k+1:N.
Differencing reduces the time base to k+2:N. With p lagged differences, the common time
base is p+2:N and the effective sample size is N−(p+1).

Examples

Test Multiple Time Series for Cointegration Using egcitest

Load data on term structure of interest rates in Canada:

load Data_Canada

Y = Data(:,3:end);

names = series(3:end);

plot(dates,Y)

legend(names,'location','NW')

grid on

9 Functions — Alphabetical List

9-252

Test for cointegration (and reproduce row 1 of Table II in [3]):

[h,pValue,stat,cValue,reg] = egcitest(Y,'test',...

 {'t1','t2'});

h,pValue

h =

 0 1

pValue =

 egcitest

9-253

 0.0526 0.0202

Plot the estimated cointegrating relation y1−Y2b−Xa:

a = reg(2).coeff(1);

b = reg(2).coeff(2:3);

plot(dates,Y*[1;-b]-a)

grid on

9 Functions — Alphabetical List

9-254

More About

Algorithms

A suitable value for lags must be determined in order to draw valid inferences from the
test. See notes on the lags parameter in the documentation for adftest and pptest.

Samples with less than ~20 to 40 observations (depending on the dimension of the data)
can yield unreliable critical values, and so unreliable inferences. See [3].

If cointegration is inferred, residuals from the reg1 output can be used as data
for the error-correction term in a VEC representation of y(t). See [1]. Estimation of
autoregressive model components can then be performed with vgxvarx, treating the
residual series as exogenous.
• “Cointegration and Error Correction Analysis” on page 7-108

References

[1] Engle, R. F. and C. W. J. Granger. “Co-Integration and Error-Correction:
Representation, Estimation, and Testing.” Econometrica. v. 55, 1987, pp. 251–
276.

[2] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[3] MacKinnon, J. G. “Numerical Distribution Functions for Unit Root and Cointegration
Tests.” Journal of Applied Econometrics. v. 11, 1996, pp. 601–618.

See Also
jcitest | adftest | pptest | vec2var

Introduced in R2011a

 estimate

9-255

estimate

Fit conditional variance model to data

Syntax

EstMdl = estimate(Mdl,y)

EstMdl = estimate(Mdl,y,Name,Value)

[EstMdl,EstParamCov,logL,info] = estimate(___)

Description

EstMdl = estimate(Mdl,y) estimates the unknown parameters of the conditional
variance model object Mdl with the observed univariate time series y, using maximum
likelihood. EstMdl is a fully specified conditional variance model object that stores the
results. It is the same model type as Mdl (see garch, egarch, and gjr).

EstMdl = estimate(Mdl,y,Name,Value) estimates the conditional variance model
with additional options specified by one or more Name,Value pair arguments. For
example, you can specify to display iterative optimization information or presample
innovations.

[EstMdl,EstParamCov,logL,info] = estimate(___) additionally returns:

• EstParamCov, the variance-covariance matrix associated with estimated parameters.
• logL, the optimized loglikelihood objective function.
• info, a data structure of summary information using any of the input arguments in

the previous syntaxes.

Examples

Estimate GARCH Model Parameters Without Initial Values

Fit a GARCH(1,1) model to simulated data.

9 Functions — Alphabetical List

9-256

Simulate 500 data points from the GARCH(1,1) model

where and

Use the default Gaussian innovation distribution for .

Mdl = garch('Constant',0.0001,'GARCH',0.5,...

 'ARCH',0.2);

rng default; % For reproducibility

[v,y] = simulate(Mdl,500);

The output v contains simulated conditional variances. y is a column vector of simulated
responses (innovations).

Specify a GARCH(1,1) model with unknown coefficients, and fit it to the series y.

ToEstMdl = garch(1,1);

EstMdl = estimate(ToEstMdl,y)

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 9.89133e-05 3.07271e-05 3.21909

 GARCH{1} 0.453925 0.111928 4.05552

 ARCH{1} 0.263743 0.0569322 4.63258

EstMdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 9.89133e-05

 estimate

9-257

 GARCH: {0.453925} at Lags [1]

 ARCH: {0.263743} at Lags [1]

The result is a new garch model called EstMdl. The parameter estimates in EstMdl
resemble the parameter values that generated the simulated data.

Estimate EGARCH Model Parameters Without Initial Values

Fit an EGARCH(1,1) model to simulated data.

Simulate 500 data points from an EGARCH(1,1) model

where and

(the distribution of is Gaussian).

Mdl = egarch('Constant',0.001,'GARCH',0.7,...

 'ARCH',0.5,'Leverage',-0.3);

rng default % For reproducibility

[v,y] = simulate(Mdl,500);

The output v contains simulated conditional variances. y is a column vector of simulated
responses (innovations).

Specify an EGARCH(1,1) model with unknown coefficients, and fit it to the series y.

ToEstMdl = egarch(1,1);

EstMdl = estimate(ToEstMdl,y)

 EGARCH(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

9 Functions — Alphabetical List

9-258

 ----------- ----------- ------------ -----------

 Constant -0.000638689 0.0316977 -0.0201494

 GARCH{1} 0.705065 0.0673594 10.4672

 ARCH{1} 0.567741 0.0747457 7.59563

 Leverage{1} -0.321158 0.0533449 -6.0204

EstMdl =

 EGARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: -0.000638689

 GARCH: {0.705065} at Lags [1]

 ARCH: {0.567741} at Lags [1]

 Leverage: {-0.321158} at Lags [1]

The result is a new egarch model called EstMdl. The parameter estimates in EstMdl
resemble the parameter values that generated the simulated data.

Estimate GJR Model Parameters Without Initial Values

Fit a GJR(1,1) model to simulated data.

Simulate 500 data points from a GJR(1,1) model.

where and

Use the default Gaussian innovation distribution for .

Mdl = gjr('Constant',0.001,'GARCH',0.5,...

 'ARCH',0.2,'Leverage',0.2);

rng default; % For reproducibility

[v,y] = simulate(Mdl,500);

The output v contains simulated conditional variances. y is a column vector of simulated
responses (innovations).

 estimate

9-259

Specify a GJR(1,1) model with unknown coefficients, and fit it to the series y.

ToEstMdl = gjr(1,1);

EstMdl = estimate(ToEstMdl,y)

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.000973819 0.000251354 3.87429

 GARCH{1} 0.460555 0.0717928 6.41505

 ARCH{1} 0.241255 0.0634092 3.80474

 Leverage{1} 0.250508 0.112655 2.22368

EstMdl =

 GJR(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 0.000973819

 GARCH: {0.460555} at Lags [1]

 ARCH: {0.241255} at Lags [1]

 Leverage: {0.250508} at Lags [1]

The result is a new gjr model called EstMdl. The parameter estimates in EstMdl
resemble the parameter values that generated the simulated data.

Estimate GARCH Model Parameters Using Presample Data

Fit a GARCH(1,1) model to the daily close NASDAQ Composite Index returns.

Load the NASDAQ data included with the toolbox. Convert the index to returns.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

y = price2ret(nasdaq);

T = length(y);

figure

9 Functions — Alphabetical List

9-260

plot(y)

xlim([0,T])

title('NASDAQ Returns')

The returns exhibit volatility clustering.

Specify a GARCH(1,1) model, and fit it to the series. One presample innovation
is required to initialize this model. Use the first observation of y as the necessary
presample innovation.

Mdl = garch(1,1);

[EstMdl,EstParamCov] = estimate(Mdl,y(2:end),'E0',y(1))

 estimate

9-261

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 1.99864e-06 5.42273e-07 3.68567

 GARCH{1} 0.883564 0.00843403 104.762

 ARCH{1} 0.109026 0.00764706 14.2573

EstMdl =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 1.99864e-06

 GARCH: {0.883564} at Lags [1]

 ARCH: {0.109026} at Lags [1]

EstParamCov =

 1.0e-04 *

 0.0000 -0.0000 0.0000

 -0.0000 0.7113 -0.5343

 0.0000 -0.5343 0.5848

The output EstMdl is a new garch model with estimated parameters.

Use the output variance-covariance matrix to calculate the estimate standard errors.

se = sqrt(diag(EstParamCov))

se =

 0.0000

 0.0084

 0.0076

9 Functions — Alphabetical List

9-262

These are the standard errors shown in the estimation output display. They correspond
(in order) to the constant, GARCH coefficient, and ARCH coefficient.

Estimate EGARCH Model Parameters Using Presample Data

Fit an EGARCH(1,1) model to the daily close NASDAQ Composite Index returns.

Load the NASDAQ data included with the toolbox. Convert the index to returns.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

y = price2ret(nasdaq);

T = length(y);

figure

plot(y)

xlim([0,T])

title('NASDAQ Returns')

 estimate

9-263

The returns exhibit volatility clustering.

Specify an EGARCH(1,1) model, and fit it to the series. One presample innovation
is required to initialize this model. Use the first observation of y as the necessary
presample innovation.

Mdl = egarch(1,1);

[EstMdl,EstParamCov] = estimate(Mdl,y(2:end),'E0',y(1))

 EGARCH(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

9 Functions — Alphabetical List

9-264

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.134783 0.022092 -6.10101

 GARCH{1} 0.983909 0.00242211 406.22

 ARCH{1} 0.199644 0.0139654 14.2955

 Leverage{1} -0.0602429 0.00564702 -10.6681

EstMdl =

 EGARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: -0.134783

 GARCH: {0.983909} at Lags [1]

 ARCH: {0.199644} at Lags [1]

 Leverage: {-0.0602429} at Lags [1]

EstParamCov =

 1.0e-03 *

 0.4881 0.0533 -0.1018 0.0106

 0.0533 0.0059 -0.0118 0.0017

 -0.1018 -0.0118 0.1950 0.0016

 0.0106 0.0017 0.0016 0.0319

The output EstMdl is a new egarch model with estimated parameters.

Use the output variance-covariance matrix to calculate the estimate standard errors.

se = sqrt(diag(EstParamCov))

se =

 0.0221

 0.0024

 0.0140

 0.0056

 estimate

9-265

These are the standard errors shown in the estimation output display. They correspond
(in order) to the constant, GARCH coefficient, ARCH coefficient, and leverage coefficient.

Estimate GJR Model Parameters Using Presample Data

Fit a GJR(1,1) model to the daily close NASDAQ Composite Index returns.

Load the NASDAQ data included with the toolbox. Convert the index to returns.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

y = price2ret(nasdaq);

T = length(y);

figure

plot(y)

xlim([0,T])

title('NASDAQ Returns')

9 Functions — Alphabetical List

9-266

The returns exhibit volatility clustering.

Specify a GJR(1,1) model, and fit it to the series. One presample innovation is required
to initialize this model. Use the first observation of y as the necessary presample
innovation.

Mdl = gjr(1,1);

[EstMdl,EstParamCov] = estimate(Mdl,y(2:end),'E0',y(1))

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 estimate

9-267

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 2.45647e-06 5.68527e-07 4.32076

 GARCH{1} 0.881379 0.00948646 92.9092

 ARCH{1} 0.0640741 0.00919501 6.96836

 Leverage{1} 0.0888268 0.0099137 8.96

EstMdl =

 GJR(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 2.45647e-06

 GARCH: {0.881379} at Lags [1]

 ARCH: {0.0640741} at Lags [1]

 Leverage: {0.0888268} at Lags [1]

EstParamCov =

 1.0e-04 *

 0.0000 -0.0000 0.0000 0.0000

 -0.0000 0.8999 -0.6930 -0.0002

 0.0000 -0.6930 0.8455 -0.3605

 0.0000 -0.0002 -0.3605 0.9828

The output EstMdl is a new gjr model with estimated parameters.

Use the output variance-covariance matrix to calculate the estimate standard errors.

se = sqrt(diag(EstParamCov))

se =

 0.0000

 0.0095

 0.0092

 0.0099

9 Functions — Alphabetical List

9-268

These are the standard errors shown in the estimation output display. They correspond
(in order) to the constant, GARCH coefficient, ARCH coefficient, and leverage coefficient.

• “Compare Conditional Variance Models Using Information Criteria” on page 6-87
• “Likelihood Ratio Test for Conditional Variance Models” on page 6-83
• “Estimate Conditional Mean and Variance Models” on page 5-129

Input Arguments

Mdl — Conditional variance model
garch model object | egarch model object | gjr model object

Conditional variance model containing unknown parameters, specified as a garch,
egarch, or gjr model object.

estimate treats non-NaN elements in Mdl as equality constraints, and does not estimate
the corresponding parameters.

y — Single path of response data
numeric column vector

Single path of response data, specified as a numeric column vector. The software infers
the conditional variances from y, i.e., the data to which the model is fit.

y is usually an innovation series with mean 0 and conditional variance characterized by
the model specified in Mdl. In this case, y is a continuation of the innovation series E0.

y can also represent an innovation series with mean 0 plus an offset. A nonzero Offset
signals the inclusion of an offset in Mdl.

The last observation of y is the latest observation.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 estimate

9-269

Example: 'Display','iter','E0',[0.1; 0.05] specifies to display iterative
optimization information, and [0.05; 0.1] as presample innovations.

For GARCH, EGARCH, and GJR Models

'ARCH0' — Initial coefficient estimates corresponding to past innovation terms
numeric vector

Initial coefficient estimates corresponding to past innovation terms, specified as the
comma-separated pair consisting of 'ARCH0' and a numeric vector.

• For GARCH(P,Q) and GJR(P,Q) models:

• ARCH0 must be a numeric vector containing nonnegative elements.
• ARCH0 contains the initial coefficient estimates associated with the past squared

innovation terms that compose the ARCH polynomial.
• By default, estimate derives initial estimates using standard time series

techniques.
• For EGARCH(P,Q) models:

• ARCH0 contains the initial coefficient estimates associated with the magnitude of
the past standardized innovations that compose the ARCH polynomial.

• By default, estimate sets the initial coefficient estimate associated with the first
nonzero lag in the model to a small positive value. All other values are zero.

The number of coefficients in ARCH0 must equal the number of lags associated with
nonzero coefficients in the ARCH polynomial, as specified in the ARCHLags property of
Mdl.

Data Types: double

'Constant0' — Initial conditional variance model constant estimate
scalar

Initial conditional variance model constant estimate, specified as the comma-separated
pair consisting of 'Constant0' and a scalar.

For GARCH(P,Q) and GJR(P,Q) models, Constant0 must be a positive scalar.

By default, estimate derives initial estimates using standard time series techniques.

9 Functions — Alphabetical List

9-270

Data Types: double

'Display' — Command Window display option
'params' (default) | 'diagnostics' | 'full' | 'iter' | 'off' | cell vector of
strings

Command Window display option, specified as the comma-separated pair consisting of
'Display' and a string or cell vector of strings.

Set Display using any combination of values in this table.

Value estimate Displays

'diagnostics' Optimization diagnostics
'full' Maximum likelihood parameter estimates,

standard errors, t statistics, iterative
optimization information, and optimization
diagnostics

'iter' Iterative optimization information
'off' No display in the Command Window
'params' Maximum likelihood parameter estimates,

standard errors, and t statistics

For example:

• To run a simulation where you are fitting many models, and therefore want to
suppress all output, use 'Display','off'.

• To display all estimation results and the optimization diagnostics, use 'Display',
{'params','diagnostics'}.

Data Types: char | cell

'DoF0' — Initial t-distribution degrees-of-freedom parameter estimate
10 (default) | positive scalar

Initial t-distribution degrees-of-freedom parameter estimate, specified as the comma-
separated pair consisting of 'DoF0' and a positive scalar. DoF0 must exceed 2.

Data Types: double

'E0' — Presample innovations
numeric column vector

 estimate

9-271

Presample innovations, specified as the comma-separated pair consisting of 'E0' and
a numeric column vector. The presample innovations provide initial values for the
innovations process of the conditional variance model Mdl. The presample innovations
derive from a distribution with mean 0.

E0 must contain at least Mdl.Q rows. If E0 contains extra rows, then estimate uses
the latest Mdl.Q presample innovations. The last row contains the latest presample
innovation.

The defaults are:

• For GARCH(P,Q) and GJR(P,Q) models, estimate sets any necessary presample
innovations to the square root of the average squared value of the offset-adjusted
response series y.

• For EGARCH(P,Q) models, estimate sets any necessary presample innovations to
zero.

Data Types: double

'GARCH0' — Initial coefficient estimates for past conditional variance terms
numeric vector

Initial coefficient estimates for past conditional variance terms, specified as the comma-
separated pair consisting of 'GARCH0' and a numeric vector.

• For GARCH(P,Q) and GJR(P,Q) models:

• GARCH0 must be a numeric vector containing nonnegative elements.
• GARCH0 contains the initial coefficient estimates associated with the past

conditional variance terms that compose the GARCH polynomial.
• For EGARCH(P,Q) models,GARCH0 contains the initial coefficient estimates

associated with past log conditional variance terms that compose the GARCH
polynomial.

The number of coefficients in GARCH0 must equal the number of lags associated with
nonzero coefficients in the GARCH polynomial, as specified in the GARCHLags property of
Mdl.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

9 Functions — Alphabetical List

9-272

'Offset0' — Initial innovation mean model offset estimate
scalar

Initial innovation mean model offset estimate, specified as the comma-separated pair
consisting of 'Offset0' and a scalar.

By default, estimate sets the initial estimate to the sample mean of y.

Data Types: double

'Options' — Optimization options
optimoptions optimization controller | optimset optimization controller

Optimization options, specified as the comma-separated pair consisting of 'Options'
and an optimoptions or optimset optimization controller. For details on altering
the default values of the optimizer, see optimoptions, optimset, or fmincon in
Optimization Toolbox.

Suppose that you want to change the constraint tolerance to 1e-6. Set Options =
optimoptions(@fmincon,'TolCon',1e-6,'Algorithm','sqp'), and then pass
Options into estimate using 'Options',Options.

By default, estimate uses the same default options as fmincon, except Algorithm =
sqp and TolCon = 1e-7.

'V0' — Presample conditional variances
numeric column vector with positive entries

Presample conditional variances, specified as the comma-separated pair consisting of
'V0' and numeric column vector with positive entries. V0 provide initial values for
conditional variance process of the conditional variance model Mdl.

For GARCH(P,Q) and GJR(P,Q) models, V0 must have at least Mdl.P rows.

For EGARCH(P,Q) models,V0 must have at least max(Mdl.P,Mdl.Q) rows.

If the number of rows in V0 exceeds the necessary number, only the latest observations
are used. The last row contains the latest observation.

By default, estimate sets the necessary presample conditional variances to the average
squared value of the offset-adjusted response series y.

Data Types: double

 estimate

9-273

For EGARCH and GJR Models

'Leverage0' — Initial coefficient estimates past leverage terms
0 (default) | numeric vector

Initial coefficient estimates past leverage terms, specified as the comma-separated pair
consisting of 'Leverage0' and a numeric vector.

For EGARCH(P,Q) models, Leverage0 contains the initial coefficient estimates
associated with past standardized innovation terms that compose the leverage
polynomial.

For GJR(P,Q) models, Leverage0 contains the initial coefficient estimates associated
with past, squared, negative innovations that compose the leverage polynomial.

The number of coefficients in Leverage0 must equal the number of lags associated
with nonzero coefficients in the leverage polynomial (Leverage), as specified in
LeverageLags.

Data Types: double

Notes

• NaNs indicate missing values. estimate removes them. The software merges the
presample data (E0 and V0) separately from the effective sample data (y), and then
uses list-wise deletion to remove rows containing at least one NaN. Removing NaNs in
the data reduces the sample size, and can also create irregular time series.

• estimate assumes that you synchronize the presample data such that the latest
observations occur simultaneously.

• If you specify a value for Display, then it takes precedence over the specifications of
the optimization options Diagnostics and Display. Otherwise, estimate honors
all selections related to the display of optimization information in the optimization
options.

• If you do not specify E0 and V0, then estimate derives the necessary presample
observations from the unconditional, or long-run, variance of the offset-adjusted
response process.
• For all conditional variance models, V0 is the sample average of the squared

disturbances of the offset-adjusted response data y.

9 Functions — Alphabetical List

9-274

• For GARCH(P,Q) and GJR(P,Q) models, E0 is the square root of the average
squared value of the offset-adjusted response series y.

• For EGARCH(P,Q) models, E0 is 0.
These specifications minimize initial transient effects.

Output Arguments

EstMdl — Conditional variance model containing parameter estimates
garch model object | egarch model object | gjr model object

Conditional variance model containing parameter estimates, returned as a garch,
egarch, or gjr model object. estimate uses maximum likelihood to calculate all
parameter estimates not constrained by Mdl (i.e., constrained parameters have known
values).

EstMdl is a fully specified conditional variance model. To infer conditional variances
for diagnostic checking, pass EstMdl to infer. To simulate or forecast conditional
variances, pass EstMdl to simulate or forecast, respectively.

EstParamCov — Variance-covariance matrix of maximum likelihood estimates
numeric matrix

Variance-covariance matrix of maximum likelihood estimates of model parameters
known to the optimizer, returned as a numeric matrix.

The rows and columns associated with any parameters estimated by maximum likelihood
contain the covariances of estimation error. The standard errors of the parameter
estimates are the square root of the entries along the main diagonal.

The rows and columns associated with any parameters that are held fixed as equality
constraints contain 0s.

estimate uses the outer product of gradients (OPG) method to perform covariance
matrix estimation.

estimate orders the parameters in EstParamCov as follows:

• Constant

 estimate

9-275

• Nonzero GARCH coefficients at positive lags
• Nonzero ARCH coefficients at positive lags
• For EGARCH and GJR models, nonzero leverage coefficients at positive lags
• Degrees of freedom (t innovation distribution only)
• Offset (models with nonzero offset only)

Data Types: double

logL — Optimized loglikelihood objective function value
scalar

Optimized loglikelihood objective function value, returned as a scalar.
Data Types: double

info — Summary information
structure array

Summary information, returned as a structure.

Field Description

exitflag Optimization exit flag (see fmincon in Optimization Toolbox)
options Optimization options controller (see optimoptions and

fmincon in Optimization Toolbox)
X Vector of final parameter estimates
X0 Vector of initial parameter estimates

For example, you can display the vector of final estimates by typing info.X in the
Command Window.
Data Types: struct

More About

Tips

Suppose EstParamCov is an estimated parameter covariance matrix returned by
estimate. The software sets the variances and covariances of parameters fixed

9 Functions — Alphabetical List

9-276

during estimation to 0. Enter this command to count the number of free parameters
(numParams) in a fitted model.

numParams = sum(any(EstParamCov))

This command counts the number of columns (or equivalently, rows) with any nonzero
values.
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Maximum Likelihood Estimation for Conditional Variance Models” on page 6-62
• “Conditional Variance Model Estimation with Equality Constraints” on page 6-65
• “Presample Data for Conditional Variance Model Estimation” on page 6-67
• “Initial Values for Conditional Variance Model Estimation” on page 6-69
• “Optimization Settings for Conditional Variance Model Estimation” on page 6-71

References

[1] Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal
of Econometrics. Vol. 31, 1986, pp. 307–327.

[2] Bollerslev, T. “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return.” The Review of Economics and Statistics. Vol. 69,
1987, pp. 542–547.

[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[4] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[5] Engle, R. F. “Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

[6] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The
Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.

[7] Greene, W. H. Econometric Analysis. 3rd ed. Upper Saddle River, NJ: Prentice Hall,
1997.

 estimate

9-277

[8] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
egarch | filter | forecast | garch | gjr | infer | print | simulate

Introduced in R2012a

9 Functions — Alphabetical List

9-278

estimate
Class: arima

Estimate ARIMA or ARIMAX model parameters

Syntax

EstMdl = estimate(Mdl,y)

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y)

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y,Name,Value)

Description

EstMdl = estimate(Mdl,y) uses maximum likelihood to estimate the parameters of
the ARIMA(p,D,q) model Mdl given the observed univariate time series y. EstMdl is an
arima model that stores the results.

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y) additionally returns
EstParamCov, the variance-covariance matrix associated with estimated parameters,
logL, the optimized loglikelihood objective function, and info, a data structure of
summary information.

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y,Name,Value) estimates
the model with additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — ARIMA or ARIMAX model
arima model

ARIMA or ARIMAX model, specified as an arima model returned by arima or estimate.

estimate treats non-NaN elements in Mdl as equality constraints and does not estimate
the corresponding parameters.

y — Single path of response data
numeric column vector

 estimate

9-279

Single path of response data to which the model is fit, specified as a numeric column
vector. The last observation of y is the latest.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'AR0' — Initial estimates of nonseasonal autoregressive coefficients
numeric vector

Initial estimates of the nonseasonal autoregressive coefficients for the ARIMA model,
specified as the comma-separated pair consisting of 'AR0' and a numeric vector.

The number of coefficients in AR0 must equal the number of lags associated with nonzero
coefficients in the nonseasonal autoregressive polynomial, ARLags.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'Beta0' — Initial estimates of regression coefficients
numeric vector

Initial estimates of regression coefficients for the regression component, specified as the
comma-separated pair consisting of 'Beta0' and a numeric vector.

The number of coefficients in Beta0 must equal the number of columns of X.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'Constant0' — Initial ARIMA model constant estimate
scalar

Initial ARIMA model constant estimate, specified as the comma-separated pair
consisting of 'Constant0' and a scalar.

By default, estimate derives initial estimates using standard time series techniques.

9 Functions — Alphabetical List

9-280

Data Types: double

'Display' — Command Window display option
'params' (default) | 'diagnostics' | 'full' | 'iter' | 'off' | cell vector of
strings

Command Window display option, specified as the comma-separated pair consisting of
'Display' and a string or cell vector of strings.

Set Display using any combination of values in this table.

Value estimate Displays

'diagnostics' Optimization diagnostics
'full' Maximum likelihood parameter estimates,

standard errors, t statistics, iterative
optimization information, and optimization
diagnostics

'iter' Iterative optimization information
'off' No display in the Command Window
'params' Maximum likelihood parameter estimates,

standard errors, and t statistics

For example:

• To run a simulation where you are fitting many models, and therefore want to
suppress all output, use 'Display','off'.

• To display all estimation results and the optimization diagnostics, use 'Display',
{'params','diagnostics'}.

Data Types: char | cell

'DoF0' — Initial t-distribution degrees-of-freedom parameter estimate
10 (default) | positive scalar

Initial t-distribution degrees-of-freedom parameter estimate, specified as the comma-
separated pair consisting of 'DoF0' and a positive scalar. DoF0 must exceed 2.

Data Types: double

'E0' — Presample innovations
numeric column vector

 estimate

9-281

Presample innovations that have mean 0 and provide initial values for the ARIMA(p,Dq)
model, specified as the comma-separated pair consisting of 'E0' and a numeric column
vector.

E0 must contain at least Mdl.Q rows. If you use a conditional variance model, such as a
garch model, then the software might require more than Mdl.Q presample innovations.

If E0 contains extra rows, then estimate uses the latest Mdl.Q presample innovations.
The last row contains the latest presample innovation.

By default, estimate sets the necessary presample innovations to 0.

Data Types: double

'MA0' — Initial estimates of nonseasonal moving average coefficients
numeric vector

Initial estimates of nonseasonal moving average coefficients for the ARIMA(p,Dq) model,
specified as the comma-separated pair consisting of 'MA0' and a numeric vector.

The number of coefficients in MA0 must equal the number of lags associated with nonzero
coefficients in the nonseasonal moving average polynomial, MALags.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'Options' — Optimization options
optimoptions optimization controller | optimset optimization controller

Optimization options, specified as the comma-separated pair consisting of 'Options'
and an optimoptions or optimset optimization controller. For details on altering
the default values of the optimizer, see optimoptions, optimset, or fmincon in
Optimization Toolbox.

Suppose that you want to change the constraint tolerance to 1e-6. Set Options =
optimoptions(@fmincon,'TolCon',1e-6,'Algorithm','sqp'), and then pass
Options into estimate using 'Options',Options.

By default, estimate uses the same default options as fmincon, except Algorithm =
sqp and TolCon = 1e-7.

'SAR0' — Initial estimates of seasonal autoregressive coefficients
numeric vector

9 Functions — Alphabetical List

9-282

Initial estimates of seasonal autoregressive coefficients for the ARIMA(p,Dq) model,
specified as the comma-separated pair consisting of 'SAR0' and a numeric vector.

The number of coefficients in SAR0 must equal the number of lags associated with
nonzero coefficients in the seasonal autoregressive polynomial, SARLags.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'SMA0' — Initial estimates of seasonal moving average coefficients
numeric vector

Initial estimates of seasonal moving average coefficients for the ARIMA(p,Dq) model,
specified as the comma-separated pair consisting of 'SMA0' and a vector.

The number of coefficients in SMA0 must equal the number of lags with nonzero
coefficients in the seasonal moving average polynomial, SMALags.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'V0' — Presample conditional variances
numeric column vector with positive entries

Presample conditional variances that provide initial values for any conditional variance
model, specified as the comma-separated pair consisting of 'V0' and a numeric column
vector with positive entries.

The software requires V0 to have at least the number of observations required to
initialize the variance model. If the number of rows in V0 exceeds the number necessary,
then estimate only uses the latest observations. The last row contains the latest
observation.

If the variance of the model is constant, then V0 is unnecessary.

By default, estimate sets the necessary presample conditional variances to the average
of the squared inferred residuals.
Data Types: double

'Variance0' — Initial estimates of variances of innovations
positive scalar | cell vector of positive scalars

 estimate

9-283

Initial estimates of variances of innovations for the ARIMA(p,Dq) model, specified as the
comma-separated pair consisting of 'Variance0' and a positive scalar or a cell vector of
positive scalars. If Variance0 is a cell vector, then the conditional variance model must
recognize the parameter names as valid coefficients.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double | cell

'X' — Exogenous predictors
matrix

Exogenous predictors in the regression model, specified as the comma-separated pair
consisting of 'X' and a matrix.

The columns of X are separate, synchronized time series, with the last row containing the
latest observations.

If you do not specify Y0, then the number of rows of X must be at least numel(y,2) +
Mdl.P. Otherwise, the number of rows of X should be at least the length of y.

If the number of rows of X exceeds the number necessary, then estimate uses the latest
observations and synchronizes X with the response series y.

By default, estimate does not estimate the regression coefficients regardless of their
presence in Mdl.

Data Types: double

'Y0' — Presample response data
numeric column vector

Presample response data that provides initial values for the ARIMA(p,Dq) model,
specified as the comma-separated pair consisting of 'Y0' and a numeric column vector.

Y0 is a column vector with at least Mdl.P rows. If the number of rows in Y0 exceeds
Mdl.P, estimate only uses the latest Mdl.P observations. The last row contains the
latest observation.

By default, estimate backward forecasts for the necessary amount of presample
observations.
Data Types: double

9 Functions — Alphabetical List

9-284

Notes

• NaNs indicate missing values, and estimate removes them. The software merges the
presample data (E0, V0, and Y0) separately from the effective sample data (X and y),

then uses list-wise deletion to remove any NaNs. Removing NaNs in the data reduces
the sample size, and can also create irregular time series.

• Removing NaNs in the data reduces the sample size, and can also create irregular time
series.

• estimate assumes that you synchronize the response and exogenous predictors such
that the last (latest) observation of each occurs simultaneously. The software also
assumes that you synchronize the presample series similarly.

• If you specify a value for Display, then it takes precedence over the specifications of
the optimization options Diagnostics and Display. Otherwise, estimate honors
all selections related to the display of optimization information in the optimization
options.

Output Arguments

EstMdl — Model containing parameter estimates
arima model

Model containing parameter estimates, returned as an arima model. estimate uses
maximum likelihood to calculate all parameter estimates not constrained by Mdl (that is,
all parameters in Mdl that you set to NaN).

EstParamCov — Variance-covariance matrix of maximum likelihood estimates
matrix

Variance-covariance matrix of maximum likelihood estimates of model parameters
known to the optimizer, returned as a matrix.

The rows and columns contain the covariances of the parameter estimates. The standard
errors of the parameter estimates are the square root of the entries along the main
diagonal.

The rows and columns associated with any parameters held fixed as equality constraints
contain 0s.

 estimate

9-285

estimate uses the outer product of gradients (OPG) method to perform covariance
matrix estimation.

estimate orders the parameters in EstParamCov as follows:

• Constant
• Nonzero AR coefficients at positive lags
• Nonzero SAR coefficients at positive lags
• Nonzero MA coefficients at positive lags
• Nonzero SMA coefficients at positive lags
• Regression coefficients (when you specify X in estimate)
• Variance parameters (scalar for constant-variance models, vector of additional

parameters otherwise)
• Degrees of freedom (t innovation distribution only)

Data Types: double

logL — Optimized loglikelihood objective function value
scalar

Optimized loglikelihood objective function value, returned as a scalar.
Data Types: double

info — Summary information
structure array

Summary information, returned as a structure.

Field Description

exitflag Optimization exit flag (see fmincon in Optimization Toolbox)
options Optimization options controller (see optimoptions and

fmincon in Optimization Toolbox)
X Vector of final parameter estimates
X0 Vector of initial parameter estimates

For example, you can display the vector of final estimates by typing info.X in the
Command Window.

9 Functions — Alphabetical List

9-286

Data Types: struct

Examples

Estimate ARIMA Model Parameters Without Initial Values

Fit an ARMA(2,1) model to simulated data.

Simulate 500 data points from the ARMA(2,1) model

where follows a Gaussian distribution with mean 0 and variance 0.1.

Mdl = arima('AR',{0.5,-0.3},'MA',0.2,...

 'Constant',0,'Variance',0.1);

rng(5); % For reproducibility

y = simulate(Mdl,500);

The simulated data is stored in the column vector Y.

Specify an ARMA(2,1) model with no constant and unknown coefficients and variance.

ToEstMdl = arima(2,0,1);

ToEstMdl.Constant = 0

ToEstMdl =

 ARIMA(2,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 1

 Constant: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: NaN

 estimate

9-287

Fit the ARMA(2,1) model to y.

EstMdl = estimate(ToEstMdl,y);

 ARIMA(2,0,1) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 AR{1} 0.494039 0.103213 4.78662

 AR{2} -0.25348 0.0699297 -3.62478

 MA{1} 0.279583 0.107211 2.60778

 Variance 0.100092 0.0066403 15.0734

The result is a new arima model called EstMdl. The estimates in EstMdl resemble the
parameter values that generated the simulated data.

Estimate ARIMA Model Parameters Using Initial Values

Fit an integrated ARIMA(1,1,1) model to the daily close of the NASDAQ Composite
Index.

Load the NASDAQ data included with the toolbox. Extract the first 1500 observations of
the Composite Index (January 1990 to December 1995).

load Data_EquityIdx

nasdaq = DataTable.NASDAQ(1:1500);

Specify an ARIMA(1,1,1) model for fitting.

Mdl = arima(1,1,1);

The model is nonseasonal, so you can use shorthand syntax.

Fit the model to the first half of the data.

EstMdl = estimate(Mdl,nasdaq(1:750));

 ARIMA(1,1,1) Model:

9 Functions — Alphabetical List

9-288

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.223403 0.184177 1.21298

 AR{1} 0.114341 0.119438 0.957319

 MA{1} 0.127638 0.119251 1.07032

 Variance 18.9833 0.689994 27.5122

The result is a new arima model (EstMdl). The estimated parameters, their standard
errors, and statistics display in the Command Window.

Use the estimated parameters as initial values for fitting the second half of the data.

con0 = EstMdl.Constant;

ar0 = EstMdl.AR{1};

ma0 = EstMdl.MA{1};

var0 = EstMdl.Variance;

[EstMdl2,EstParamCov2,logL2,info2] = estimate(Mdl,....

 nasdaq(751:end),'Constant0',con0,'AR0',ar0,...

 'MA0',ma0,'Variance0',var0);

 ARIMA(1,1,1) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.611432 0.326754 1.87123

 AR{1} -0.150712 0.117818 -1.27919

 MA{1} 0.385689 0.109055 3.53666

 Variance 36.4933 1.22699 29.7421

The parameter estimates are stored in the info data structure. Display the final
parameter estimates.

info2.X

ans =

 estimate

9-289

 0.6114

 -0.1507

 0.3857

 36.4933

Estimate ARIMAX Model Parameters Without Initial Values

Fit an ARIMAX model to a simulated time series without specifying initial values for the
response or the parameters.

Define the ARIMAX(2,1,1) model

to eventually simulate a time series of length 500, where follows a Gaussian
distribution with mean 0 and variance 0.1.

Mdl = arima('AR',{0.5,-0.3},'MA',0.2,'D',1,...

 'Constant',0,'Variance',0.1,'Beta',[1.5 2.6 -0.3]);

T = 500;

Simulate three stationary AR(1) series and presample values:

where follows a Gaussian distribution with mean 0 and variance 0.01 for i = {1,2,3}.

numObs = Mdl.P + T;

MdlX1 = arima('AR',0.1,'Constant',0,'Variance',0.01);

MdlX2 = arima('AR',0.2,'Constant',0,'Variance',0.01);

MdlX3 = arima('AR',0.3,'Constant',0,'Variance',0.01);

X1 = simulate(MdlX1,numObs);

X2 = simulate(MdlX2,numObs);

X3 = simulate(MdlX3,numObs);

Xmat = [X1 X2 X3];

The simulated exogenous predictors are stored in the numObs-by-3 matrix Xmat.

Simulate 500 data points from the ARIMA(2,1,1) model.

y = simulate(Mdl,T,'X',Xmat);

9 Functions — Alphabetical List

9-290

The simulated response is stored in the column vector y.

Create an ARIMA(2,1,1) model with known 0-valued constant and unknown coefficients
and variance.

ToEstMdl = arima(2,1,1);

ToEstMdl.Constant = 0

ToEstMdl =

 ARIMA(2,1,1) Model:

 Distribution: Name = 'Gaussian'

 P: 3

 D: 1

 Q: 1

 Constant: 0

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: NaN

ToEstMdl is an ARIMA(2,1,1) model. estimate changes this designation to
ARIMAX(2,1,1) when you pass the exogenous predictors into the X argument. estimate
estimates all parameters with the value NaN in ToEstMdl.

Fit the ARIMAX(2,1,1) model to y including regression matrix Xmat.

EstMdl = estimate(ToEstMdl,y,'X',Xmat);

 ARIMAX(2,1,1) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0 Fixed Fixed

 AR{1} 0.416338 0.0460672 9.03763

 AR{2} -0.274052 0.0406445 -6.74265

 MA{1} 0.334598 0.0572075 5.84885

 Beta1 1.4194 0.142422 9.96619

 estimate

9-291

 Beta2 2.54199 0.133102 19.0981

 Beta3 -0.287669 0.14035 -2.04965

 Variance 0.0967773 0.00579104 16.7115

ToEstMdl is a new arima model designated as ARIMAX(2,1,1) since exogenous
predictors enter the model. The estimates in ToEstMdl resemble the parameter values
that generated the simulated data.

Estimate ARIMAX Model Parameters Using Initial Values

Fit an ARIMAX model to a time series specifying initial values for the response and the
parameters.

The Credit Defaults data set contains four variables:

• Default rate on investment-grade corporate bonds (IGD)
• Percentage of investment-grade bond issuers first rated 3 years ago (AGE)
• One-year-ahead forecast of the change in corporate profits, adjusted for inflation

(CPF)
• Spread between corporate bond yields and those of comparable government bonds

(SPR)

Assume that an ARIMAX(1,0,0) model is appropriate to fit IGD using AGE, CPF, and
SPR as exogenous predictors. Load the Credit Defaults data set. Assign the response IGD
to y. Assign the predictors AGE, CPF, and SPR to the matrix X.

load Data_CreditDefaults

X = Data(:,[1 3:4]);

T = size(X,1);

y = Data(:,5);

The response and exogenous predictor series should be stationary before you continue.
If your response is not stationary, then specify the degree of integration in the arima
statement. If your exogenous predictors are not stationary, then you must difference
them using diff. The series in this example are stationary to not distract from its main
purpose.

Separate the initial values from the main response and exogenous predictors. Choose
initial values for the regression coefficients Beta0.

y0 = y(1);

yEst = y(2:T);

9 Functions — Alphabetical List

9-292

XEst = X(2:end,:);

Beta0 = [0.5 0.5 0.5];

y0 initializes the response series and yest is the main response series for estimation.
XEst is the main exogenous predictor matrix for estimation.

Specify the model Mdl to fit to the data.

Mdl = arima(1,0,0);

Fit the model to the data and specify the initial values.

EstMdl = estimate(Mdl,yEst,'X',XEst,...

 'Y0',y0,'Beta0',Beta0);

 ARIMAX(1,0,0) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.204768 0.266078 -0.769581

 AR{1} -0.0173106 0.565618 -0.0306048

 Beta1 0.0239329 0.0218417 1.09574

 Beta2 -0.0124602 0.00749916 -1.66155

 Beta3 0.0680873 0.0745041 0.913874

 Variance 0.00539462 0.00224393 2.4041

• “Estimate Multiplicative ARIMA Model” on page 5-113
• “Estimate Conditional Mean and Variance Models” on page 5-129
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117

Tip

Suppose EstParamCov is an estimated parameter covariance matrix returned by
estimate. The software sets the variances and covariances of parameters fixed
during estimation to 0. Enter this command to count the number of free parameters
(numParams) in a fitted model.

numParams = sum(any(EstParamCov))

 estimate

9-293

This command counts the number of columns (or equivalently, rows) with any nonzero
values.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[3] Greene, W. H. Econometric Analysis. 3rd ed. Upper Saddle River, NJ: Prentice Hall,
1997.

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | filter | forecast | impulse | infer | print | simulate

More About
• “Maximum Likelihood Estimation for Conditional Mean Models” on page 5-98
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “Presample Data for Conditional Mean Model Estimation” on page 5-103
• “Initial Values for Conditional Mean Model Estimation” on page 5-106
• “Optimization Settings for Conditional Mean Model Estimation” on page 5-108

9 Functions — Alphabetical List

9-294

estimate
Class: regARIMA

Estimate parameters of regression models with ARIMA errors

Syntax

EstMdl = estimate(Mdl,y)

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y)

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y,Name,Value)

Description

EstMdl = estimate(Mdl,y) uses maximum likelihood to estimate the parameters of
the regression model with ARIMA time series errors, Mdl, given the response series y.
EstMdl is a regARIMA model that stores the results.

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y) additionally returns
EstParamCov, the variance-covariance matrix associated with estimated parameters,
logL, the optimized loglikelihood objective function, and info, a data structure of
summary information.

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y,Name,Value) estimates
the model using additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — Regression model with ARIMA errors
regARIMA model

Regression model with ARIMA errors, specified as a regARIMA model returned by
regARIMA or estimate.

estimate treats non-NaN elements in Mdl as equality constraints, and does not estimate
the corresponding parameters.

 estimate

9-295

y — Single path of response data
numeric column vector

Single path of response data to which the model is fit, specified as a numeric column
vector. The last observation of y is the latest.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'AR0' — Initial estimates of ARIMA error model nonseasonal autoregressive coefficients
numeric vector

Initial estimates of ARIMA error model nonseasonal autoregressive coefficients, specified
as the comma-separated pair consisting of 'AR0' and a numeric vector.

The number of coefficients in AR0 must equal the number of lags associated with nonzero
coefficients in the nonseasonal autoregressive polynomial.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'Beta0' — Initial estimates of regression coefficients
numeric vector

Initial estimates of regression coefficients, specified as the comma-separated pair
consisting of 'Beta0' and a numeric vector.

The number of coefficients in Beta0 must equal the number of columns of X.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'Display' — Command Window display option
'params' (default) | 'diagnostics' | 'full' | 'iter' | 'off' | cell vector of
strings

9 Functions — Alphabetical List

9-296

Command Window display option, specified as the comma-separated pair consisting of
'Display' and a string or cell vector of strings.

Set Display using any combination of values in this table.

Value estimate Displays

'diagnostics' Optimization diagnostics
'full' Maximum likelihood parameter estimates,

standard errors, t statistics, iterative
optimization information, and optimization
diagnostics

'iter' Iterative optimization information
'off' No display in the Command Window
'params' Maximum likelihood parameter estimates,

standard errors, and t statistics

For example:

• To run a simulation where you are fitting many models, and therefore want to
suppress all output, use 'Display','off'.

• To display all estimation results and the optimization diagnostics, use 'Display',
{'params','diagnostics'}.

Data Types: char | cell

'DoF0' — Initial t-distribution degree-of-freedom estimate
10 (default) | positive scalar

Initial t-distribution degree-of-freedom estimate, specified as the comma-separated pair
consisting of 'DoF0' and a positive scalar. DoF0 must exceed 2.

Data Types: double

'E0' — Presample innovations
numeric column vector

Presample innovations that have mean 0 and provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'E0' and a numeric column

 estimate

9-297

vector. E0 must contain at least Mdl.Q rows. If E0 contains extra rows, then estimate
uses the latest Mdl.Q presample innovations. The last row contains the latest presample
innovation.

By default, estimate sets the necessary presample innovations to 0.

Data Types: double

'Intercept0' — Initial regression model intercept estimate
scalar

Initial regression model intercept estimate, specified as the comma-separated pair
consisting of 'Intercept0' and a scalar.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'MA0' — Initial estimates of ARIMA error model nonseasonal moving average coefficients
numeric vector

Initial estimates of ARIMA error model nonseasonal moving average coefficients,
specified as the comma-separated pair consisting of 'MA0' and a numeric vector.

The number of coefficients in MA0 must equal the number of lags associated with nonzero
coefficients in the nonseasonal moving average polynomial.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'Options' — Optimization options
optimoptions optimization controller | optimset optimization controller

Optimization options, specified as the comma-separated pair consisting of 'Options'
and an optimoptions or optimset optimization controller. For details on altering
the default values of the optimizer, see optimoptions, optimset, or fmincon in
Optimization Toolbox.

Suppose that you want to change the constraint tolerance to 1e-6. Set Options =
optimoptions(@fmincon,'TolCon',1e-6,'Algorithm','sqp'), and then pass
Options into estimate using 'Options',Options.

9 Functions — Alphabetical List

9-298

By default, estimate uses the same default options as fmincon, except Algorithm =
sqp and TolCon = 1e-7.

'SAR0' — Initial estimates of ARIMA error model seasonal autoregressive coefficients
numeric vector

Initial estimates of ARIMA error model seasonal autoregressive coefficients, specified as
the comma-separated pair consisting of 'SAR0' and a numeric vector.

The number of coefficients in SAR0 must equal the number of lags associated with
nonzero coefficients in the seasonal autoregressive polynomial.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'SMA0' — Initial estimates of ARIMA error model seasonal moving average coefficients
numeric vector

Initial estimates of ARIMA error model seasonal moving average coefficients, specified as
the comma-separated pair consisting of 'SMA0' and a numeric vector.

The number of coefficients in SMA0 must equal the number of lags with nonzero
coefficients in the seasonal moving average polynomial.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'U0' — Presample unconditional disturbances
numeric column vector

Presample unconditional disturbances that provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'U0' and a numeric column
vector. U0 must contain at least Mdl.P rows. If U0 contains extra rows, then estimate
uses the latest presample unconditional disturbances. The last row contains the latest
presample unconditional disturbance.

By default, estimate backcasts for the necessary amount of presample unconditional
disturbances.
Data Types: double

 estimate

9-299

'Variance0' — Initial estimate of ARIMA error model innovation variance
positive scalar

Initial estimate of ARIMA error model innovation variance, specified as the comma-
separated pair consisting of 'Variance0' and a positive scalar.

By default, estimate derives initial estimates using standard time series techniques.

Data Types: double

'X' — Predictor data
matrix

Predictor data in the regression model, specified as the comma-separated pair consisting
of 'X' and a matrix.

The columns of X are separate, synchronized time series, with the last row containing
the latest observations. The number of rows of X must be at least the length of y. If
the number of rows of X exceeds the number required, then estimate uses the latest
observations.

By default, estimate does not estimate the regression coefficients regardless of their
presence in Mdl.

Data Types: double

Notes

• NaNs in y, E0, U0, and X indicate missing values, and estimate removes them. The
software merges the presample data (E0 and U0) separately from the effective sample
data (X and y), then uses list-wise deletion to remove any NaNs. Removing NaNs in the
data reduces the sample size, and can also create irregular time series.

• estimate assumes that you synchronize the data (presample separately from
effective sample) such that the latest observations occur simultaneously.

• The intercept of a regression model with ARIMA errors having nonzero degrees of
seasonal or nonseasonal integration is not identifiable. In other words, estimate
cannot estimate an intercept of a regression model with ARIMA errors that has
nonzero degrees of seasonal or nonseasonal integration. If you pass in such a model
for estimation, estimate displays a warning in the Command Window and sets
EstMdl.Intercept to NaN.

9 Functions — Alphabetical List

9-300

• If you specify a value for Display, then it takes precedence over the specifications of
the optimization options Diagnostics and Display. Otherwise, estimate honors

all selections related to the display of optimization information in the optimization
options.

Output Arguments

EstMdl — Model containing parameter estimates
regARIMA model

Model containing the parameter estimates, returned as a regARIMA model. estimate
uses maximum likelihood to calculate all parameter estimates not constrained by Mdl
(that is, all parameters in Mdl that you set to NaN).

EstParamCov — Variance-covariance matrix of maximum likelihood estimates
matrix

Variance-covariance matrix of maximum likelihood estimates of model parameters
known to the optimizer, returned as a matrix.

The rows and columns contain the covariances of the parameter estimates. The standard
errors of the parameter estimates are the square root of the entries along the main
diagonal. The rows and columns associated with any parameters held fixed as equality
constraints contain 0s.

estimate uses the outer product of gradients (OPG) method to perform covariance
matrix estimation.

estimate orders the parameters in EstParamCov as follows:

• Intercept
• Nonzero AR coefficients at positive lags
• Nonzero SAR coefficients at positive lags
• Nonzero MA coefficients at positive lags
• Nonzero SMA coefficients at positive lags
• Regression coefficients (when you specify X in estimate)
• Innovations variance
• Degrees of freedom for the t distribution

 estimate

9-301

Data Types: double

logL — Optimized loglikelihood objective function value
scalar

Optimized loglikelihood objective function value, returned as a scalar.
Data Types: double

info — Summary information
structure

Summary information, returned as a structure.

Field Description

exitflag Optimization exit flag (see fmincon in Optimization Toolbox)
options Optimization options controller (see optimoptions and

fmincon in Optimization Toolbox)
X Vector of final parameter estimates
X0 Vector of initial parameter estimates

For example, you can display the vector of final estimates by typing info.X in the
Command Window.
Data Types: struct

Examples

Estimate Parameters of Regression Model Containing ARIMA Errors Without Initial Values

Fit this regression model with ARMA(2,1) errors to simulated data:

where is Gaussian with variance 0.1.

Specify the regression model ARMA(2,1) errors. Simulate responses from the model and
two predictor series.

9 Functions — Alphabetical List

9-302

Mdl = regARIMA('Intercept',0,'AR',{0.5 -0.8}, ...

 'MA',-0.5,'Beta',[0.1 -0.2],'Variance',0.1);

rng(1);

X = randn(100,2);

y = simulate(Mdl,100,'X',X);

Specify a regression model with ARMA(2,1) errors with no intercept, and unknown
coefficients and variance.

ToEstMdl = regARIMA(2,0,1);

ToEstMdl.Intercept = 0 % Exclude the intercept

ToEstMdl =

 ARIMA(2,0,1) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: 0

 P: 2

 D: 0

 Q: 1

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {NaN} at Lags [1]

 SMA: {}

 Variance: NaN

The AR coefficients, MA coefficients, and the innovation variance are NaN values.
estimate estimates those parameters, but not the intercept. The intercept is held fixed
at 0.

Fit the regression model with ARMA(2,1) errors to the data.

EstMdl = estimate(ToEstMdl,y,'X',X,'Display','params');

 Regression with ARIMA(2,0,1) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0 Fixed Fixed

 estimate

9-303

 AR{1} 0.620303 0.104194 5.95338

 AR{2} -0.697172 0.0795748 -8.76122

 MA{1} -0.558083 0.131897 -4.23122

 Beta1 0.103667 0.0217347 4.76964

 Beta2 -0.209448 0.0241883 -8.65904

 Variance 0.0748852 0.00903584 8.28758

The result, EstMdl, is a new regARIMA model. The estimates in EstMdl resemble the
parameter values that generated the simulated data.

Estimate Parameters of a Regression Model with ARIMA Errors Using Initial Values

Fit a regression model with ARMA(1,1) errors by regressing the log GDP onto the CPI
and using initial values.

Load the US Macroeconomic data set and preprocess the data.

load Data_USEconModel;

logGDP = log(DataTable.GDP);

dlogGDP = diff(logGDP); % For stationarity

dCPI = diff(DataTable.CPIAUCSL); % For stationarity

T = length(dlogGDP); % Effective sample size

Specify an "empty" regression model with ARMA(1,1) errors.

ToEstMdl = regARIMA(1,0,1);

Fit the model to the first half of the data.

EstMdl0 = estimate(ToEstMdl,dlogGDP(1:ceil(T/2)),...

 'X',dCPI(1:ceil(T/2)),'Display','off');

The result is a new regARIMA model with the estimated parameters.

Use the estimated parameters as initial values for fitting the second half of the data.

Intercept0 = EstMdl0.Intercept;

AR0 = EstMdl0.AR{1};

MA0 = EstMdl0.MA{1};

Variance0 = EstMdl0.Variance;

Beta0 = EstMdl0.Beta;

[EstMdl,~,~,info] = estimate(ToEstMdl,...

 dlogGDP(floor(T/2)+1:end),'X',...

 dCPI(floor(T/2)+1:end),'Display','params',...

9 Functions — Alphabetical List

9-304

 'Intercept0',Intercept0,'AR0',AR0,'MA0',MA0,...

 'Variance0',Variance0,'Beta0',Beta0);

 Regression with ARIMA(1,0,1) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.0111738 0.00210199 5.3158

 AR{1} 0.786836 0.0362291 21.7184

 MA{1} -0.473619 0.0655402 -7.22639

 Beta1 0.00219331 0.000583268 3.76038

 Variance 4.83486e-05 4.1705e-06 11.593

Display all of the parameter estimates using info.X.

info.X

ans =

 0.0112

 0.7868

 -0.4736

 0.0022

 0.0000

The order of the parameter estimates in info.X matches the order that estimate
displays in its output table.

• “Estimate a Regression Model with ARIMA Errors” on page 4-105
• “Intercept Identifiability in Regression Models with ARIMA Errors” on page 4-130
• “Compare Alternative ARIMA Model Representations” on page 4-136

Tip

Suppose EstParamCov is an estimated parameter covariance matrix returned by
estimate. The software sets the variances and covariances of parameters fixed

 estimate

9-305

during estimation to 0. Enter this command to count the number of free parameters
(numParams) in a fitted model.

numParams = sum(any(EstParamCov))

This command counts the number of columns (or equivalently, rows) with any nonzero
values.

Algorithms

estimate estimates the parameters as follows:

1 Infer the unconditional disturbances from the regression model.
2 Infer the residuals of the ARIMA error model.
3 Use the distribution of the innovations to build the likelihood function.
4 Maximize the loglikelihood function with respect to the parameters using fmincon.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Davidson, R., and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[3] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc.,
1995.

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[5] Pankratz, A. Forecasting with Dynamic Regression Models. John Wiley & Sons, Inc.,
1991.

[6] Tsay, R. S. Analysis of Financial Time Series. 2nd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2005.

9 Functions — Alphabetical List

9-306

See Also
regARIMA | forecast | infer | simulate

More About
• “Maximum Likelihood Estimation for Conditional Mean Models” on page 5-98
• “Conditional Mean Model Estimation with Equality Constraints” on page 5-101
• “Presample Data for Conditional Mean Model Estimation” on page 5-103
• “Initial Values for Conditional Mean Model Estimation” on page 5-106
• “Optimization Settings for Conditional Mean Model Estimation” on page 5-108

 estimate

9-307

estimate
Class: dssm

Maximum likelihood parameter estimation of diffuse state-space models

Syntax

EstMdl = estimate(Mdl,Y,params0)

EstMdl = estimate(Mdl,Y,params0,Name,Value)

[EstMdl,estParams,EstParamCov,logL,Output] = estimate(___)

Description

EstMdl = estimate(Mdl,Y,params0) estimates the unknown parameters of the
diffuse state-space model Mdl using the diffuse Kalman filter and maximum likelihood.

• Y is the observed response series to which estimate fits Mdl.
• params0 is a set of initial values for the unknown parameters.

estimate returns an estimated diffuse state-space model (EstMdl), which stores
the estimated coefficient matrices and initial state means, covariance matrices, and
distributions.

• For explicitly created state-space models, the software estimates all NaN values in
the coefficient matrices (Mdl.A, Mdl.B, Mdl.C, and Mdl.D) and the initial state
means and covariance matrix (Mdl.Mean0 and Mdl.Cov0). For details on explicit and
implicit model creation, see dssm.

• For implicitly created state-space models, you specify the model structure and the
location of the unknown parameters using the parameter-to-matrix mapping function.
Implicitly create a state-space model to estimate complex models, impose parameter
constraints, and estimate initial states. The parameter-to-mapping function can also
accommodate additional output arguments.

EstMdl = estimate(Mdl,Y,params0,Name,Value) estimates the diffuse state-space
model with additional options specified by one or more Name,Value pair arguments.
For example, you can specify to deflate the observations by a linear regression using

9 Functions — Alphabetical List

9-308

predictor data, control how the results appear in the Command Window, and indicate
which estimation method to use for the parameter covariance matrix.

[EstMdl,estParams,EstParamCov,logL,Output] = estimate(___) additionally
returns these arguments using any of the input arguments in the previous syntaxes.

• estParams, a vector containing the estimated parameters
• EstParamCov, the estimated variance-covariance matrix of the estimated parameters
• logL, the optimized loglikelihood value
• Output, optimization diagnostic information structure

Tips

Constrained likelihood objective function maximization

• You can specify any combination of linear inequality, linear equality, and upper and
lower bound constraints on the parameters.

• If a parameter is unbounded below, then set 'lb',-Inf.
• If a parameter is unbounded above, then set 'ub',Inf.
• It is good practice to avoid equality and inequality constraints during optimization.

For example, if you want to constrain the parameter w to be positive, then implicitly
specify the state-space model using a parameter-to-matrix mapping function, set
w = exp(s) within the function, and use unconstrained optimization to estimate s.
Subsequently, s can assume any real value, but w must be positive.

Predictors and corresponding coefficients

• The state-space model Mdl does not store the predictors (Zt) nor their corresponding
regression coefficients (β). Supply the predictors and their corresponding coefficients
wherever necessary using the appropriate name-value pair arguments.

• The predictor series serve as observation deflators. Subsequently, the deflated data
set is Yt – Ztβ, where:

• Z z z z
t t t dt

= ()1 2
L . , that is, Z is a T-byd matrix.

• zjt is the period t value of predictor j.
• β is a d-by-n matrix of regression coefficients.

 estimate

9-309

• To include an overall mean to the observation model, include a column of 1s in Zt.
• If you want to account for predictor effects when you simulate (simulate), then

you must deflate the observations manually. To deflate the observations, use
W Y Z

t t t
= - ˆ.b

• If the state equation requires predictors, then expand the states by the constant 1 and
the predictors.

• If the regression model is complex, then consider implicitly defining the state space
model. For example, define the parameter-to-matrix mapping function using the
following syntax pattern.

function [A,B,C,D,Mean0,Cov0,StateType,DeflateY] = ParamMap(params,Y,Z)

 ...

 DeflateY = Y - exp(params(9) + params(10)*Z);

 ...

end

In this example, Y is the matrix of observations and Z is the matrix of predictors. The
function returns DeflateY, which is the matrix of deflated observations. Specify Y
and Z in the MATLAB Workspace before, and then pass ParamMap to ssm using the
following syntax pattern.

Mdl = ssm(@(params)ParamMap(params,Y,Z))

This is also useful if each response series requires a distinct set of predictors.
• If the state equation requires known predictors, then include the predictors as

additional state variables. Since predictor data varies with time, a state-space model
with predictors as states is time varying.

Diffuse State-Space Models

• You cannot use the square root method to filter and smooth diffuse state-space models
(i.e., dssm model objects). As a workaround, you can convert a diffuse state-space
model to a standard state-space model using ssm, and then you can filter using the
square root method. Upon conversion, all diffuse states have a finite, albeit large,
initial distribution variance of 1e7.

• It is a best practice to let estimate determine the value of SwitchTime. However,
in rare cases, you might experience numerical issues during estimation, filtering, or
smoothing diffuse state-space models. For such cases, try experimenting with various
SwitchTime specifications, or consider a different model structure (e.g., simplify the
model or verify that the model is identifiable). For example, convert the diffuse state-
space model to a standard state-space model using ssm.

9 Functions — Alphabetical List

9-310

Additional Tips

• The software accommodates missing data. Indicate missing data using NaN values in
the observed responses (Y).

• It is good practice to check the convergence status of the optimization routine by
displaying Output.ExitFlag.

• If the optimization algorithm does not converge, then you can increase the number of
iterations using the 'Options' name-value pair argument.

• If the optimization algorithm does not converge, then consider using refine, which
might help you obtain better initial parameter values for optimization.

Input Arguments

Mdl — Diffuse state-space model
dssm model object

Diffuse state-space model containing unknown parameters, specified as a dssm model
object returned by dssm.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary using, the appropriate input and name-value pair arguments.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix. Each row of the matrix corresponds to a period and each column corresponds
to a particular observation in the model. Therefore, T is the sample size and n is the
number of observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1 cell
vector. Y{t} contains an nt-dimensional vector of observations for period t, where t
= 1,...,T. The corresponding dimensions of the coefficient matrices in Mdl.C{t} and
Mdl.D{t} must be consistent with the matrix in Y{t} for all periods. The last cell of
Y contains the latest observations.

• Suppose that you created Mdl implicitly by specifying a parameter-to-matrix mapping
function, and the function has input arguments for the observed responses or

 estimate

9-311

predictors. The mapping function establishes a link to observed responses and the
predictor data in the MATLAB workspace, which overrides the value of Y.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-829.
Data Types: double | cell

params0 — Initial values of unknown parameters
numeric vector

Initial values of unknown parameters for numeric maximum likelihood estimation,
specified as a numeric vector.

The elements of params0 correspond to the unknown parameters in the state-space
model matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and
covariance matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise, following the order A, B, C, D, Mean0, Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-
to-matrix mapping function), then set initial parameter values for the state-space
model matrices, initial state values, and state types within the parameter-to-matrix
mapping function.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Estimation Options

'Beta0' — Initial values of regression coefficients
numeric matrix

9 Functions — Alphabetical List

9-312

Initial values of regression coefficients, specified as the comma-separated pair consisting
of 'Beta0' and a d-by-n numeric matrix. d is the number of predictor variables (see
Predictors) and n is the number of observed response series (see Y).

By default, Beta0 is the ordinary least-squares estimate of Y onto Predictors.

Data Types: double

'CovMethod' — Asymptotic covariance estimation method
'opg' (default) | 'hessian' | 'sandwich'

Asymptotic covariance estimation method, specified as the comma-separated pair
consisting of 'CovMethod' and a string.

Set CovMethod using a value in this table.

Value Description

'Hessian' Negative, inverted Hessian matrix
'OPG' Outer product of gradients (OPG)
'Sandwich' Both Hessian and OPG

Example: 'CovMethod','Sandwich'

Data Types: char

'Display' — Command Window display option
'params' (default) | 'diagnostics' | 'full' | 'iter' | 'off' | cell vector of
strings

Command Window display option, specified as the comma-separated pair consisting of
'Display' and a string or cell vector of strings.

Set Display using any combination of values in this table.

Value estimate Displays

'diagnostics' Optimization diagnostics
'full' Maximum likelihood parameter estimates,

standard errors, t statistics, iterative
optimization information, and optimization
diagnostics

'iter' Iterative optimization information

 estimate

9-313

Value estimate Displays

'off' No display in the Command Window
'params' Maximum likelihood parameter estimates,

standard errors, and t statistics

For example:

• To run a simulation where you are fitting many models, and therefore want to
suppress all output, use 'Display','off'.

• To display all estimation results and the optimization diagnostics, use 'Display',
{'params','diagnostics'}.

Data Types: char | cell

'Options' — Optimization options
optimoptions optimization controller

Optimization options, specified as the comma-separated pair consisting of 'Options'
and an optimoptions optimization controller. Options replaces default optimization
options of the optimizer. For details on altering default values of the optimizer, see the
optimization controller optimoptions, the constrained optimization function fmincon,
or the unconstrained optimization function fminunc in Optimization Toolbox.

For example, suppose that you want to change the constraint tolerance to 1e-6. Set
Options = optimoptions(@fmincon,'TolCon',1e-6,'Algorithm','sqp') and
then pass Options into estimate using 'Options',Options.

By default:

• For constrained optimization, estimate maximizes the likelihood objective function
using fmincon and its default options, but sets 'Algorithm','interior-point'.

• For unconstrained optimization, estimate maximizes the likelihood objective
function using fminunc and its default options, but sets 'Algorithm','quasi-
newton'.

'Predictors' — Predictor data
[] (default) | numeric matrix

Predictor data used to deflate the observations in a time-invariant state-space model,
specified as the comma-separated pair consisting of 'Predictors' and a T-by-d
numeric matrix. T is the number of periods and d is the number of predictor variables.

9 Functions — Alphabetical List

9-314

Row t corresponds to the observed predictors at period t (Zt) in the expanded observation
equation

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters. Predictors and Y must have the same number of rows.

For n observations per period, the software regresses all predictor series onto each
observation. Then, the software returns a d-by-n matrix of fitted regression coefficient
vectors for each observation series.

If you specify Predictors, then Mdl must be time invariant. Otherwise, the software
returns an error.

By default, the software excludes a regression component from the state-space model.
Data Types: double

'SwitchTime' — Final period for diffuse state initialization
positive integer

Final period for diffuse state initialization, specified as the comma-separated pair
consisting of 'SwitchTime' and a positive integer. That is, estimate uses the
observations from period 1 to period SwitchTime as a presample to implement the exact
initial Kalman filter (see “Diffuse Kalman Filter” on page 8-15 and [1]). After initializing
the diffuse states, estimate applies the standard Kalman filter to the observations from
periods SwitchTime + 1 to T.

The default value for SwitchTime is the last period in which the estimated smoothed
state precision matrix is singular (i.e., the inverse of the covariance matrix). This
specification represents the fewest number of observations required to initialize the
diffuse states. Therefore, it is a best practice to use the default value.

If you set SwitchTime to a value greater than the default, then the effective sample
size decreases. If you set SwitchTime to a value that is fewer than the default, then
estimate might not have enough observations to initialize the diffuse states, which can
result in an error or improper values.

In general, estimating, filtering, and smoothing state-space models with at least one
diffuse state requires SwitchTime to be at least one. The default estimation display
contains the effective sample size.

 estimate

9-315

Data Types: double

'Tolerance' — Forecast uncertainty threshold
0 (default) | nonnegative scalar

Forecast uncertainty threshold, specified as the comma-separated pair consisting of
'Tolerance' and a nonnegative scalar.

If the forecast uncertainty for a particular observation is less than Tolerance during
numerical estimation, then the software removes the uncertainty corresponding to the
observation from the forecast covariance matrix before its inversion.

It is best practice to set Tolerance to a small number, for example, le-15, to overcome
numerical obstacles during estimation.
Example: 'Tolerance',le-15

Data Types: double

'Univariate' — Univariate treatment of multivariate series flag
false (default) | true

Univariate treatment of a multivariate series flag, specified as the comma-separated pair
consisting of 'Univariate' and true or false. Univariate treatment of a multivariate
series is also known as sequential filtering.

The univariate treatment can accelerate and improve numerical stability of the Kalman
filter. However, all observation innovations must be uncorrelated. That is, DtDt' must be
diagonal, where Dt, t = 1,...,T, is one of the following:

• The matrix D{t} in a time-varying state-space model
• The matrix D in a time-invariant state-space model

Example: 'Univariate',true

Data Types: logical

Constrained Optimization Options for fmincon

'Aeq' — Linear equality constraint parameter transformer
matrix

9 Functions — Alphabetical List

9-316

Linear equality constraint parameter transformer for constrained likelihood objective
function maximization, specified as the comma-separated pair consisting of 'Aeq' and a
matrix.

If you specify Aeq and beq, then estimate maximizes the likelihood objective function
using the equality constraint Aeq beqq = , where θ is a vector containing every Mdl
parameter.

The number of rows of Aeq is the number of constraints, and the number of columns
is the number of parameters that the software estimates. Order the columns of Aeq by
Mdl.A, Mdl.B, Mdl.C, Mdl.D, Mdl.Mean0, Mdl.Cov0, and the regression coefficient (if
the model has one).

Specify Aeq and beq together, otherwise estimate returns an error.

Aeq directly corresponds to the input argument Aeq of fmincon, not to the state-
transition coefficient matrix Mdl.A.

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.

'Aineq' — Linear inequality constraint parameter transformer
matrix

Linear inequality constraint parameter transformer for constrained likelihood objective
function maximization, specified as the comma-separated pair consisting of 'Aineq' and
a matrix.

If you specify Aineq and bineq, then estimate maximizes the likelihood objective
function using the inequality constraint Aineq bineqq £ , where θ is a vector containing
every Mdl parameter.

The number of rows of Aineq is the number of constraints, and the number of columns
is the number of parameters that the software estimates. Order the columns of Aineq by
Mdl.A, Mdl.B, Mdl.C, Mdl.D, Mdl.Mean0, Mdl.Cov0, and the regression coefficient (if
the model has one).

Specify Aineq and bineq together, otherwise estimate returns an error.

Aineq directly corresponds to the input argument A of fmincon, not to the state-
transition coefficient matrix Mdl.A.

 estimate

9-317

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

'beq' — Linear equality constraints of transformed parameters
numeric vector

Linear equality constraints of the transformed parameters for constrained likelihood
objective function maximization, specified as the comma-separated pair consisting of
'beq' and a numeric vector.

If you specify Aeq and beq, then estimate maximizes the likelihood objective function
using the equality constraint Aeq beqq = , where θ is a vector containing every Mdl
parameter..

Specify Aeq and beq together, otherwise estimate returns an error.

beq directly corresponds to the input argument beq of fmincon, and is not associated
with any component of Mdl.

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

'bineq' — Linear inequality constraint upper bounds
numeric vector

Linear inequality constraint upper bounds of the transformed parameters for constrained
likelihood objective function maximization, specified as the comma-separated pair
consisting of 'bineq' and a numeric vector.

If you specify Aineq and bineq, then estimate maximizes the likelihood objective
function using the inequality constraint Aineq bineqq £ , where θ is a vector containing
every Mdl parameter.

Specify Aineq and bineq together, otherwise estimate returns an error.

bineq directly corresponds to the input argument b of fmincon, and is not associated
with any component of Mdl.

9 Functions — Alphabetical List

9-318

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

'lb' — Lower bounds of parameters
numeric vector

Lower bounds of the parameters for constrained likelihood objective function
maximization, specified as the comma-separated pair consisting of 'lb' and a numeric
vector.

If you specify lb and ub, then estimate maximizes the likelihood objective function
subject tolb ub£ £q , where θ is a vector containing every Mdl parameter.

Order the elements of lb by Mdl.A, Mdl.B, Mdl.C, Mdl.D, Mdl.Mean0, Mdl.Cov0, and
the regression coefficient (if the model has one).

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

'ub' — Upper bounds of parameters
numeric vector

Upper bounds of the parameters for constrained likelihood objective function
maximization, specified as the comma-separated pair consisting of 'ub' and a numeric
vector.

If you specify lb and ub, then estimate maximizes the likelihood objective function
subject tolb ub£ £q , where θ is a vector every Mdl parameter.

Order the elements of ub by Mdl.A, Mdl.B, Mdl.C, Mdl.D, Mdl.Mean0, Mdl.Cov0, and
the regression coefficient (if the model has one).

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

 estimate

9-319

Output Arguments

EstMdl — Diffuse state-space model containing parameter estimates
dssm model object

Diffuse state-space model containing the parameter estimates, returned as a dssm model
object.

estimate uses maximum likelihood to calculate all parameter estimates. EstMdl stores
the parameter estimates in the coefficient matrices (EstMdl.A, EstMdl.B, EstMdl.C,
and EstMdl.D), and the initial state means and covariance matrix (EstMdl.Mean0 and
EstMdl.Cov0), regardless of specifying Mdl explicitly. For the estimated regression
coefficient, see estParams.

EstMdl does not store observed responses or predictor data. If you plan to filter (using
filter), forecast (using forecast), or smooth (using smooth) using EstMdl, then you need to
supply the appropriate data.

estParams — Maximum likelihood estimates of model parameters
numeric vector

Maximum likelihood estimates of the model parameters known to the optimizer,
returned as a numeric vector. estParams has the same dimensions as params0.

estimate arranges the estimates in estParams corresponding to unknown parameters
in this order.

1 EstMdl.A(:), that is, estimates in EstMdl.A listed column-wise
2 EstMdl.B(:)

3 EstMdl.C(:)

4 EstMdl.D(:)

5 EstMdl.Mean0

6 EstMdl.Cov0(:)

7 In models with predictors, estimated regression coefficients listed column-wise

EstParamCov — Variance-covariance matrix of maximum likelihood estimates
numeric matrix

Variance-covariance matrix of maximum likelihood estimates of the model parameters
known to the optimizer, returned as a numeric matrix.

9 Functions — Alphabetical List

9-320

The rows and columns contain the covariances of the parameter estimates. The standard
errors of the parameter estimates are the square root of the entries along the main
diagonal.

estimate arranges the estimates in the rows and columns of EstParamCov
corresponding to unknown parameters in this order.

1 EstMdl.A(:), that is, estimates in EstMdl.A listed column-wise
2 EstMdl.B(:)

3 EstMdl.C(:)

4 EstMdl.D(:)

5 EstMdl.Mean0

6 EstMdl.Cov0(:)

7 In models with predictors, estimated regression coefficients listed column-wise

logL — Optimized loglikelihood value
scalar

Optimized loglikelihood value, returned as a scalar.

Missing observations do not contribute to the loglikelihood. The observations after the
first SwitchTime periods contribute to the loglikelihood only.

Output — Optimization information
structure array

Optimization information, returned as a structure array.

This table describes the fields of Output.

Field Description

ExitFlag Optimization exit flag that describes the
exit condition. For details, see fmincon
and fminunc.

Options Optimization options that the optimizer
used for numerical estimation. For details,
see optimoptions.

Data Types: struct

 estimate

9-321

Examples
Fit Time-Invariant Diffuse State-Space Model to Data

This example generates data from a known model, and then fits a diffuse state-space
model to the data.

Suppose that a latent process is this AR(1) process

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error as
indicated in the equation

where is Gaussian with mean 0 and standard deviation 0.1.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.1*randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients and variances are unknown parameters, the state-space
model is

Specify the state-transition matrix. Use NaN values for unknown parameters.

A = NaN;

Specify the state-disturbance-loading coefficient matrix.

9 Functions — Alphabetical List

9-322

B = NaN;

Specify the measurement-sensitivity coefficient matrix.

C = 1;

Specify the observation-innovation coefficient matrix

D = NaN;

Create the state-space model using the coefficient matrices and specify that the state
variable is diffuse. A diffuse state specification indicates complete ignorance on the
values of the states.

StateType = 2;

Mdl = dssm(A,B,C,D,'StateType',StateType);

Mdl is a dssm model. Verify that the model is correctly specified by viewing its display in
the Command Window.

Pass the observations to estimate to estimate the parameter. Set a starting value for
the parameter to params0. and must be positive, so set the lower bound constraints
using the 'lb' name-value pair argument. Specify that the lower bound of is -Inf.

params0 = [0.9; 0.5; 0.1];

EstMdl = estimate(Mdl,y,params0,'lb',[-Inf; 0; 0])

Method: Maximum likelihood (fmincon)

Effective Sample size: 99

Logarithmic likelihood: -138.968

Akaike info criterion: 283.936

Bayesian info criterion: 291.752

 | Coeff Std Err t Stat Prob

 c(1) | 0.56114 0.18045 3.10975 0.00187

 c(2) | 0.75836 0.24569 3.08661 0.00202

 c(3) | 0.57129 0.27455 2.08086 0.03745

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.24096 0.46532 2.66690 0.00766

EstMdl =

State-space model type: dssm

 estimate

9-323

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.56)x1(t-1) + (0.76)u1(t)

Observation equation:

y1(t) = x1(t) + (0.57)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 Inf

State types

 x1

 Diffuse

EstMdl is a dssm model. The results of the estimation appear in the Command Window,
contain the fitted state-space equations, and contain a table of parameter estimates, their
standard errors, t statistics, and p-values.

You can use or display, for example the fitted state-transition matrix using dot notation.

EstMdl.A

ans =

 0.5611

9 Functions — Alphabetical List

9-324

Pass EstMdl to forecast to forecast observations, or to simulate to conduct a Monte
Carlo study.

Estimate Diffuse State-Space Model Containing Regression Component

Suppose that the linear relationship between unemployment rate and the nominal gross
national product (nGNP) is of interest. Suppose further that unemployment rate is an
AR(1) series. Symbolically, and in state-space form, the model is

where:

• is the unemployment rate at time t.
• is the observed change in the unemployment rate being deflated by the return of

nGNP ().
• is the Gaussian series of state disturbances having mean 0 and unknown standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and removing
the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

y = diff(DataTable.UR(~isNaN));

T = size(gnpn,1); % The sample size

Z = price2ret(gnpn);

This example continues using the series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

Specify the coefficient matrices.

A = NaN;

B = NaN;

C = 1;

 estimate

9-325

Create the state-space model using dssm by supplying the coefficient matrices and
specifying that the state values come from a diffuse distribution. The diffuse specification
indicates complete ignorance about the moments of the initial distribution.

StateType = 2;

Mdl = dssm(A,B,C,'StateType',StateType);

Estimate the parameters. Specify the regression component and its initial value for
optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Display the estimates and all optimization diagnostic information. Restrict
the estimate of to all positive, real numbers.

params0 = [0.3 0.2]; % Initial values chosen arbitrarily

Beta0 = 0.1;

EstMdl = estimate(Mdl,y,params0,'Predictors',Z,'Display','full',...

 'Beta0',Beta0,'lb',[-Inf 0 -Inf]);

__

 Diagnostic Information

Number of variables: 3

Functions

Objective: @(c)-fML(c,Mdl,Y,Predictors,unitFlag,sqrtFlag,mexFlag,mexTvFlag,tol,ind,switchTime,precaution)

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

Constraints

Nonlinear constraints: do not exist

Number of linear inequality constraints: 0

Number of linear equality constraints: 0

Number of lower bound constraints: 1

Number of upper bound constraints: 0

Algorithm selected

 interior-point

__

 End diagnostic information

 First-order Norm of

 Iter F-count f(x) Feasibility optimality step

 0 4 5.084683e+03 0.000e+00 5.096e+04

9 Functions — Alphabetical List

9-326

 1 8 6.405732e+02 0.000e+00 7.720e-02 1.457e+04

 2 12 6.405620e+02 0.000e+00 7.713e-02 1.058e-01

 3 16 6.405063e+02 0.000e+00 7.683e-02 5.285e-01

 4 20 6.402322e+02 0.000e+00 7.531e-02 2.632e+00

 5 24 6.389682e+02 0.000e+00 6.816e-02 1.289e+01

 6 28 6.346900e+02 0.000e+00 4.146e-02 5.821e+01

 7 32 6.314789e+02 0.000e+00 1.601e-02 8.771e+01

 8 36 6.307024e+02 0.000e+00 7.462e-03 5.266e+01

 9 40 6.304200e+02 0.000e+00 4.104e-03 4.351e+01

 10 44 6.303324e+02 0.000e+00 4.116e-03 3.168e+01

 11 48 6.303036e+02 0.000e+00 4.120e-03 2.417e+01

 12 52 6.302943e+02 0.000e+00 4.121e-03 1.816e+01

 13 56 6.302913e+02 0.000e+00 4.121e-03 1.375e+01

 14 60 6.302903e+02 0.000e+00 4.121e-03 1.062e+01

 15 64 6.302899e+02 0.000e+00 4.121e-03 9.300e+00

 16 68 6.302897e+02 0.000e+00 4.121e-03 9.121e+00

 17 72 6.302894e+02 0.000e+00 4.121e-03 1.313e+01

 18 77 6.302888e+02 0.000e+00 4.121e-03 3.413e+01

 19 82 6.302888e+02 0.000e+00 4.121e-03 7.903e+00

 20 86 6.302888e+02 0.000e+00 4.121e-03 3.076e+00

 21 90 6.302888e+02 0.000e+00 4.121e-03 1.375e+00

 22 94 6.302888e+02 0.000e+00 4.121e-03 6.476e-01

 23 98 6.302887e+02 0.000e+00 4.121e-03 1.619e+00

 24 102 6.302883e+02 0.000e+00 4.121e-03 4.675e+00

 25 106 6.302863e+02 0.000e+00 4.121e-03 1.421e+01

 26 110 6.302820e+02 0.000e+00 4.122e-03 6.846e+00

 27 114 6.302455e+02 0.000e+00 4.124e-03 1.644e+01

 28 118 6.299840e+02 0.000e+00 4.141e-03 6.680e+01

 29 122 6.285305e+02 0.000e+00 4.243e-03 3.447e+02

 30 126 6.203531e+02 0.000e+00 4.862e-03 1.802e+03

 First-order Norm of

 Iter F-count f(x) Feasibility optimality step

 31 130 5.202166e+02 0.000e+00 2.379e-01 1.034e+04

 32 135 5.092568e+02 0.000e+00 1.207e+00 9.939e+02

 33 140 4.768740e+02 0.000e+00 3.401e+00 5.025e+02

 34 145 4.133588e+02 0.000e+00 5.513e+00 2.526e+02

 35 151 3.760473e+02 0.000e+00 3.601e+00 6.555e+01

 36 156 3.568227e+02 0.000e+00 1.572e+01 9.471e+01

 37 161 3.278483e+02 0.000e+00 3.534e+01 4.761e+01

 38 166 2.716782e+02 0.000e+00 5.998e+00 2.404e+01

 39 173 2.711253e+02 0.000e+00 2.616e+00 2.938e+00

 40 180 2.711246e+02 0.000e+00 5.724e+00 6.473e-01

 41 189 2.710580e+02 0.000e+00 6.609e+00 6.477e-01

 estimate

9-327

 42 194 2.709747e+02 0.000e+00 5.940e+00 6.475e-01

 43 198 2.705427e+02 0.000e+00 1.010e+00 9.036e-01

 44 202 2.699854e+02 0.000e+00 3.508e+00 2.566e+00

 45 206 2.684256e+02 0.000e+00 1.084e+01 9.181e+00

 46 210 2.635256e+02 0.000e+00 2.192e+01 3.090e+01

 47 214 2.062327e+02 0.000e+00 4.639e+00 1.836e+02

 48 221 1.998224e+02 0.000e+00 4.999e+00 2.413e+01

 49 226 1.798855e+02 0.000e+00 2.143e+01 7.639e+00

 50 232 1.741133e+02 0.000e+00 3.585e+01 1.675e+00

 51 237 1.656338e+02 0.000e+00 7.790e+01 9.176e+00

 52 241 1.506502e+02 0.000e+00 4.755e+01 1.536e+01

 53 246 1.477040e+02 0.000e+00 1.853e+01 6.053e+00

 54 250 1.427015e+02 0.000e+00 2.339e+01 6.196e-01

 55 255 1.349762e+02 0.000e+00 5.112e+01 1.266e+00

 56 259 1.278666e+02 0.000e+00 4.088e+01 1.088e+00

 57 265 1.127098e+02 0.000e+00 1.763e+01 2.881e+00

 58 269 1.116068e+02 0.000e+00 8.076e+00 6.365e-01

 59 273 1.108242e+02 0.000e+00 5.216e+00 2.060e+00

 60 277 1.105218e+02 0.000e+00 1.842e+00 1.561e-01

 First-order Norm of

 Iter F-count f(x) Feasibility optimality step

 61 281 1.104810e+02 0.000e+00 3.733e-01 1.476e-01

 62 285 1.104776e+02 0.000e+00 3.632e-02 9.569e-02

 63 289 1.104771e+02 0.000e+00 1.016e-02 6.805e-02

 64 293 1.104771e+02 0.000e+00 1.520e-03 5.361e-03

 65 297 1.104771e+02 0.000e+00 6.555e-04 5.119e-05

 66 301 1.104771e+02 0.000e+00 1.311e-04 2.297e-05

 67 305 1.104771e+02 0.000e+00 8.583e-06 2.968e-06

 68 309 1.104771e+02 0.000e+00 4.768e-06 4.252e-07

 69 314 1.104771e+02 0.000e+00 1.311e-06 2.940e-07

 70 318 1.104771e+02 0.000e+00 2.861e-06 6.425e-07

 71 322 1.104771e+02 0.000e+00 9.881e-07 3.253e-08

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Method: Maximum likelihood (fmincon)

9 Functions — Alphabetical List

9-328

Effective Sample size: 60

Logarithmic likelihood: -110.477

Akaike info criterion: 226.954

Bayesian info criterion: 233.287

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.59436 0.09408 6.31738 0

 c(2) | 1.52554 0.10758 14.17991 0

 y <- z(1) | -24.26161 1.55730 -15.57930 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 2.54764 0 Inf 0

Optimization information and a table of estimates and statistics output to the Command
Window. EstMdl is an ssm model, and you can access its properties using dot notation.

Change Switching Time for Diffuse Model Estimation

For diffuse state-space models, the software implements the diffuse Kalman filter until
it satisfies a regularity condition. To meet the condition, the software requires enough
presample data. Once the software satisfies the condition, it switches to using the
standard Kalman filter. By default, the software determines how much presample data it
requires, and only uses as much as it needs. However, you can experiment by specifying
other values for the SwitchTime name-value pair argument.

For this example, use the same data and model as in “Estimate Diffuse State-Space
Model Containing Regression Component”.

Load the Nelson-Plosser data set.

load Data_NelsonPlosser

isNaN = any(ismissing(DataTable),2);

gnpn = DataTable.GNPN(~isNaN);

y = DataTable.UR(~isNaN);

T = size(gnpn,1);

Z = log(gnpn);

Specify the coefficient matrices.

A = NaN;

B = NaN;

C = 1;

 estimate

9-329

Create the state-space model using dssm by supplying the coefficient matrices and
specifying that the state values come from a diffuse distribution. The diffuse specification
indicates complete ignorance about the moments of the initial distribution.

StateType = 2;

Mdl = dssm(A,B,C,'StateType',StateType);

Estimate the parameters several times. For each time, change the period to switch to the
standard Kalman filter.

params0 = [0.3 0.2]; % Initial values chosen arbitrarily

Beta0 = 0.1;

[~,estParams1] = estimate(Mdl,y,params0,'Predictors',Z,'Display','off',...

 'Beta0',Beta0,'lb',[-Inf 0 -Inf],'SwitchTime',1);

[~,estParams5] = estimate(Mdl,y,params0,'Predictors',Z,'Display','off',...

 'Beta0',Beta0,'lb',[-Inf 0 -Inf],'SwitchTime',5);

[~,estParams10] = estimate(Mdl,y,params0,'Predictors',Z,'Display','off',...

 'Beta0',Beta0,'lb',[-Inf 0 -Inf],'SwitchTime',10);

Compare the parameter estimates.

estParams1

estParams5

estParams10

estParams1 =

 1.0101 1.3574 -24.4585

estParams5 =

 1.0102 1.3832 -24.4852

estParams10 =

 1.0094 1.2735 -26.4448

Because estimate uses fewer data points for subsequent estimations, the estimates are
slightly different.

• “Estimate Time-Varying Diffuse State-Space Model” on page 8-50

9 Functions — Alphabetical List

9-330

• “Estimate Random Parameter of State-Space Model” on page 8-116
• “Assess State-Space Model Stability Using Rolling Window Analysis” on page 8-172
• “Choose State-Space Model Specification Using Backtesting” on page 8-181

Algorithms
• The Kalman filter accommodates missing data by not updating filtered state

estimates corresponding to missing observations. In other words, suppose there is
a missing observation at period t. Then, the state forecast for period t based on the
previous t – 1 observations and filtered state for period t are equivalent.

• The diffuse Kalman filter requires presample data. If missing observations begin
the time series, then the diffuse Kalman filter must gather enough nonmissing
observations to initialize the diffuse states.

• For explicitly created state-space models, estimate applies all predictors to
each response series. However, each response series has its own set of regression
coefficients.

• If you do not specify optimization constraints, then estimate uses fminunc
for unconstrained numerical estimation. If you specify any pair of optimization
constraints, then estimate uses fmincon for constrained numerical estimation. For
either type of optimization, optimization options you set using the name-value pair
argument Options must be consistent with the options of the optimization algorithm.

• estimate passes the name-value pair arguments Options, Aineq, bineq, Aeq, beq,
lb, and ub directly to the optimizer fmincon or fminunc.

• estimate fits regression coefficients along with all other state-space model
parameters. The software is flexible enough to allow applying constraints to the
regression coefficients using constrained optimization options. For more details, see
the Name,Value pair arguments and fmincon.

• If you set 'Univariate',true, then, during the filtering algorithm, the software
sequentially updates rather then updating all at once. This might accelerate
parameter estimation, especially for a low-dimensional, time-invariant model.

• Suppose that you want to create a state-space model using a parameter-to-matrix
mapping function with this signature

[A,B,C,D,Mean0,Cov0,StateType,DeflateY] = paramMap(params,Y,Z)

and you specify the model using an anonymous function

Mdl = dssm(@(params)paramMap(params,Y,Z))

 estimate

9-331

The observed responses Y and predictor data Z are not input arguments in the
anonymous function. If Y and Z exist in the MATLAB Workspace before creating Mdl,
then the software establishes a link to them. Otherwise, if you pass Mdl to estimate,
the software throws an error.

The link to the data established by the anonymous function overrides all other
corresponding input argument values of estimate. This distinction is important
particularly when conducting a rolling window analysis. For details, see “Rolling-
Window Analysis of Time-Series Models” on page 8-168.

• For diffuse state-space models, estimate usually switches from the diffuse Kalman
filter to the standard Kalman filter when the number of cumulative observations and
the number of diffuse states are equal.

Limitations

• If the model is time varying with respect the observed responses, then the software
does not support including predictors. If the observation vectors among different
periods vary in length, then the software cannot determine which coefficients to use to
deflate the observed responses.

• If a diffuse state-space model has identifiability issues (i.e., at least two sets of
distinct parameters values yield the same likelihood value for all observations),
then estimate cannot properly initialize the diffuse states, and results are not
predictable.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
dssm | filter | fmincon | fminunc | optimoptions | refine | smooth

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8
• “Rolling-Window Analysis of Time-Series Models” on page 8-168

9 Functions — Alphabetical List

9-332

Introduced in R2015b

 estimate

9-333

estimate
Class: ssm

Maximum likelihood parameter estimation of state-space models

Syntax

EstMdl = estimate(Mdl,Y,params0)

EstMdl = estimate(Mdl,Y,params0,Name,Value)

[EstMdl,estParams,EstParamCov,logL,Output] = estimate(___)

Description

EstMdl = estimate(Mdl,Y,params0) estimates the parameters of Mdl using the
Kalman filter and maximum likelihood, where:

• Mdl is a state-space model (ssm).
• Y is the observed response series.
• params0 is the vector of initial values for unknown parameters.

estimate returns an estimated state-space model (EstMdl), which stores the estimated
coefficient matrices and initial state means, covariance matrices, and distributions.

• For explicitly created state-space models, the software estimates all NaN values in
the coefficient matrices (Mdl.A, Mdl.B, Mdl.C, and Mdl.D) and the initial state
means and covariance matrix (Mdl.Mean0 and Mdl.Cov0). For details on explicit and
implicit model creation, see ssm.

• For implicitly created state-space models, you specify the model structure and the
location of the unknown parameters using the parameter-to-matrix mapping function.
Implicitly create a state-space model to estimate complex models, impose parameter
constraints, and estimate initial states. The parameter-to-mapping function can also
accommodate additional output arguments.

EstMdl = estimate(Mdl,Y,params0,Name,Value) estimates the state-space
model with additional options specified by one or more Name,Value pair arguments.
For example, you can specify to deflate the observations by a linear regression using

9 Functions — Alphabetical List

9-334

predictor data, control how the results appear in the Command Window, and indicate
which estimation method to use for the parameter covariance matrix.

[EstMdl,estParams,EstParamCov,logL,Output] = estimate(___) additionally
returns:

• estParams, a vector containing the estimated parameters
• EstParamCov, the estimated variance-covariance matrix of the estimated parameters
• logL, the optimized loglikelihood value
• Output, optimization diagnostic information structure

using any of the input arguments in the previous syntaxes.

Tips

Constrained likelihood objective function maximization

• You can specify any combination of linear inequality, linear equality, and upper and
lower bound constraints on the parameters.

• If a parameter is unbounded below, then set 'lb',-Inf.
• If a parameter is unbounded above, then set 'ub',Inf.
• It is good practice to avoid equality and inequality constraints during optimization.

For example, if you want to constrain the parameter w to be positive, then implicitly
specify the state-space model using a parameter-to-matrix mapping function, set
w = exp(s) within the function, and use unconstrained optimization to estimate s.
Subsequently, s can assume any real value, but w must be positive.

Predictors and corresponding coefficients

• The state-space model Mdl does not store the predictors (Zt) nor their corresponding
regression coefficients (β). Supply the predictors and their corresponding coefficients
wherever necessary using the appropriate name-value pair arguments.

• The predictor series serve as observation deflators. Subsequently, the deflated data
set is Yt – Ztβ, where:

• Z z z z
t t t dt

= ()1 2
L . , that is, Z is a T-byd matrix.

• zjt is the period t value of predictor j.

 estimate

9-335

• β is a d-by-n matrix of regression coefficients.
• To include an overall mean to the observation model, include a column of 1s in Zt.
• If you want to account for predictor effects when you simulate (simulate), then

you must deflate the observations manually. To deflate the observations, use
W Y Z

t t t
= - ˆ.b

• If the state equation requires predictors, then expand the states by the constant 1 and
the predictors.

• If the regression model is complex, then consider implicitly defining the state space
model. For example, define the parameter-to-matrix mapping function using the
following syntax pattern.

function [A,B,C,D,Mean0,Cov0,StateType,DeflateY] = ParamMap(params,Y,Z)

 ...

 DeflateY = Y - exp(params(9) + params(10)*Z);

 ...

end

In this example, Y is the matrix of observations and Z is the matrix of predictors. The
function returns DeflateY, which is the matrix of deflated observations. Specify Y
and Z in the MATLAB Workspace before, and then pass ParamMap to ssm using the
following syntax pattern.

Mdl = ssm(@(params)ParamMap(params,Y,Z))

This is also useful if each response series requires a distinct set of predictors.
• If the state equation requires known predictors, then include the predictors as

additional state variables. Since predictor data varies with time, a state-space model
with predictors as states is time varying.

Additional Tips

• The software accommodates missing data. Indicate missing data using NaN values in
the observed responses (Y).

• It is good practice to check the convergence status of the optimization routine by
displaying Output.ExitFlag.

• If the optimization algorithm does not converge, then you can increase the number of
iterations using the 'Options' name-value pair argument.

• If the optimization algorithm does not converge, then consider using refine, which
might help you obtain better initial parameter values for optimization.

9 Functions — Alphabetical List

9-336

Input Arguments

Mdl — Standard state-space model
ssm model object

Standard state-space model containing unknown parameters, specified as an ssm model
object returned by ssm.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary, using the appropriate input and name-value pair arguments.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix. Each row of the matrix corresponds to a period and each column corresponds
to a particular observation in the model. Therefore, T is the sample size and n is the
number of observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1 cell
vector. Y{t} contains an nt-dimensional vector of observations for period t, where t
= 1,...,T. The corresponding dimensions of the coefficient matrices in Mdl.C{t} and
Mdl.D{t} must be consistent with the matrix in Y{t} for all periods. The last cell of
Y contains the latest observations.

• Suppose that you created Mdl implicitly by specifying a parameter-to-matrix mapping
function, and the function has input arguments for the observed responses or
predictors. The mapping function establishes a link to observed responses and the
predictor data in the MATLAB workspace, which overrides the value of Y.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-829.
Data Types: double | cell

params0 — Initial values of unknown parameters
numeric vector

Initial values of unknown parameters for numeric maximum likelihood estimation,
specified as a numeric vector.

 estimate

9-337

The elements of params0 correspond to the unknown parameters in the state-space
model matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and
covariance matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise, following the order A, B, C, D, Mean0, Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-
to-matrix mapping function), then set initial parameter values for the state-space
model matrices, initial state values, and state types within the parameter-to-matrix
mapping function.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Estimation Options

'Beta0' — Initial values of regression coefficients
numeric matrix

Initial values of regression coefficients, specified as the comma-separated pair consisting
of 'Beta0' and a d-by-n numeric matrix. d is the number of predictor variables (see
Predictors) and n is the number of observed response series (see Y).

By default, Beta0 is the ordinary least-squares estimate of Y onto Predictors.

Data Types: double

'CovMethod' — Asymptotic covariance estimation method
'opg' (default) | 'hessian' | 'sandwich'

Asymptotic covariance estimation method, specified as the comma-separated pair
consisting of 'CovMethod' and a string.

9 Functions — Alphabetical List

9-338

Set CovMethod using a value in this table.

Value Description

'Hessian' Negative, inverted Hessian matrix
'OPG' Outer product of gradients (OPG)
'Sandwich' Both Hessian and OPG

Example: 'CovMethod','Sandwich'

Data Types: char

'Display' — Command Window display option
'params' (default) | 'diagnostics' | 'full' | 'iter' | 'off' | cell vector of
strings

Command Window display option, specified as the comma-separated pair consisting of
'Display' and a string or cell vector of strings.

Set Display using any combination of values in this table.

Value estimate Displays

'diagnostics' Optimization diagnostics
'full' Maximum likelihood parameter estimates,

standard errors, t statistics, iterative
optimization information, and optimization
diagnostics

'iter' Iterative optimization information
'off' No display in the Command Window
'params' Maximum likelihood parameter estimates,

standard errors, and t statistics

For example:

• To run a simulation where you are fitting many models, and therefore want to
suppress all output, use 'Display','off'.

• To display all estimation results and the optimization diagnostics, use 'Display',
{'params','diagnostics'}.

Data Types: char | cell

 estimate

9-339

'Options' — Optimization options
optimoptions optimization controller

Optimization options, specified as the comma-separated pair consisting of 'Options'
and an optimoptions optimization controller. Options replaces default optimization
options of the optimizer. For details on altering default values of the optimizer, see the
optimization controller optimoptions, the constrained optimization function fmincon,
or the unconstrained optimization function fminunc in Optimization Toolbox.

For example, suppose that you want to change the constraint tolerance to 1e-6. Set
Options = optimoptions(@fmincon,'TolCon',1e-6,'Algorithm','sqp') and
then pass Options into estimate using 'Options',Options.

By default:

• For constrained optimization, estimate maximizes the likelihood objective function
using fmincon and its default options, but sets 'Algorithm','interior-point'.

• For unconstrained optimization, estimate maximizes the likelihood objective
function using fminunc and its default options, but sets 'Algorithm','quasi-
newton'.

'Predictors' — Predictor data
[] (default) | numeric matrix

Predictor data used to deflate the observations in a time-invariant state-space model,
specified as the comma-separated pair consisting of 'Predictors' and a T-by-d
numeric matrix. T is the number of periods and d is the number of predictor variables.
Row t corresponds to the observed predictors at period t (Zt) in the expanded observation
equation

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters. Predictors and Y must have the same number of rows.

For n observations per period, the software regresses all predictor series onto each
observation. Then, the software returns a d-by-n matrix of fitted regression coefficient
vectors for each observation series.

If you specify Predictors, then Mdl must be time invariant. Otherwise, the software
returns an error.

9 Functions — Alphabetical List

9-340

By default, the software excludes a regression component from the state-space model.
Data Types: double

'SquareRoot' — Square root filter method flag
false (default) | true

Square root filter method flag, specified as the comma-separated pair consisting of
'SquareRoot' and true or false. If true, then estimate applies the square root
filter method when implementing the Kalman filter.

If you suspect that the eigenvalues of the filtered state or forecasted observation
covariance matrices are close to zero, then specify 'SquareRoot',true. The square root
filter is robust to numerical issues arising from finite the precision of calculations, but
requires more computational resources.
Example: 'SquareRoot',true

Data Types: logical

'Tolerance' — Forecast uncertainty threshold
0 (default) | nonnegative scalar

Forecast uncertainty threshold, specified as the comma-separated pair consisting of
'Tolerance' and a nonnegative scalar.

If the forecast uncertainty for a particular observation is less than Tolerance during
numerical estimation, then the software removes the uncertainty corresponding to the
observation from the forecast covariance matrix before its inversion.

It is best practice to set Tolerance to a small number, for example, le-15, to overcome
numerical obstacles during estimation.
Example: 'Tolerance',le-15

Data Types: double

'Univariate' — Univariate treatment of multivariate series flag
false (default) | true

Univariate treatment of a multivariate series flag, specified as the comma-separated pair
consisting of 'Univariate' and true or false. Univariate treatment of a multivariate
series is also known as sequential filtering.

 estimate

9-341

The univariate treatment can accelerate and improve numerical stability of the Kalman
filter. However, all observation innovations must be uncorrelated. That is, DtDt' must be
diagonal, where Dt, t = 1,...,T, is one of the following:

• The matrix D{t} in a time-varying state-space model
• The matrix D in a time-invariant state-space model

Example: 'Univariate',true

Data Types: logical

Constrained Optimization Options for fmincon

'Aeq' — Linear equality constraint parameter transformer
matrix

Linear equality constraint parameter transformer for constrained likelihood objective
function maximization, specified as the comma-separated pair consisting of 'Aeq' and a
matrix.

If you specify Aeq and beq, then estimate maximizes the likelihood objective function
using the equality constraint Aeq beqq = , where θ is a vector containing every Mdl
parameter.

The number of rows of Aeq is the number of constraints, and the number of columns
is the number of parameters that the software estimates. Order the columns of Aeq by
Mdl.A, Mdl.B, Mdl.C, Mdl.D, Mdl.Mean0, Mdl.Cov0, and the regression coefficient (if
the model has one).

Specify Aeq and beq together, otherwise estimate returns an error.

Aeq directly corresponds to the input argument Aeq of fmincon, not to the state-
transition coefficient matrix Mdl.A.

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.

'Aineq' — Linear inequality constraint parameter transformer
matrix

9 Functions — Alphabetical List

9-342

Linear inequality constraint parameter transformer for constrained likelihood objective
function maximization, specified as the comma-separated pair consisting of 'Aineq' and
a matrix.

If you specify Aineq and bineq, then estimate maximizes the likelihood objective
function using the inequality constraint Aineq bineqq £ , where θ is a vector containing
every Mdl parameter.

The number of rows of Aineq is the number of constraints, and the number of columns
is the number of parameters that the software estimates. Order the columns of Aineq by
Mdl.A, Mdl.B, Mdl.C, Mdl.D, Mdl.Mean0, Mdl.Cov0, and the regression coefficient (if
the model has one).

Specify Aineq and bineq together, otherwise estimate returns an error.

Aineq directly corresponds to the input argument A of fmincon, not to the state-
transition coefficient matrix Mdl.A.

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

'beq' — Linear equality constraints of transformed parameters
numeric vector

Linear equality constraints of the transformed parameters for constrained likelihood
objective function maximization, specified as the comma-separated pair consisting of
'beq' and a numeric vector.

If you specify Aeq and beq, then estimate maximizes the likelihood objective function
using the equality constraint Aeq beqq = , where θ is a vector containing every Mdl
parameter..

Specify Aeq and beq together, otherwise estimate returns an error.

beq directly corresponds to the input argument beq of fmincon, and is not associated
with any component of Mdl.

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.

 estimate

9-343

Data Types: double

'bineq' — Linear inequality constraint upper bounds
numeric vector

Linear inequality constraint upper bounds of the transformed parameters for constrained
likelihood objective function maximization, specified as the comma-separated pair
consisting of 'bineq' and a numeric vector.

If you specify Aineq and bineq, then estimate maximizes the likelihood objective
function using the inequality constraint Aineq bineqq £ , where θ is a vector containing
every Mdl parameter.

Specify Aineq and bineq together, otherwise estimate returns an error.

bineq directly corresponds to the input argument b of fmincon, and is not associated
with any component of Mdl.

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

'lb' — Lower bounds of parameters
numeric vector

Lower bounds of the parameters for constrained likelihood objective function
maximization, specified as the comma-separated pair consisting of 'lb' and a numeric
vector.

If you specify lb and ub, then estimate maximizes the likelihood objective function
subject tolb ub£ £q , where θ is a vector containing every Mdl parameter.

Order the elements of lb by Mdl.A, Mdl.B, Mdl.C, Mdl.D, Mdl.Mean0, Mdl.Cov0, and
the regression coefficient (if the model has one).

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

9 Functions — Alphabetical List

9-344

'ub' — Upper bounds of parameters
numeric vector

Upper bounds of the parameters for constrained likelihood objective function
maximization, specified as the comma-separated pair consisting of 'ub' and a numeric
vector.

If you specify lb and ub, then estimate maximizes the likelihood objective function
subject tolb ub£ £q , where θ is a vector every Mdl parameter.

Order the elements of ub by Mdl.A, Mdl.B, Mdl.C, Mdl.D, Mdl.Mean0, Mdl.Cov0, and
the regression coefficient (if the model has one).

By default, if you did not specify any constraint (linear inequality, linear equality, or
upper and lower bound), then estimate maximizes the likelihood objective function
using unconstrained maximization.
Data Types: double

Output Arguments

EstMdl — State-space model containing parameter estimates
ssm model object

State-space model containing the parameter estimates, returned as an ssm model object.

estimate uses maximum likelihood to calculate all parameter estimates. EstMdl stores
the parameter estimates in the coefficient matrices (EstMdl.A, EstMdl.B, EstMdl.C,
and EstMdl.D), and the initial state means and covariance matrix (EstMdl.Mean0 and
EstMdl.Cov0), regardless of specifying Mdl explicitly. For the estimated regression
coefficient, see estParams.

EstMdl does not store observed responses or predictor data. If you plan to filter (using
filter), forecast (using forecast), or smooth (using smooth) using EstMdl, then you might
need to supply the appropriate data.

estParams — Maximum likelihood estimates of model parameters
numeric vector

Maximum likelihood estimates of the model parameters known to the optimizer,
returned as a numeric vector. estParams has the same dimensions as params0.

 estimate

9-345

estimate arranges the estimates in estParams corresponding to unknown parameters
in this order.

1 EstMdl.A(:), that is, estimates in EstMdl.A listed column-wise
2 EstMdl.B(:)

3 EstMdl.C(:)

4 EstMdl.D(:)

5 EstMdl.Mean0

6 EstMdl.Cov0(:)

7 In models with predictors, estimated regression coefficients listed column-wise

EstParamCov — Variance-covariance matrix of maximum likelihood estimates
numeric matrix

Variance-covariance matrix of maximum likelihood estimates of the model parameters
known to the optimizer, returned as a numeric matrix.

The rows and columns contain the covariances of the parameter estimates. The standard
errors of the parameter estimates are the square root of the entries along the main
diagonal.

estimate arranges the estimates in the rows and columns of EstParamCov
corresponding to unknown parameters in this order.

1 EstMdl.A(:), that is, estimates in EstMdl.A listed column-wise
2 EstMdl.B(:)

3 EstMdl.C(:)

4 EstMdl.D(:)

5 EstMdl.Mean0

6 EstMdl.Cov0(:)

7 In models with predictors, estimated regression coefficients listed column-wise

logL — Optimized loglikelihood value
numeric scalar

Optimized loglikelihood value, returned as a scalar.

Missing observations do not contribute to the loglikelihood.

9 Functions — Alphabetical List

9-346

Output — Optimization information
structure array

Optimization information, returned as a structure array.

This table describes the fields of Output.

Field Description

ExitFlag Optimization exit flag that describes the
exit condition. For details, see fmincon
and fminunc.

Options Optimization options that the optimizer
used for numerical estimation. For details,
see optimoptions.

Data Types: struct

Examples
Fit Time-Invariant State-Space Model to Data

This example generates data from a known model, and then fits a state-space model to
the data.

Suppose that a latent process is this AR(1) process

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error as
indicated in the equation

 estimate

9-347

where is Gaussian with mean 0 and standard deviation 0.1.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.1*randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients and variances are unknown parameters, the state-space
model is

Specify the state-transition matrix. Use NaN values for unknown parameters.

A = NaN;

Specify the state-disturbance-loading coefficient matrix.

B = NaN;

Specify the measurement-sensitivity coefficient matrix.

C = 1;

Specify the observation-innovation coefficient matrix

D = NaN;

Specify the state-space model using the coefficient matrices. Also, specify the initial state
mean, variance, and distribution (which is stationary).

Mean0 = 0;

Cov0 = 10;

StateType = 0;

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType);

Mdl is an ssm model. Verify that the model is correctly specified using the display in the
Command Window.

Pass the observations to estimate to estimate the parameter. Set a starting value for
the parameter to params0. and must be positive, so set the lower bound constraints
using the 'lb' name-value pair argument. Specify that the lower bound of is -Inf.

params0 = [0.9; 0.5; 0.1];

9 Functions — Alphabetical List

9-348

EstMdl = estimate(Mdl,y,params0,'lb',[-Inf; 0; 0])

Method: Maximum likelihood (fmincon)

Sample size: 100

Logarithmic likelihood: -140.532

Akaike info criterion: 287.064

Bayesian info criterion: 294.879

 | Coeff Std Err t Stat Prob

 c(1) | 0.45425 0.19870 2.28612 0.02225

 c(2) | 0.89013 0.30359 2.93205 0.00337

 c(3) | 0.38750 0.57857 0.66976 0.50302

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.52989 0.35621 4.29496 0.00002

EstMdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.45)x1(t-1) + (0.89)u1(t)

Observation equation:

y1(t) = x1(t) + (0.39)e1(t)

Initial state distribution:

Initial state means

 x1

 0

 estimate

9-349

Initial state covariance matrix

 x1

 x1 10

State types

 x1

 Stationary

EstMdl is an ssm model. The results of the estimation appear in the Command Window,
contain the fitted state-space equations, and contain a table of parameter estimates, their
standard errors, t statistics, and p-values.

You can use or display, for example the fitted state-transition matrix using dot notation.

EstMdl.A

ans =

 0.4543

Pass EstMdl to forecast to forecast observations, or to simulate to conduct a Monte
Carlo study.

Estimate State-Space Model Containing Regression Component

Suppose that the linear relationship between the change in the unemployment rate and
the nominal gross national product (nGNP) growth rate is of interest. Suppose further
that the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically,
and in state-space form, the model is

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed change in the unemployment being deflated by the growth rate of

nGNP ().

9 Functions — Alphabetical List

9-350

• is the Gaussian series of state disturbances having mean 0 and standard
deviation 1.

• is the Gaussian series of observation innovations having mean 0 and standard
deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

Z = [ones(T-1,1) diff(log(gnpn))];

y = diff(u);

This example proceeds using series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

Specify the state-transition coefficient matrix.

A = [NaN NaN; 0 0];

Specify the state-disturbance-loading coefficient matrix.

B = [1; 1];

Specify the measurement-sensitivity coefficient matrix.

C = [1 0];

Specify the observation-innovation coefficient matrix.

D = NaN;

Specify the state-space model using ssm.

Mdl = ssm(A,B,C,D);

Estimate the model parameters. Specify the regression component and its initial value
for optimization using the 'Predictors' and 'Beta0' name-value pair arguments,

 estimate

9-351

respectively. Display the estimates and all optimization diagnostic information. Restrict
the estimate of to all positive, real numbers.

params0 = [0.3 0.2 0.1]; % Chosen arbitrarily

EstMdl = estimate(Mdl,y,params0,'Predictors',Z,'Display','full',...

 'Beta0',[0.1 0.2],'lb',[-Inf,-Inf,0,-Inf,-Inf]);

__

 Diagnostic Information

Number of variables: 5

Functions

Objective: @(c)-fML(c,Mdl,Y,Predictors,unitFlag,sqrtFlag,mexFlag,mexTvFlag,tol,ind,switchTime,precaution)

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

Constraints

Nonlinear constraints: do not exist

Number of linear inequality constraints: 0

Number of linear equality constraints: 0

Number of lower bound constraints: 1

Number of upper bound constraints: 0

Algorithm selected

 interior-point

__

 End diagnostic information

 First-order Norm of

 Iter F-count f(x) Feasibility optimality step

 0 6 2.579611e+02 0.000e+00 4.601e+01

 1 20 2.556482e+02 0.000e+00 3.652e+01 1.392e-01

 2 27 2.503349e+02 0.000e+00 4.319e+01 1.908e-01

 3 35 2.379649e+02 0.000e+00 1.294e+01 1.083e+01

 4 41 1.946860e+02 0.000e+00 1.948e+01 7.164e+00

 5 47 1.602292e+02 0.000e+00 2.126e+02 1.184e+01

 6 53 1.258094e+02 0.000e+00 9.559e+01 1.590e+00

 7 59 1.107064e+02 0.000e+00 1.145e+01 2.533e+00

 8 65 1.040826e+02 0.000e+00 8.196e+00 1.591e+00

 9 72 1.034635e+02 0.000e+00 8.882e+00 1.003e+00

 10 79 1.013796e+02 0.000e+00 2.783e+00 1.840e+00

9 Functions — Alphabetical List

9-352

 11 85 1.004734e+02 0.000e+00 2.993e+00 1.105e+00

 12 91 9.981209e+01 0.000e+00 8.294e-01 2.173e+00

 13 97 9.974121e+01 0.000e+00 8.724e-01 5.833e-01

 14 103 9.973856e+01 0.000e+00 9.659e-01 9.537e-02

 15 109 9.973481e+01 0.000e+00 7.712e-01 5.607e-02

 16 115 9.973404e+01 0.000e+00 7.017e-01 3.579e-03

 17 121 9.973202e+01 0.000e+00 5.113e-01 2.047e-02

 18 127 9.973083e+01 0.000e+00 4.082e-01 1.825e-02

 19 133 9.972930e+01 0.000e+00 2.866e-01 2.316e-02

 20 139 9.972742e+01 0.000e+00 3.040e-01 2.026e-02

 21 145 9.972574e+01 0.000e+00 2.568e-01 1.648e-02

 22 151 9.972535e+01 0.000e+00 1.275e-01 3.594e-02

 23 157 9.972524e+01 0.000e+00 1.000e-01 2.590e-02

 24 163 9.972456e+01 0.000e+00 2.317e-02 1.184e-02

 25 169 9.972457e+01 0.000e+00 2.000e-02 2.439e-03

 26 175 9.972454e+01 0.000e+00 1.295e-03 1.943e-03

 27 181 9.972454e+01 0.000e+00 2.000e-04 2.015e-04

 28 187 9.972454e+01 0.000e+00 2.575e-05 2.796e-05

 29 193 9.972454e+01 0.000e+00 6.676e-06 2.778e-06

 30 199 9.972454e+01 0.000e+00 6.676e-06 7.382e-07

 First-order Norm of

 Iter F-count f(x) Feasibility optimality step

 31 205 9.972454e+01 0.000e+00 3.633e-06 1.771e-07

 32 211 9.972454e+01 0.000e+00 2.000e-06 3.501e-07

 33 217 9.972454e+01 0.000e+00 1.907e-06 1.416e-07

 34 225 9.972454e+01 0.000e+00 2.861e-06 1.425e-07

 35 232 9.972454e+01 0.000e+00 3.815e-06 1.567e-07

 36 245 9.972454e+01 0.000e+00 2.802e-06 3.963e-08

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than

the default value of the step size tolerance and constraints are

satisfied to within the default value of the constraint tolerance.

Method: Maximum likelihood (fmincon)

Sample size: 61

Logarithmic likelihood: -99.7245

Akaike info criterion: 209.449

Bayesian info criterion: 220.003

 estimate

9-353

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.34098 0.29608 -1.15164 0.24948

 c(2) | 1.05003 0.41377 2.53771 0.01116

 c(3) | 0.48592 0.36790 1.32079 0.18657

 y <- z(1) | 1.36121 0.22338 6.09358 0

 y <- z(2) | -24.46711 1.60018 -15.29024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.01264 0.44690 2.26592 0.02346

 x(2) | 0.77718 0.58917 1.31912 0.18713

Optimization information and a table of estimates and statistics output to the Command
Window. EstMdl is an ssm model, and you can access its properties using dot notation.

Compare Estimates from State-Space Model Filtering Methods

The software implements the Kalman filter using the covariance filter by default, but you
can specify to use the square-root filter instead. This example compares estimates from
each method using simulated data.

Suppose that a latent process is an AR(1). Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 0.3.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',0.3^2);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.1.

Use the random latent state process (x) and the observation equation to generate
observations.

9 Functions — Alphabetical List

9-354

y = x + 0.1*randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Supposing that the coefficients and variances are unknown parameter, the state-space
model is

Specify the state-transition coefficient matrix. Use NaN values for unknown parameters.

A = NaN;

Specify the state-disturbance-loading coefficient matrix.

B = NaN;

Specify the measurement-sensitivity coefficient matrix.

C = 1;

Specify the observation-innovation coefficient matrix.

D = NaN;

Specify the state-space model using the coefficient matrices. Also, specify the initial state
mean, variance, and distribution (which is stationary).

Mean0 = 0;

Cov0 = 10;

StateType = 0;

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType);

Mdl is an ssm model.

Estimate the parameters using estimate two ways:

• Using the default, simple Kalman filter
• Using the square root filter variation

In both cases, specify that no output should be returned to the Command Window. This
is good practice if you plan on running estimate multiple times (such as a Monte Carlo
simulation).

params0 = [10,10,10];

[~,estParamsSKF,EstParamCovSKF,logLSKF,OutputSKF] = estimate(Mdl,y,params0,...

 estimate

9-355

 'Display','off');

[~,estParamsSR,EstParamCovSR,logLSR,OutputSR] = estimate(Mdl,y,params0,...

 'Squareroot',true,'Display','off');

Check that the algorithms converged properly by printing the exit flag properties of
OutputSKF and OutputSR.

exitFlagSKF = OutputSKF.ExitFlag

exitFlagSR = OutputSR.ExitFlag

exitFlagSKF =

 1

exitFlagSR =

 1

Both algorithms have an exit flag of 1, which indicates that the software met the
convergence criteria.

Compare the estimates from each algorithm.

fprintf('\n Parameter Estimates\n')

table(estParamsSKF',estParamsSR','VariableNames',...

 {'SimpleKalmanFilter','SquarerootFilter'})

fprintf('\nEstimated Parameter Covariance Matrix\n')

table(EstParamCovSKF,EstParamCovSR,'VariableNames',...

 {'SimpleKalmanFilter','SquarerootFilter'})

 Parameter Estimates

ans =

 SimpleKalmanFilter SquarerootFilter

 __________________ ________________

 0.51057 0.51057

 0.23436 0.23436

 -0.17904 -0.17904

9 Functions — Alphabetical List

9-356

Estimated Parameter Covariance Matrix

ans =

 SimpleKalmanFilter SquarerootFilter

 ___________________________________ ___________________________________

 0.036669 -0.013302 -0.014012 0.036669 -0.013302 -0.014012

 -0.013302 0.0070187 0.0072533 -0.013302 0.0070187 0.0072533

 -0.014012 0.0072533 0.0089019 -0.014012 0.0072533 0.0089019

In this case, the results are the same.

If you use the default, covariance filter method, and you run into numerical problems
during estimation, filtering, or smoothing, try using the squareroot method.

• “Estimate Time-Varying State-Space Model” on page 8-45
• “Estimate Random Parameter of State-Space Model” on page 8-116
• “Assess State-Space Model Stability Using Rolling Window Analysis” on page 8-172
• “Choose State-Space Model Specification Using Backtesting” on page 8-181

Algorithms
• The Kalman filter accommodates missing data by not updating filtered state

estimates corresponding to missing observations. In other words, suppose there is
a missing observation at period t. Then, the state forecast for period t based on the
previous t – 1 observations and filtered state for period t are equivalent.

• For explicitly created state-space models, estimate applies all predictors to
each response series. However, each response series has its own set of regression
coefficients.

• If you do not specify optimization constraints, then estimate uses fminunc
for unconstrained numerical estimation. If you specify any pair of optimization
constraints, then estimate uses fmincon for constrained numerical estimation. For
either type of optimization, optimization options you set using the name-value pair
argument Options must be consistent with the options of the optimization algorithm.

• estimate passes the name-value pair arguments Options, Aineq, bineq, Aeq, beq,
lb, and ub directly to the optimizer fmincon or fminunc.

 estimate

9-357

• estimate fits regression coefficients along with all other state-space model
parameters. The software is flexible enough to allow applying constraints to the
regression coefficients using constrained optimization options. For more details, see
the Name,Value pair arguments and fmincon.

• If you set 'Univariate',true, then, during the filtering algorithm, the software
sequentially updates rather then updating all at once. This might accelerate
parameter estimation, especially for a low-dimensional, time-invariant model.

• Suppose that you want to create a state-space model using a parameter-to-matrix
mapping function with this signature

[A,B,C,D,Mean0,Cov0,StateType,DeflateY] = paramMap(params,Y,Z)

and you specify the model using an anonymous function

Mdl = ssm(@(params)paramMap(params,Y,Z))

The observed responses Y and predictor data Z are not input arguments in the
anonymous function. If Y and Z exist in the MATLAB Workspace before creating Mdl,
then the software establishes a link to them. Otherwise, if you pass Mdl to estimate,
the software throws an error.

The link to the data established by the anonymous function overrides all other
corresponding input argument values of estimate. This distinction is important
particularly when conducting a rolling window analysis. For details, see “Rolling-
Window Analysis of Time-Series Models” on page 8-168.

Limitations
If the model is time varying with respect the observed responses, then the software does
not support including predictors. If the observation vectors among different periods vary
in length, then the software cannot determine which coefficients to use to deflate the
observed responses.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
filter | fmincon | fminunc | forecast | optimoptions | refine | simulate | smooth |
ssm

9 Functions — Alphabetical List

9-358

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8
• “Rolling-Window Analysis of Time-Series Models” on page 8-168

 fgls

9-359

fgls
Feasible generalized least squares

Syntax

coeff = fgls(X,y)

coeff = fgls(Tbl)

coeff = fgls(___ ,Name,Value)

[coeff,se,EstCoeffCov] = fgls(___)

Description

coeff = fgls(X,y) returns coefficient estimates (coeff) of multiple linear regression
models y = Xβ + ε using feasible generalized least squares (FGLS) by first estimating the
covariance of the innovations process ε.

NaNs in the data indicate missing values, which fgls removes using list-wise deletion.
fgls sets Data = [X y], then it removes any row in Data containing at least one NaN.
This reduces the effective sample size, and changes the time base of the series.

coeff = fgls(Tbl) returns FGLS coefficient estimates (coeff), with predictor data
in the first numPreds columns of the tabular array, Tbl, and response data in the last
column.

fgls removes all missing values in Tbl, indicated by NaNs, using list-wise deletion. In
other words, fgls removes all rows in Tbl containing at least one NaN. This reduces the
effective sample size, and changes the time base of the series.

coeff = fgls(___ ,Name,Value) uses any of the input arguments in the previous
syntaxes and additional options specified by one or more Name,Value pair arguments.

For example, use Name,Value pair arguments to choose the innovations covariance
model, number of iterations, or to plot estimates after each iteration.

9 Functions — Alphabetical List

9-360

[coeff,se,EstCoeffCov] = fgls(___) additionally returns a vector of FGLS
coefficient standard errors, se = sqrt(diag(EstCov)), and the FGLS estimated
coefficient covariance matrix (EstCoeffCov).

Examples

Estimate FGLS Coefficients Using Default Options

Suppose the sensitivity of the U.S. Consumer Price Index (CPI) to changes in the paid
compensation of employees (COE) is of interest.

Load the US macroeconomic data set. Plot the CPI and COE series.

load Data_USEconModel

figure;

subplot(2,1,1)

plot(dates,DataTable.CPIAUCSL);

title '{\bf Consumer Price Index, Q1 in 1947 to Q1 in 2009}';

datetick;

axis tight;

subplot(2,1,2);

plot(dates,DataTable.COE);

title '{\bf Compensation Paid to Employees, Q1 in 1947 to Q1 in 2009}';

datetick;

axis tight;

 fgls

9-361

The series are nonstationary. Stabilize them by applying the log, and then the first
difference.

CPI = diff(log(DataTable.CPIAUCSL));

COE = diff(log(DataTable.COE));

Regress CPI onto COE including an intercept to obtain ordinary least squares (OLS)
estimates. Generate a lagged residual plot.

Mdl = fitlm(COE,CPI);

figure;

plotResiduals(Mdl,'lagged')

9 Functions — Alphabetical List

9-362

There is an upward trend in the residual plot, which suggests that the innovations
comprise an autoregressive process. This violates one of the classical linear model
assumptions. Consequently, hypothesis tests based on the regression coefficients are
incorrect, even asymptotically.

Estimate the regression coefficients using FGLS. By default, fgls includes an intercept
in the regression model and imposes an AR(1) model on the innovations. Optionally,
display the OLS and FGLS estimates by specifying 'final' for the 'display' name-
value pair argument.

coeff = fgls(CPI,COE,'display','final');

 fgls

9-363

OLS Estimates:

 | Coeff SE

 Const | 0.0122 0.0009

 x1 | 0.4915 0.0686

FGLS Estimates:

 | Coeff SE

 Const | 0.0148 0.0012

 x1 | 0.1961 0.0685

If the COE series is exogenous with respect to the CPI, then the FGLS estimates (coeff)
are consistent and asymptotically more efficient than the OLS estimates.

Specify AR Lags When Estimating FGLS Coefficients and Standard Errors

Suppose the sensitivity of the U.S. Consumer Price Index (CPI) to changes in the paid
compensation of employees (COE) is of interest. This example enhances the analysis
outlined in the example “Estimate FGLS Coefficients Using Default Options”.

Load the U.S. macroeconomic data set.

load Data_USEconModel

The series are nonstationary. Stabilize them by applying the log, and then the first
difference.

CPI = diff(log(DataTable.CPIAUCSL));

COE = diff(log(DataTable.COE));

Regress CPI onto COE including an intercept to obtain OLS estimates. Plot correlograms
for the residuals.

Mdl = fitlm(COE,CPI);

u = Mdl.Residuals.Raw;

figure;

subplot(2,1,1)

autocorr(u);

subplot(2,1,2);

9 Functions — Alphabetical List

9-364

parcorr(u);

The correlograms suggest that the innovations have significant AR effects. According to
“Box-Jenkins Methodology”, the innovations seem to comprise an AR(3) series.

Estimate the regression coefficients using FGLS. By default, fgls assumes that the
innovations are autoregressive. Specify that the innovations are AR(3) using the
'arLags' name-value pair argument.

[coeff,se] = fgls(CPI,COE,'arLags',3,'display','final');

OLS Estimates:

 fgls

9-365

 | Coeff SE

 Const | 0.0122 0.0009

 x1 | 0.4915 0.0686

FGLS Estimates:

 | Coeff SE

 Const | 0.0148 0.0012

 x1 | 0.1972 0.0684

If the COE series is exogenous with respect to the CPI, then the FGLS estimates (coeff)
are consistent and asymptotically more efficient than the OLS estimates.

Account for Residual Heteroscedasticity Using FGLS Estimation

Model the nominal GNP (GNPN) growth rate accounting for the effects of the growth rates
of the consumer price index (CPI), real wages (WR), and the money stock (MS). Account for
classical linear model departures.

Load the Nelson Plosser data set.

load Data_NelsonPlosser

varIdx = [8,10,11,2]; % Variable indices

idx = ~any(ismissing(DataTable),2); % Identify nonmissing values

Tbl = DataTable(idx,varIdx); % Tabular array of variables

T = sum(idx); % Sample size

Plot the series.

figure;

for j = 1:4;

 subplot(2,2,j);

 plot(dates(idx),Tbl{:,j});

 title(Tbl.Properties.VariableNames{j});

 axis tight;

end;

9 Functions — Alphabetical List

9-366

All series appear nonstationary.

Apply the log, and then the first difference to each series.

dLogTbl = array2table(diff(log(Tbl{:,:})),...

 'VariableNames',strcat(Tbl.Properties.VariableNames,'Rate'));

Regress GNPNRate onto the other variables in dLogTbl. Examine a scatter plot and
correlograms of the residuals.

Mdl = fitlm(dLogTbl);

figure;

plotResiduals(Mdl,'caseorder');

 fgls

9-367

axis tight;

figure;

subplot(2,1,1);

autocorr(Mdl.Residuals.Raw);

subplot(2,1,2);

parcorr(Mdl.Residuals.Raw);

9 Functions — Alphabetical List

9-368

The residuals appear to flare in, and so they exhibit heteroscedasticity. The correlograms
suggest that there is no autocorrelation.

Estimate FGLS coefficients by accounting for the heteroscedasticity of the residuals.
Specify that the estimated innovation covariance is diagonal with the squared residuals
as weights.

fgls(dLogTbl,'innovMdl','HC0','display','final');

OLS Estimates:

 | Coeff SE

 fgls

9-369

 Const | -0.0076 0.0085

 CPIRate | 0.9037 0.1544

 WRRate | 0.9036 0.1906

 MSRate | 0.4285 0.1379

FGLS Estimates:

 | Coeff SE

 Const | -0.0102 0.0017

 CPIRate | 0.8853 0.0169

 WRRate | 0.8897 0.0294

 MSRate | 0.4874 0.0291

Estimate FGLS Coefficients of Models Containing ARMA Errors

Create this regression model with ARMA(1,2) errors, where is Gaussian with mean 0
and variance 1.

beta = [2 3];

phi = 0.2;

theta = [-0.3 0.1];

Mdl = regARIMA('AR',phi,'MA',theta,'Intercept',1,'Beta',beta,'Variance',1);

Mdl is a regARIMA model. You can access its properties using dot notation.

Simulate 500 periods of 2-D standard Gaussian values for , and then simulate
responses using Mdl.

numObs = 500;

rng(1); % For reproducibility

X = randn(numObs,2);

y = simulate(Mdl,numObs,'X',X);

fgls supports AR(p) innovation models. You can convert an ARMA model polynomial
to an infinite-lag AR model polynomial using arma2ar. By default, arma2ar returns the
coefficients for the first 10 terms. After the conversion, determine how many lags of the
resulting AR model are practically significant by checking the length of the returned
vector of coefficients. Choose the number of terms that exceed 0.00001.

9 Functions — Alphabetical List

9-370

format long

arParams = arma2ar(phi,theta)

arLags = sum(abs(arParams) > 0.00001);

format short

arParams =

 -0.100000000000000 0.070000000000000 0.031000000000000

Some of the parameters have small magnitude. You might want to reduce the number of
lags to include in the innovations model for fgls.

Estimate the coefficients and their standard errors using FGLS and the simulated data.
Specify that the innovations comprise an AR(arLags) process.

[coeff,~,EstCoeffCov] = fgls(X,y,'innovMdl','AR','arLags',arLags)

coeff =

 1.0372

 2.0366

 2.9918

EstCoeffCov =

 0.0026 -0.0000 0.0001

 -0.0000 0.0022 0.0000

 0.0001 0.0000 0.0024

The estimated coefficients are close to their true values.

Estimate Linear Model Coefficients Using Iterative FGLS

This example expands on the analysis in “Estimate FGLS Coefficients of Models
Containing ARMA Errors”. Create this regression model with ARMA(1,2) errors, where
is Gaussian with mean 0 and variance 1.

 fgls

9-371

beta = [2 3];

phi = 0.2;

theta = [-0.3 0.1];

Mdl = regARIMA('AR',phi,'MA',theta,'Intercept',1,'Beta',beta,'Variance',1);

Simulate 500 periods of 2-D standard Gaussian values for , and then simulate
responses using Mdl.

numObs = 500;

rng(1); % For reproducibility

X = randn(numObs,2);

y = simulate(Mdl,numObs,'X',X);

Convert the ARMA model polynomial to an infinite-lag AR model polynomial using
arma2ar. By default, arma2ar returns the coefficients for the first 10 terms. Find the
number of terms that exceed 0.00001.

arParams = arma2ar(phi,theta);

arLags = sum(abs(arParams) > 0.00001);

Estimate the regression coefficients using three iterations of FGLS, and specify the
number of lags in the AR innovation model (arLags). Also, specify to plot the coefficient
estimates and their standard errors for each iteration, and to display the final estimates
and the OLS estimates in tabular form.

[coeff,~,EstCoeffCov] = fgls(X,y,'innovMdl','AR','arLags',arLags,...

 'numIter',3,'plot',{'coeff','se'},'display','final');

OLS Estimates:

 | Coeff SE

 Const | 1.0375 0.0480

 x1 | 2.0409 0.0473

 x2 | 2.9860 0.0488

FGLS Estimates:

 | Coeff SE

 Const | 1.0372 0.0514

 x1 | 2.0366 0.0470

 x2 | 2.9919 0.0486

9 Functions — Alphabetical List

9-372

 fgls

9-373

The algorithm seems to converge after the first iteration, and the estimates are close to
the OLS estimates, with the standard errors being slightly smaller.

Properties of iterative FGLS estimates in finite samples are difficult to establish. For
asymptotic properties, one iteration of FGLS is sufficient. fgls supports iterative FGLS
for experimentation.

If the estimates or standard errors show instability after successive iterations, then the
estimated innovations covariance might be ill conditioned. Consider scaling the residuals
using the 'resCond' name-value pair argument to improve the conditioning of the
estimated innovations covariance.

• “Classical Model Misspecification Tests”

9 Functions — Alphabetical List

9-374

• “Time Series Regression I: Linear Models”
• “Time Series Regression VI: Residual Diagnostics”
• “Time Series Regression X: Generalized Least Squares and HAC Estimators”

Input Arguments

X — Predictor data
numeric matrix

Predictor data for the multiple linear regression model, specified as a numObs-
by-numPreds numeric matrix.

numObs is the number of observations and numPreds is the number of predictor
variables.
Data Types: double

y — Response data
vector

Response data for the multiple linear regression model, specified as a numObs-by-1 vector
with numeric or logical entries.
Data Types: double | logical

Tbl — Predictor and response data
tabular array

Predictor and response data for the multiple linear regression model, specified as a
numObs-by-numPreds + 1 tabular array.

The first numPreds variables of Tbl are the predictor data, and the last variable is the
response data.

The predictor data must be numeric, and the response data must be numeric or logical.
Data Types: table

Note: NaNs in X, y, or Tbl indicate missing values, and fgls removes observations
containing at least one NaN. That is, to remove NaNs in X or y, the software merges them

 fgls

9-375

([X y]), and then uses list-wise deletion to remove any row that contains at least one
NaN. The software also removes any row of Tbl containing at least one NaN. Removing
NaNs in the data reduces the sample size, and can also create irregular time series.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'innovMdl','HC0','numIter',10,'plot','coeff' specifies White’s
robust innovations covariance model, 10 iterations of FGLS, and to plot coefficient
estimates after each iteration.

'varNames' — Variable names
cell vector of strings

Variable names used in displays and plots of the results, specified as the comma-
separated pair consisting of 'varNames' and a cell vector of strings. varNames must
have length numPreds, and each cell corresponds to a variable name. The software
truncates all variable names to the first five characters.

varNames must include variable names for all variables in the model, such as an
intercept term (e.g., 'Const') or higher-order terms (e.g., 'x1^2' or 'x1:x2').

The default variable names for:

• The matrix X is the cell vector of strings {'x1','x2',...}
• The tabular array Tbl is the property Tbl.Properties.VariableNames

Example: 'varNames',{'Const','AGE','BBD'}

Data Types: cell

'intercept' — Indicate whether to include model intercept
true (default) | false

Indicate whether to include model intercept when fgls fits the model, specified as the
comma-separated pair consisting of 'intercept' and true or false.

9 Functions — Alphabetical List

9-376

Value Description

true Include an intercept in the model.
false Exclude an intercept from the model.

Example: 'intercept',false

Data Types: logical

'innovMdl' — Model for innovations covariance estimate
'AR' (default) | 'CLM' | 'HC0' | 'HC1' | 'HC2' | 'HC3' | 'HC4'

Model for the innovations covariance estimate, specified as the comma-separated pair
consisting of 'innovMdl' and a string.

Set 'innovMdl' to specify the structure of the innovations covariance estimator Ŵ .

• For diagonal innovations covariance models (i.e., models with heteroscedasticity),
ˆ (),W = diag w where ω = {ωi; i = 1,...,T} is a vector of innovation variance estimates for

the observations, and T = numObs.

fgls estimates the data-driven vector ω using the corresponding model residuals (ε),
their leverages h X xx Xi i i=

¢ - ¢() ,1 and the degrees of freedom dfe.

Use this table to choose 'innovMdl'.

Value Weight Reference

'CLM'

w ei i

i

T

dfe
=

=

Â
1

1

2

[4]

'HC0'
w e

i i
=

2 [6]

'HC1'
w ei i

T

dfe
=

2
[5]

'HC2'

w
e

i
i

ih
=

-

2

1

[5]

 fgls

9-377

Value Weight Reference

'HC3'

w
e

i
i

ih

=

-

2

2
1()

[5]

'HC4'

w
e

i
i

i
d

h i

=

-

2

1()

where d
h

h
i

i=
Ê

Ë
Á

ˆ

¯
˜min , ,4

[1]

• For full innovation covariance models (i.e., models having heteroscedasticity
and autocorrelation), specify 'AR'. The software imposes an AR(p) model on the
innovations, and constructs Ŵ using the number of lags, p, specified by the name-
value pair argument arLags and the Yule-Walker equations.

If numIter is 1 and you specify InnovCov0, then fgls ignores InnovMdl.

Example: 'innovMdl',HC0

Data Types: char

'arLags' — Number of lags
1 (default) | positive integer

Number of lags to include in the AR innovations model, specified as the comma-separated
pair consisting of 'arLags' and a positive integer.

If innovMdl is not 'AR' (i.e., for diagonal models), then the software ignores the value of
'arLags'.

For general ARMA innovations models, convert to the equivalent AR form by:

• Constructing the ARMA innovations model lag operator polynomial using LagOp.
Then, divide the AR polynomial by the MA polynomial using, e.g., mrdivide. The
result is the inifinite-order, AR representation of the ARMA model.

• Using arma2ar, which returns the coefficients of the inifinite-order, AR
representation of the ARMA model.

Example: 'arLags',4

9 Functions — Alphabetical List

9-378

Data Types: double

'InnovCov0' — Initial innovations covariance
[] (default) | vector of positive scalars | positive definite matrix | positive semidefinite
matrix

Initial innovations covariance, specified as the comma-specified pair consisting of
'InnovCov0' and a vector of positive scalars, positive semidefinite matrix, or a positive
definite matrix.

InnovCov0 replaces the data-driven estimate of the innovations covariance (Ŵ) in the
first iteration of GLS.

• For diagonal innovations covariance models (i.e., models with heteroscedasticity),
specify a numObs-by-1 vector. InnovCov0(j) is the variance of innovation j.

• For full innovation covariance models (i.e., models having heteroscedasticity and
autocorrelation), specify a numObs-by-numObs matrix. InnovCov0(j,k) is the
covariance of innovations j and k.

• By default, fgls uses a data-driven Ŵ (see innovMdl).

Data Types: double

'numIter' — Number of iterations
1 (default) | positive integer

Number of iterations to implement for the FGLS algorithm, specified as the comma-
separated pair consisting of 'numIter' and a positive integer.

fgls estimates the innovations covariance (Ŵ) at each iteration from the residual series
according to the innovations covariance model (innovMdl). Then, the software computes
the GLS estimates of the model coefficients.
Example: 'numIter',10

Data Types: double

'resCond' — Flag indicating to scale residuals
false (default) | true

Flag indicating to scale the residuals at each iteration of FGLS, specified as the comma-
separated pair consisting of 'resCond' and true or false.

 fgls

9-379

Value Description

true fgls scales the residuals at each iteration.
false fgls does not scale the residuals at each

iteration.

Scaling the residuals at each iteration of FGLS tends to improve the conditioning of the
estimation of the innovations covariance (Ŵ).

Data Types: logical

'display' — Command Window display control
'off' (default) | 'final' | 'iter'

Command Window display control, specified as the comma-separated pair consisting of
'display' and a string in the following table.

Value Description

'final' Display the final estimates.
'iter' Display the estimates after each iteration.
'off' Suppress displaying to the Command

Window.

fgls shows estimation results in tabular form.

Example: 'display','iter'

'plot' — Control for plotting results
'off' (default) | 'all | 'coeff' | 'mse' | 'se' | cell array of strings

Control for plotting results after each iteration, specified as the comma-separated pair
consisting of 'plot' and a string or cell array of strings.

To examine the convergence of the FGLS algorithm, it is good practice to specify plotting
the estimates for each iteration. This table contains the available plot-control strings.

Value Description

'all Plot the estimated coefficients, their
standard errors, and the residual mean-
squared error (MSE) on separate plots.

9 Functions — Alphabetical List

9-380

Value Description

'coeff' Plot the estimated coefficients.
'mse' Plot the MSE.
'off' Do not plot the results.
'se' Plot the estimated coefficient.

Output Arguments

coeff — FGLS coefficient estimates
numeric vector

FGLS coefficient estimates, returned as a numPreds-by-1 numeric vector.

The order of the estimates corresponds to the order of the predictor matrix columns
or Tbl.VariableNames. For example, in a model with an intercept, the value of b̂

1

(corresponding to the predictor x1) is in position 2 of coeff.

se — Coefficient standard error estimates
numeric vector

Coefficient standard error estimates, returned as a numPreds-by-1 numeric. The
elements of se are sqrt(diag(EstCoeffCov)).

The order of the estimates corresponds to the order of the predictor matrix columns
or Tbl.VariableNames. For example, in a model with an intercept, the estimated
standard error of b̂

1 (corresponding to the predictor x1) is in position 2 of se, and is the
square root of the value in position (2,2) of EstCoeffCov.

EstCoeffCov — Coefficient covariance estimate
numeric matrix

Coefficient covariance estimate, returned as a numPreds-by-numPreds numeric matrix.

The order of the rows and columns of EstCoeffCov corresponds to the order of the
predictor matrix columns or Tbl.VariableNames. For example, in a model with an
intercept, the estimated covariance of b̂

1 (corresponding to the predictor x1) and b̂
2

 fgls

9-381

(corresponding to the predictor x2) are in positions (2,3) and (3,2) of EstCoeffCov,
respectively.

More About

Feasible Generalized Least Squares

Feasible generalized least squares (FGLS) estimates the coefficients of a multiple linear
regression model and their covariance matrix in the presence of nonspherical innovations
with an unknown covariance matrix.

Let yt = Xtβ + εt be a multiple linear regression model, where the innovations process
εt is Gaussian with mean 0, but with true, nonspherical covariance matrix Ω (e.g., the
innovations are heteroscedastic or autocorrelated). Also, suppose that the sample size is
T and there are p predictors (including an intercept). Then, the FGLS estimator of β is

ˆ ˆ ˆ ,bFGLS X XX y= ()- - -� �W W1
1

1

where Ŵ is an innovations covariance estimate based on a model (e.g., innovations
process forms an AR(1) mdoel). The estimated coefficient covariance matrix is

ˆ ˆ ˆ ,S WFGLS FGLS X X= ()-
-

s 2 1
1�

where

ˆ ˆ ˆ ˆ ˆ / .s FGLS y X X XX y T p2 1 1 1
1

1= - ()È

Î
Í

˘

˚
˙ -()- - -

-
-� � �W W W W

FGLS estimates are computed as follows:

1 OLS is applied to the data, and then residuals ê
t() are computed.

2
Ŵ is estimated based on a model for the innovations covariance.

9 Functions — Alphabetical List

9-382

3 b̂FGLS is estimated, along with its covariance matrix ˆ .SFGLS

4 Optional: This process can be iterated by performing the following steps until b̂FGLS

converges.

a Compute the residuals of the fitted model using the FGLS estimates.
b Apply steps 2–3.

If Ŵ is a consistent estimator of W and the predictors that comprise X are exogenous,
then FGLS estimators are consistent and efficient.

Asymptotic distributions of FGLS estimators are unchanged by repeated iteration.
However, iterations might change finite sample distributions.

Generalized Least Squares

Generalized least squares (GLS) estimates the coefficients of a multiple linear regression
model and their covariance matrix in the presence of nonspherical innovations with
known covariance matrix.

The setup and process for obtaining GLS estimates is the same as in FGLS, but replace
Ŵ with the known innovations covariance matrix W .

In the presence of nonspherical innovations and with known innovations covariance,
GLS estimators are unbiased, efficient, consistent, and hypothesis tests based on the
estimates are valid.

Weighted Least Squares

Weighted least squares (WLS) estimates the coefficients of a multiple linear regression
model and their covariance matrix in the presence of uncorrelated, but heteroscedastic
innovations with known, diagonal covariance matrix.

The setup and process to obtain WLS estimates is the same as in FGLS, but replace Ŵ

with the known, diagonal matrix of weights, typically the diagonal elements are the
inverse of the variances of the innovations.

In the presence of heteroscedastic innovations and when the variances of the innovations
are known, WLS estimators are unbiased, efficient, consistent, and hypothesis tests
based on the estimates are valid.

 fgls

9-383

Tips

• To obtain standard generalized least squares (GLS) estimates:

• Set the InnovCov0 name-value pair argument to the known innovations
covariance.

• Set the numIter name-value pair argument to 1.
• To obtain WLS estimates, set the InnovCov0 name-value pair argument to a vector of

inverse weights (e.g., innovations variance estimates).
• In specific models and with repeated iterations, scale differences in the residuals

might produce a badly conditioned estimated innovations covariance and induce
numerical instability. If you set 'resCond',true, then conditioning improves.

Algorithms

• In the presence of nonspherical innovations, GLS produces efficient estimates
relative to OLS, and consistent coefficient covariances, conditional on the innovations
covariance. The degree to which fgls maintains these properties depends on the
accuracy of both the model and estimation of the innovations covariance.

• Rather than estimate FGLS estimates the usual way, fgls uses methods that are
faster and more stable, and are applicable to rank-deficient cases.

• Traditional FGLS methods, such as the Cochrane-Orcutt procedure, use low-
order, autoregressive models. These methods, however, estimate parameters in the
innovations covariance matrix using OLS, where fgls uses maximum likelihood
estimation (MLE) [2].

• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Engle’s ARCH Test” on page 3-25
• “Nonspherical Models” on page 3-94
• “Time Series Regression Models” on page 4-3

References

[1] Cribari-Neto, F. "Asymptotic Inference Under Heteroskedasticity of Unknown Form."
Computational Statistics & Data Analysis. Vol. 45, 2004, pp. 215–233.

[2] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

9 Functions — Alphabetical List

9-384

[3] Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lutkepohl, and T. C. Lee. The Theory and
Practice of Econometrics. New York, NY: John Wiley & Sons, Inc., 1985.

[4] Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. Applied Linear Statistical
Models. 5th ed. New York: McGraw-Hill/Irwin, 2005.

[5] MacKinnon, J. G., and H. White. "Some Heteroskedasticity-Consistent Covariance
Matrix Estimators with Improved Finite Sample Properties." Journal of
Econometrics. Vol. 29, 1985, pp. 305–325.

[6] White, H. "A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for
Heteroskedasticity." Econometrica. Vol. 48, 1980, pp. 817–838.

See Also
arma2ar | fitlm | hac | lscov | regARIMA

Introduced in R2014b

 filter

9-385

filter

Filter disturbances through conditional variance model

Syntax

[V,Y] = filter(Mdl,Z)

[V,Y] = filter(Mdl,Z,Name,Value)

Description

[V,Y] = filter(Mdl,Z) filters disturbances (Z) through the fully specified conditional
variance model (Mdl) to produce conditional variances (v) and responses (y). Mdl can be a
garch, egarch, or gjr model.

[V,Y] = filter(Mdl,Z,Name,Value) filters disturbances using additional options
specified by one or more Name,Value pair arguments. For example, you can specify
presample disturbance and conditional variance paths.

Examples

Simulate and Filter Disturbance Path Through GARCH Model

Specify a GARCH(1,1) model with Gaussian innovations.

Mdl = garch('Constant',0.005,'GARCH',0.8,'ARCH',0.1);

Simulate the model using Monte Carlo simulation. Then, standardize the simulated
innovations and filter them.

rng(1); % For reproducibility

[v,e] = simulate(Mdl,100,'E0',0,'V0',0.05);

Z = e./sqrt(v);

[V,E] = filter(Mdl,Z,'Z0',0,'V0',0.05);

Confirm that the outputs of simulate and filter are identical.

9 Functions — Alphabetical List

9-386

isequal(v,V)

ans =

 1

The logical value 1 confirms that the two outputs are identical.

Filter Multiple Disturbance Paths Through EGARCH Model

Specify an EGARCH(1,1) model with Gaussian innovations.

Mdl = egarch('Constant',-0.1,'GARCH',0.8,'ARCH',0.3,...

 'Leverage',-0.05);

Simulate 25 series of standard Gaussian observations for 100 periods.

rng(1); % For reproducibility

Z = randn(100,25);

Z represents 25 paths of synchronized disturbances for 100 periods.

Obtain 25 paths of conditional variances by filtering the disturbance paths through the
EGARCH(1,1) model.

V = filter(Mdl,Z);

Plot the paths of conditional variances.

figure;

plot(V);

title('Conditional Variance Paths');

xlabel('Periods');

 filter

9-387

Filter Disturbances Through GJR Model Specifying Presample Observations

Specify a GJR(1,2) model with Gaussian innovations.

Mdl = gjr('Constant',0.005,'GARCH',0.8,'ARCH',{0.1 0.01},...

 'Leverage',{0.05 0.01});

Simulate 25 series of standard Gaussian observations for 102 periods.

rng(1); % For reproducibility

Z = randn(102,25);

Z represents 25 paths of synchronized disturbances for 102 periods.

9 Functions — Alphabetical List

9-388

Obtain 25, 100 period paths of conditional variances by filtering the disturbance
paths through the GJR(1,2) model. Specify the first two disturbances as presample
observations.

V = filter(Mdl,Z(3:end,:),'Z0',Z(1:2,:));

Plot the paths of conditional variances.

figure;

plot(V);

title('Conditional Variance Paths');

xlabel('Periods');

• “Simulate Conditional Variance Model” on page 6-111

 filter

9-389

• “Simulate GARCH Models” on page 6-97

Input Arguments

Mdl — Conditional variance model
garch model object | egarch model object | gjr model object

Conditional variance model without any unknown parameters, specified as a garch,
egarch, or gjr model object.

Mdl cannot contain any properties that have NaN value.

Z — Disturbance paths
numeric column vector | numeric matrix

Disturbance paths used to drive the innovation process, specified as a numeric vector or
matrix. Given the variance process, s

t

2
, and the disturbance process zt, the innovation

process is

e s
t t t

z= .

As a column vector, Z represents a single path of the underlying disturbance series.

As a matrix, the rows of Z correspond to periods. The columns correspond to separate
paths. The observations across any row occur simultaneously.

The last element or row of Z contains the latest observation.

Note: NaNs indicate missing values. filter removes these values from Z by listwise
deletion. The software removes any row of Z with at least one NaN. Removing NaNs in the
data reduces the sample size, and can also create irregular time series.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

9 Functions — Alphabetical List

9-390

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Z0',[1 1;0.5 0.5],'V0',[1 0.5;1 0.5] specifies two equivalent
presample paths of innovations and two, different presample paths of conditional
variances.

'Z0' — Presample disturbance paths
numeric column vector | numeric matrix

Presample disturbance paths, specified as a numeric vector or matrix. Z0 provides initial
values for the input disturbance series, Z.

• If Z0 is a column vector, then filter applies it to each output path.
• If Z0 is a matrix, then it must have at least as many columns as Z. If Z0 has more

columns than Z, then filter uses the first size(Z,2) columns only.

Z0 must have at least Mdl.Q rows to initialize the conditional variance model. If the
number of rows in Z0 exceeds Mdl.Q, then filter uses the latest, required number of
observations only.

The last element or row contains the latest observation.

By default, filter sets any necessary presample disturbances to an independent
sequence of standardized disturbances drawn from Mdl.Distribution.

Data Types: double

'V0' — Positive presample conditional variance paths
numeric column vector | numeric matrix

Positive presample conditional variance paths, specified as a numeric vector or matrix.
V0 provides initial values for the conditional variances in the model.

• If V0 is a column vector, then filter applies it to each output path.
• If V0 is a matrix, then it must have at least as many columns as Z. If V0 has more

columns than Z, then filter uses the first size(Z,2) columns only.

V0 must have at least max(Mdl.P,Mdl.Q) rows to initialize the variance equation. If
the number of rows in V0 exceeds the necessary number, then filter uses the latest,
required number of observations only.

The last element or row contains the latest observation.

 filter

9-391

By default, filter sets any necessary presample conditional variances to the
unconditional variance of the process.
Data Types: double

Notes

• NaNs indicate missing values. filter removes missing values. The software merges
the presample data (Z0 and V0) separately from the disturbances (Z), and then uses

list-wise deletion to remove rows containing at least one NaN. Removing NaNs in the
data reduces the sample size. Removing NaNs can also create irregular time series.

• filter assumes that you synchronize presample data such that the latest
observation of each presample series occurs simultaneously.

Output Arguments

V — Conditional variance paths
numeric column vector | numeric matrix

Conditional variance paths, returned as a column vector or matrix. V represents the
conditional variances of the mean-zero, heteroscedastic innovations associated with Y.

The dimensions of V and Z are equivalent. If Z is a matrix, then the columns of V are the
filtered conditional variance paths corresponding to the columns of Z.

Rows of V are periods corresponding to the periodicity of Z.

Y — Response paths
numeric column vector | numeric matrix

Response paths, returned as a numeric column vector or matrix. Y usually represents a
mean-zero, heteroscedastic time series of innovations with conditional variances given in
V.

Y can also represent a time series of mean-zero, heteroscedastic innovations plus an
offset. If Mdl includes an offset, then filter adds the offset to the underlying mean-
zero, heteroscedastic innovations. Therefore, Y represents a time series of offset-adjusted
innovations.

9 Functions — Alphabetical List

9-392

If Z is a matrix, then the columns of Y are the filtered response paths corresponding to
the columns of Z.

Rows of Y are periods corresponding to the periodicity of Z.

Alternatives

filter generalizes simulate. Both function filter a series of disturbances to produce
output responses and conditional variances. However, simulate autogenerates a series
of mean-zero, unit-variance, independent and identically distributed (iid) disturbances
according to the distribution in the conditional variance model object, Mdl. In contrast,
filter lets you directly specify your own disturbances.

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Monte Carlo Simulation of Conditional Variance Models” on page 6-92
• “Presample Data for Conditional Variance Model Simulation” on page 6-95

References

[1] Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal
of Econometrics. Vol. 31, 1986, pp. 307–327.

[2] Bollerslev, T. “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return.” The Review of Economics and Statistics. Vol. 69,
1987, pp. 542–547.

[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[4] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[5] Engle, R. F. “Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

 filter

9-393

[6] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
egarch | estimate | forecast | garch | gjr | infer | print | simulate

Introduced in R2012a

9 Functions — Alphabetical List

9-394

filter
Class: arima

Filter disturbances using ARIMA or ARIMAX model

Syntax

[Y,E,V] = filter(Mdl,Z)

[Y,E,V] = filter(Mdl,Z,Name,Value)

Description

[Y,E,V] = filter(Mdl,Z) filters disturbances, Z, to produce responses, innovations,
and conditional variances of a univariate ARIMA(p,D,q) model.

[Y,E,V] = filter(Mdl,Z,Name,Value) filters disturbances using additional options
specified by one or more Name,Value pair arguments.

Input Arguments

Mdl

ARIMA model, as created by arima or estimate. The input model cannot have any NaN
values.

Z

numObs-by-NumPaths matrix of disturbances, zt, that drives the innovation process, εt.

For a variance process s
t

2
, the innovation process is given by

e s
t t t

z= .

As a column vector, Z represents a path of the underlying disturbance series. As
a matrix, Z represents numObs observations of NumPaths paths of the underlying

 filter

9-395

disturbance series. filter assumes that observations across any row occur
simultaneously. The last row contains the most recent observation.

Note: NaNs indicate missing values. filter removes them from Z using list-wise
deletion. That is, filter removes any row of Z containing at least one NaN. This deletion
reduces the effective sample size and can cause irregular time series.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'V0'

Positive presample conditional variances that provide initial values for the model. If V0
is a column vector, then filter applies it to each output path. If V0 is a matrix, then it
requires at least NumPaths columns. If the number of columns exceeds NumPaths, then
filter uses the first NumPaths columns.

V0 requires enough rows to initialize the moving average component of the ARIMA model
and any conditional variance model. The required number of rows is at least Mdl.Q. If
you include a conditional variance model, then filter might require more than Mdl.Q
rows. If the number of rows in V0 exceeds the number necessary, then filter uses the
most recent observations. The last row contains the most recent observation.

Default: filter sets necessary presample observations to the unconditional variance of
the conditional variance process.

'X'

Matrix of predictor data corresponding to a regression component in the conditional
mean model. The columns of X are separate, synchronized time series, with the last row
containing the most recent observations. The number of rows of X must be at least the
number of rows of Z. When the number of rows of X exceeds the number necessary, then
filter uses the most recent observations.

Default: filter does not include a regression component in the conditional mean model
regardless of the presence of regression coefficients in Mdl.

9 Functions — Alphabetical List

9-396

'Y0'

Presample response data, providing initial values for the model. If Y0 is a column vector,
then filter applies it to each output path. If Y0 is a matrix, then it requires at least
NumPaths columns. If the number of columns in Y0 exceeds NumPaths, then filter
uses the first NumPaths columns.

Y0 requires at least Mdl.P rows to initialize the model. If the number of rows in Y0
exceeds Mdl.P, then filter uses the most recent Mdl.P observations. The last row
contains the most recent observation.

Default: filter sets the necessary presample observations to the unconditional
mean for stationary processes, and to 0 for nonstationary processes or processes with a
regression component.

'Z0'

Presample disturbances, providing initial values for the input disturbance series, Z. If Z0
is a column vector, then filter applies it to each output path. If Z0 is a matrix, then it
requires at least NumPaths columns. If the number of columns exceeds NumPaths, then
filter uses the first NumPaths columns.

Z0 requires a sufficient number of rows to initialize the moving average component of
the ARIMA model and any conditional variance model. The required number of rows
is at least Mdl.Q, but might be more if a conditional variance model is included. If the
number of rows in Z0 exceeds the number necessary, then filter uses the most recent
observations. The last row contains the most recent observation.

Default: filter sets the necessary presample observations to 0.

Notes

• NaNs in the data indicate missing values and filter removes them. The software
merges the presample data and main data sets separately, then uses list-wise deletion
to remove any NaNs. That is, filter sets PreSample = [Y0 Z0 V0] and Data = [Z
X], then it removes any row in PreSample or Data that contains at least one NaN.

• Removing NaNs in the main data reduces the effective sample size. Such removal can
also create irregular time series.

• filter assumes that you synchronize presample data such that the most recent
observation of each presample series occurs simultaneously.

 filter

9-397

• All predictor series in X (i.e., columns of X) are applied to each disturbance series in Z
to produce NumPaths response series Y.

Output Arguments

Y

numObs-by-NumPaths matrix of simulated responses. Y is the continuation of the
presample series Y0.

E

numObs-by-NumPaths matrix of simulated innovations with conditional variances,
V. Each column is a scaled series of innovations (or disturbances) such that E =
sqrt(V)*Z.

V

numObs-by-NumPaths matrix of conditional variances of the innovations in E such that E
= sqrt(V)*Z. V is the continuation of the presample series V0.

Examples

Simulate and Filter

Specify a mean zero ARIMA(2,0,1) model.

Mdl = arima('Constant',0,'AR',{0.5,-0.8},'MA',-0.5,...

 'Variance',0.1);

Simulate the model using Monte Carlo simulation. Then, standardize the simulated
innovations and filter them.

rng(1); % For reproducibility

[y,e,v] = simulate(Mdl,100);

Z = e./sqrt(v);

[Y,E,V] = filter(Mdl,Z);

9 Functions — Alphabetical List

9-398

Confirm that the outputs of simulate and filter are identical.

isequal(y,Y)

ans =

 1

The logical value 1 confirms the two outputs are identical.

Simulate an Impulse Response Function

Specify a mean zero ARIMA(2,0,1) model.

Mdl = arima('Constant',0,'AR',{0.5,-0.8},'MA',-0.5,...

 'Variance',0.1);

Simulate the first 20 responses of the impulse response function. Generate a disturbance
series with a one-time, unit impulse, and then filter it. Set all presample observations
equal to zero. Normalize the impulse response function to ensure that the first element is
1.

Z = [1;zeros(19,1)];

Y = filter(Mdl,Z,'Y0',zeros(Mdl.P,1));

Y = Y/Y(1);

Plot the impulse response function.

figure;

stem((0:numel(Y)-1)',Y,'filled');

title 'Impulse Response';

 filter

9-399

The impulse response assesses the dynamic behavior of a system to a one-time, unit
impulse. You can also use the impulse method to plot the impulse response function for
an ARIMA process.

Simulate a Step Response

Specify a mean zero ARIMA(2,0,1) process.

Mdl = arima('Constant',0,'AR',{0.5,-0.8},'MA',-0.5,...

 'Variance',0.1);

Simulate the first 20 responses to a sequence of unit disturbances. Generate a
disturbance series of ones, and then filter it. Set all presample observations equal to zero.

9 Functions — Alphabetical List

9-400

Z = ones(20,1);

Y = filter(Mdl,Z,'Y0',zeros(Mdl.P,1));

Y = Y/Y(1);

The last step normalizes the step response function to ensure that the first element is 1.

Plot the step response function.

figure;

stem((0:numel(Y)-1)',Y,'filled');

title 'Step Response';

 filter

9-401

The step response assess the dynamic behavior of a system to a persistent change in a
variable.

Simulate a Response with Predictor Data

Create models for the response and predictor series. Set an ARIMAX(2,1,3) model to the
response MdlY, and an AR(1) model to the MdlX.

MdlY = arima('AR',{0.1 0.2},'D',1,'MA',{-0.1 0.1 0.05},...

'Constant',1,'Variance',0.5, 'Beta',2);

MdlX = arima('AR',0.5,'Constant',0,'Variance',0.1);

Simulate a length 100 predictor series x and a series of iid normal disturbances z having
mean zero and variance 1.

rng(1);

z = randn(100,1);

x = simulate(MdlX,100);

Filter the disturbances z using MdlY to produce the response series y, and plot y.

y = filter(MdlY,z,'X',x);

figure;

plot(y);

title 'Filter to simulate ARIMA(2,1,3)';

xlabel 'Time';

ylabel 'Response';

9 Functions — Alphabetical List

9-402

• “Simulate Conditional Mean and Variance Models” on page 5-175
• “Plot the Impulse Response Function” on page 5-88

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[3] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

 filter

9-403

Alternatives

• filter generalizes simulate. That is, both filter a series of disturbances to produce
output responses, innovations, and conditional variances. However, simulate
autogenerates a series of mean zero, unit variance, independent and identically
distributed (iid) disturbances according to the distribution in Mdl. In contrast,
filter lets you directly specify your own disturbances.

See Also
arima | estimate | forecast | impulse | infer | print | simulate

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149

9 Functions — Alphabetical List

9-404

filter
Class: LagOp

Apply lag operator polynomial to filter time series

Syntax

[Y,times] = filter(A,X)

[Y,times] = filter(A,X,'Initial',X0)

Description

Given a lag operator polynomial A(L), [Y,times] = filter(A,X)applies A(L) to
time series data X(t). This is equivalent to applying a linear filter to X(t), producing the
filtered output series Y(t) = A(L)X(t).

[Y,times] = filter(A,X,'Initial',X0) applies A(L) to time series data X(t) with
specified presample values of the input time series X(t).

Input Arguments

A

Lag operator polynomial object, as produced by LagOp.

X

numObs-by-numDims matrix of time series data to which the lag operator polynomial
A is applied. The last observation is assumed to be the most recent. numDims is the
dimension of A, unless X is a row vector, in which case X is treated as a univariate series.
For univariate X, the orientation of the output Y is determined by the orientation of the
input X.

'Initial'

Presample values of the input time series X(t). If 'Initial' is unspecified, or if the
number of presample values is insufficient to initialize filtering, values are taken from

 filter

9-405

the beginning of X, reducing the effective sample size of the output Y. For convenience,
scalar presample values are expanded to provide all numPresampleObs-by-numDims
presample values, and data is not taken from X. If more presample values are specified
than necessary, only the most recent values are used. For univariate X, presample values
can be a row or a column vector.

Output Arguments

Y

Filtered input time series, Y(t) = A(L)X(t).

times

Vector of relative time indices the same length as Y. Times are expressed relative to,
or as an offset from, observations times 0, 1, 2,...,numObs–1 for the input series X(t).
For a polynomial of degree p, Y(0) is a linear combination of X(t) for times t = 0, –1, –
2,...,–p (presample data). Y(t) for t > 0 is a linear combination of X(t) for times t = t, t–1, t–
2,...,t–p.

Examples

Filter a Series Through a Lag Polynomial

Create a LagOp polynomial and a random time series:

rng('default') % Make output reproducible

A = LagOp({1 -0.6 0.08 0.2}, 'Lags', [0 1 2 4]);

X = randn(10, A.Dimension);

Filter the input time series with no explicit initial observations, allowing the filter
method to automatically strip all required initial data from the beginning of the input
time series .

[Y1,T1] = filter(A, X);

Manually strip all required presample observations directly from the beginning of ,
then pass in the reduced-length and the stripped presample observations directly to

9 Functions — Alphabetical List

9-406

the filter method. In this case, the first 4 observations of are stripped because the
degree of the lag operator polynomial created below is 4.

[Y2,T2] = filter(A, X((A.Degree + 1):end,:), ...

 'Initial', X(1:A.Degree,:));

Manually strip part of the required presample observations from the beginning of
and let the filter method automatically strip the remaining observations from .

[Y3,T3] = filter(A, X((A.Degree - 1):end,:), ...

 'Initial', X(1:A.Degree - 2,:));

The filtered output series are all the same. However, the associated time vectors are not.

disp([T1 T2 T3])

 4 0 2

 5 1 3

 6 2 4

 7 3 5

 8 4 6

 9 5 7

Algorithms

Filtering is limited to single paths, so matrix data are assumed to be a single path of a
multidimensional process, and 3-D data (multiple paths of a multidimensional process)
are not allowed.

See Also
mldivide

 filter

9-407

filter
Class: regARIMA

Filter disturbances through regression model with ARIMA errors

Syntax
[Y,E,U] = filter(Mdl,Z)

[Y,E,U] = filter(Mdl,Z,Name,Value)

Description
[Y,E,U] = filter(Mdl,Z) filters errors to produce responses, innovations, and
unconditional disturbances of a univariate regression model with ARIMA time series
errors.

[Y,E,U] = filter(Mdl,Z,Name,Value) filters errors using additional options
specified by one or more Name,Value pair arguments.

Input Arguments
Mdl

Regression model with ARIMA errors, specified as a model returned by regARIMA or
estimate.

The parameters of Mdl cannot contain NaNs.

Z

Errors that drive the innovation process, specified as a numObs-by-numPaths matrix.
That is, εt = σzt is the innovations process, where σ is the innovation standard deviation
and zt are the errors for t = 1,...,T.

As a column vector, Z represents a path of the underlying error series. As a matrix, Z
represents numObs observations of numPaths paths of the underlying errors. filter
assumes that observations across any row occur simultaneously. The last row contains
the latest observation. Z is a continuation of the presample errors, Z0.

9 Functions — Alphabetical List

9-408

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'U0'

Presample unconditional disturbances that provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'U0' and a column vector or
matrix.

• If U0 is a column vector, then filter applies it to each output path.
• If U0 is a matrix, then it requires at least numPaths columns. If the number of

columns exceeds numPaths, then filter uses the first numPaths columns.
• U0 requires enough rows to initialize the compound autoregressive component of the

ARIMA error model. The required number of rows is at least Mdl.P. If the number
of rows in U0 exceeds the number necessary, then filter uses the latest Mdl.P
presample unconditional disturbances. The last row contains the latest presample
unconditional disturbance.

Default: filter sets the necessary presample unconditional disturbances to 0.

'X'

Predictor data in the regression model, specified as the comma-separated pair consisting
of 'X' and a matrix.

The columns of X are separate, synchronized time series, with the last row containing the
latest observations. The number of rows of X must be at least numObs. If the number of
rows of X exceeds the number necessary, then filter uses the latest observations.

Default: filter does not include a regression component in the model regardless of the
presence of regression coefficients in Mdl.

'Z0'

Presample errors providing initial values for the input error series, Z, specified as the
comma-separated pair consisting of 'Z0' and a vector or matrix.

• If Z0 is a column vector, then filter applies it to each output path.

 filter

9-409

• If Z0 is a matrix, then it requires at least numPaths columns. If the number of
columns exceeds numPaths, then filter uses the first numPaths columns.

• Z0 requires enough rows to initialize the compound moving average component of the
ARIMA error model. The required number of rows is at least model.Q. If the number
of rows in Z0 exceeds the number necessary, then filter uses the latest Mdl.Q
observations. The last row contains the latest observation.

Default: filter sets the necessary presample errors to 0.

Notes

• NaNs in Z, U0, X, and Z0 indicate missing values and filter removes them. The
software merges the presample data sets (U0 and Z0), then uses list-wise deletion to

remove any NaNs. filter similarly removes NaNs from the effective sample data (Z
and X). Removing NaNs in the data reduces the sample size. Such removal can also
create irregular time series.

• Removing NaNs in the main data reduces the effective sample size. Such removal can
also create irregular time series.

• filter assumes that you synchronize presample data such that the latest
observation of each presample series occurs simultaneously.

• All predictor series (i.e. columns) in X are associated with each error series in Z to
produce numPaths response series Y.

Output Arguments

Y

Simulated responses, returned as a numobs-by-numPaths matrix.

E

Simulated, mean 0 innovations of the ARIMA error model, returned as a numobs-
by-numPaths matrix.

U

Simulated unconditional disturbances, returned as a numobs-by-numPaths matrix.

9 Functions — Alphabetical List

9-410

Examples

Compare Responses from filter and simulate

Simulate responses using filter and simulate. Then compare the simulated
responses.

Both filter and simulate filter a series of errors to produce output responses y,
innovations e, and unconditional disturbances u. The difference is that simulate
generates errors from Mdl.Distribution, whereas filter accepts a random array of
errors that you generate from any distribution.

Specify the following regression model with ARMA(2,1) errors:

where is Gaussian with variance 0.1.

Mdl = regARIMA('Intercept',0,'AR',{0.5 -0.8}, ...

 'MA',-0.5,'Beta',[0.1 -0.2],'Variance',0.1);

Simulate data for the predictors and from Mdl using Monte Carlo simulation.

rng(1); % For reproducibility

X = randn(100,2); % Simulate predictor data

[ySim,eSim,uSim] = simulate(Mdl,100,'X',X);

Standardize the simulated innovations and filter them.

z1 = eSim./sqrt(Mdl.Variance);

[yFlt1,eFlt1,uFlt1] = filter(Mdl,z1,'X',X);

Confirm that the simulated responses from simulate and filter are identical using a
plot.

figure

h1 = plot(ySim);

hold on

h2 = plot(yFlt1,'.');

title '{\bf Filtered and Simulated Responses}';

legend([h1, h2],'Simulate','Filter','Location','Best')

hold off

 filter

9-411

Alternatively, simulate responses by randomly generating your own errors and passing
them into filter.

rng(1);

X = randn(100,2);

z2 = randn(100,1);

yFlt2 = filter(Mdl,z2,'X',X);

figure

h1 = plot(ySim);

hold on

h2 = plot(yFlt2,'.');

title '{\bf Filtered and Simulated Responses}';

legend([h1, h2],'Simulate','Filter','Location','Best')

hold off

9 Functions — Alphabetical List

9-412

This plot is the same as the previous plot, confirming that both simulation methods are
equivalent.

filter multiplies the error, Z, by sqrt(Mdl.Variance) before filtering Z through the
model. Therefore, if you want to specify your own distribution, set Mdl.Variance to 1,
and then generate your own errors using, for example, random('unif',a,b) for the
Uniform(a, b) distribution.

Simulate an Impulse Response Function

Simulate the impulse response of an innovation shock to the regression model with
ARMA(2,1) errors.

 filter

9-413

The impulse response assesses the dynamic behavior of a system to a one-time shock.
Typically, the magnitude of the shock is 1. Alternatively, it might be more meaningful to
examine an impulse response of an innovation shock with a magnitude of one standard
deviation.

In regression models with ARIMA errors,

• The impulse response function is invariant to the behavior of the predictors and the
intercept.

• The impulse response of the model is defined as the impulse response of the
unconditional disturbances as governed by the ARIMA error component.

Specify the following regression model with ARMA(2,1) errors:

where is Gaussian with variance 0.1.

Mdl = regARIMA('Intercept', 0, 'AR', {0.5 -0.8}, ...

 'MA', -0.5,'Variance',0.1);

When you construct an impulse response function for a regression model with ARIMA
errors, you must set Intercept to 0.

Simulate the first 30 responses of the impulse response function by generating a error
series with a one-time impulse with magnitude equal to one standard deviation, and then
filter it. Also, use impulse to compute the impulse response function.

z = [sqrt(Mdl.Variance);zeros(29,1)]; % Shock of 1 std

yFltr = filter(Mdl,z);

yImpls = impulse(Mdl,30);

When you construct an impulse response function for a regression model with ARIMA
errors containing a regression component, do not specify the predictor matrix, X, in
filter.

Plot the impulse response functions.

figure

subplot(2,1,1)

9 Functions — Alphabetical List

9-414

stem((0:numel(yFltr)-1)',yFltr,'filled')

title...

 ('Impulse Response to Shock of One Standard Deviation');

subplot(2,1,2)

stem((0:numel(yImpls)-1)',yImpls,'filled')

title 'Impulse Response to Unit Shock';

The impulse response function given a shock of one standard deviation is a scaled version
of the impulse response returned by impulse.

Simulate a Step Response

Simulate the step response function of a regression model with ARMA(2,1) errors.

 filter

9-415

The step response assesses the dynamic behavior of a system to a persistent shock.
Typically, the magnitude of the shock is 1. Alternatively, it might be more meaningful
to examine a step response of a persistent innovation shock with a magnitude of one
standard deviation. This example plots the step response of a persistent innovations
shock in a model without an intercept and predictor matrix for regression. However, note
that filter is flexible in that it accepts a persistent innovations or predictor shock that
you construct using any magnitude, then filters it through the model.

Specify the following regression model with ARMA(2,1) errors:

where is Gaussian with variance 0.1.

Mdl = regARIMA('Intercept', 0, 'AR', {0.5 -0.8}, ...

 'MA', -0.5,'Variance',0.1);

Simulate the first 30 responses to a sequence of unit errors by generating an error series
of one standard deviation, and then filtering it.

z = sqrt(Mdl.Variance)*ones(30,1);...

 % Persistant shock of one std

y = filter(Mdl,z);

y = y/y(1); % Normalize relative to y(1)

Plot the step response function.

figure

stem((0:numel(y)-1)',y,'filled')

title('Step Response for Persistent Shock of One STD')

9 Functions — Alphabetical List

9-416

The step response settles around 0.4.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Davidson, R., and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[3] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc.,
1995.

 filter

9-417

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[5] Pankratz, A. Forecasting with Dynamic Regression Models. John Wiley & Sons, Inc.,
1991.

[6] Tsay, R. S. Analysis of Financial Time Series. 2nd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2005.

Alternatives

• filter generalizes simulate. Both filter a series of errors to produce responses
(Y), innovations (E), and unconditional disturbances (U). However, simulate
autogenerates a series of mean zero, unit variance, independent and identically
distributed (iid) errors according to the distribution in Mdl. In contrast, filter
requires that you specify your own errors, which can come from any distribution.

See Also
regARIMA | simulate

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Estimation” on page 5-103

9 Functions — Alphabetical List

9-418

filter

Class: dssm

Forward recursion of diffuse state-space models

Syntax

X = filter(Mdl,Y)

X = filter(Mdl,Y,Name,Value)

[X,logL,Output] = filter(___)

Description

X = filter(Mdl,Y) returns filtered states (X) by performing forward recursion of the
fully specified diffuse state-space model Mdl. That is, filter applies the diffuse Kalman
filter using Mdl and the observed responses Y.

X = filter(Mdl,Y,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, specify the regression coefficients and
predictor data to deflate the observations, or specify to use the univariate treatment of a
multivariate model.

If Mdl is not fully specified, then you must specify the unknown parameters as known
scalars using the 'Params' Name,Value pair argument.

[X,logL,Output] = filter(___) additionally returns the loglikelihood value
(logL) and an output structure array (Output) using any of the input arguments in the
previous syntaxes. Output contains:

• Filtered and forecasted states
• Estimated covariance matrices of the filtered and forecasted states
• Loglikelihood value
• Forecasted observations and its estimated covariance matrix
• Adjusted Kalman gain

 filter

9-419

• Vector indicating which data the software used to filter

Tips

• Mdl does not store the response data, predictor data, and the regression coefficients.
Supply the data wherever necessary using the appropriate input or name-value pair
arguments.

• It is a best practice to allow dssm.filter to determine the value of SwitchTime.
However, in rare cases, you might experience numerical issues during estimation,
filtering, or smoothing diffuse state-space models. For such cases, try experimenting
with various SwitchTime specifications, or consider a different model structure (e.g.,
simplify or reverify the model). For example, convert the diffuse state-space model to
a standard state-space model using ssm.

• To accelerate estimation for low-dimensional, time-invariant models, set
'Univariate',true. Using this specification, the software sequentially updates
rather then updating all at once during the filtering process.

Input Arguments

Mdl — Diffuse state-space model
dssm model object

Diffuse state-space model, specified as an dssm model object returned by dssm or
estimate.

If Mdl is not fully specified (that is, Mdl contains unknown parameters), then specify
values for the unknown parameters using the 'Params' name-value pair argument.
Otherwise, the software issues an error. estimate returns fully-specified state-space
models.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary using the appropriate input or name-value pair arguments.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

9 Functions — Alphabetical List

9-420

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix, where each row corresponds to a period and each column corresponds to a
particular observation in the model. T is the sample size and m is the number of
observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1
cell vector. Each element of the cell vector corresponds to a period and contains an
nt-dimensional vector of observations for that period. The corresponding dimensions
of the coefficient matrices in Mdl.C{t} and Mdl.D{t} must be consistent with the
matrix in Y{t} for all periods. The last cell of Y contains the latest observations.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-450.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Beta' — Regression coefficients
[] (default) | numeric matrix

Regression coefficients corresponding to predictor variables, specified as the comma-
separated pair consisting of 'Beta' and a d-by-n numeric matrix. d is the number of
predictor variables (see Predictors) and n is the number of observed response series
(see Y).

If Mdl is an estimated state-space model, then specify the estimated regression
coefficients stored in estParams.

'Params' — Values for unknown parameters
numeric vector

Values for unknown parameters in the state-space model, specified as the column-
separated pair consisting of 'Params' and a numeric vector.

The elements of Params correspond to the unknown parameters in the state-space model
matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and covariance
matrix Cov0.

 filter

9-421

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of Params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise following the order A, B, C, D, Mean0, and Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-to-
matrix mapping function), then you must set initial parameter values for the state-
space model matrices, initial state values, and state types within the parameter-to-
matrix mapping function.

If Mdl contains unknown parameters, then you must specify their values. Otherwise, the
software ignores the value of Params.

Data Types: double

'Predictors' — Predictor variables in state-space model observation equation
[] (default) | numeric matrix

Predictor variables in the state-space model observation equation, specified as the
comma-separated pair consisting of 'Predictors' and a T-by-d numeric matrix. T is
the number of periods and d is the number of predictor variables. Row t corresponds to
the observed predictors at period t (Zt). The expanded observation equation is

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters.

If there are n observations per period, then the software regresses all predictor series
onto each observation.

If you specify Predictors, then Mdl must be time invariant. Otherwise, the software
returns an error.

By default, the software excludes a regression component from the state-space model.
Data Types: double

'SwitchTime' — Final period for diffuse state initialization
positive integer

9 Functions — Alphabetical List

9-422

Final period for diffuse state initialization, specified as the comma-separated pair
consisting of 'SwitchTime' and a positive integer. That is, estimate uses the
observations from period 1 to period SwitchTime as a presample to implement the exact
initial Kalman filter (see “Diffuse Kalman Filter” on page 8-15 and [1]). After initializing
the diffuse states, estimate applies the standard Kalman filter to the observations from
periods SwitchTime + 1 to T.

The default value for SwitchTime is the last period in which the estimated smoothed
state precision matrix is singular (i.e., the inverse of the covariance matrix). This
specification represents the fewest number of observations required to initialize the
diffuse states. Therefore, it is a best practice to use the default value.

If you set SwitchTime to a value greater than the default, then the effective sample
size decreases. If you set SwitchTime to a value that is fewer than the default, then
estimate might not have enough observations to initialize the diffuse states, which can
result in an error or improper values.

In general, estimating, filtering, and smoothing state-space models with at least one
diffuse state requires SwitchTime to be at least one. The default estimation display
contains the effective sample size.
Data Types: double

'Tolerance' — Forecast uncertainty threshold
0 (default) | nonnegative scalar

Forecast uncertainty threshold, specified as the comma-separated pair consisting of
'Tolerance' and a nonnegative scalar.

If the forecast uncertainty for a particular observation is less than Tolerance during
numerical estimation, then the software removes the uncertainty corresponding to the
observation from the forecast covariance matrix before its inversion.

It is best practice to set Tolerance to a small number, for example, le-15, to overcome
numerical obstacles during estimation.
Example: 'Tolerance',le-15

Data Types: double

'Univariate' — Univariate treatment of multivariate series flag
false (default) | true

 filter

9-423

Univariate treatment of a multivariate series flag, specified as the comma-separated pair
consisting of 'Univariate' and true or false. Univariate treatment of a multivariate
series is also known as sequential filtering.

The univariate treatment can accelerate and improve numerical stability of the Kalman
filter. However, all observation innovations must be uncorrelated. That is, DtDt' must be
diagonal, where Dt, t = 1,...,T, is one of the following:

• The matrix D{t} in a time-varying state-space model
• The matrix D in a time-invariant state-space model

Example: 'Univariate',true

Data Types: logical

Output Arguments

X — Filtered states
numeric matrix | cell vector of numeric vectors

Filtered states, returned as a numeric matrix or a cell vector of numeric vectors.

If Mdl is time invariant, then the number of rows of X is the sample size, T, and the
number of columns of X is the number of states, m. The last row of X contains the latest,
filtered states.

If Mdl is time varying, then X is a cell vector with length equal to the sample size. Cell t
of X contains a vector of filtered states with length equal to the number of states in period
t. The last cell of X contains the latest, filtered states.

filter pads the first SwitchTime periods of X with zeros or empty cells. The zeros or
empty cells represent the periods required to initialize the diffuse states.

logL — Loglikelihood function value
scalar

Loglikelihood function value, returned as a scalar.

Missing observations and observations before SwitchTime do not contribute to the
loglikelihood.

9 Functions — Alphabetical List

9-424

Output — Filtering results by period
structure array

Filtering results by period, returned as a structure array.

Output is a T-by-1 structure, where element t corresponds to the filtering result at time
t.

• If Univariate is false (it is by default), then the following table outlines the fields
of Output.

Field Description Estimate of

LogLikelihood Scalar loglikelihood
objective function value

N/A

FilteredStates mt-by-1 vector of filtered
states

E x y yt t| ,...,1()

FilteredStatesCov mt-by-mt variance-
covariance matrix of
filtered states

Var x y yt t| ,...,1()

ForecastedStates mt-by-1 vector of state
forecasts

E x y yt t| ,...,1 1-()

ForecastedStatesCov mt-by-mt variance-
covariance matrix of state
forecasts

Var x y yt t| ,...,1 1-()

ForecastedObs ht-by-1 forecasted
observation vector

E y y yt t| ,...,1 1-()

ForecastedObsCov ht-by-ht variance-
covariance matrix of
forecasted observations

Var y y tt t| ,...,1 1-()

KalmanGain mt-by-nt adjusted Kalman
gain matrix

N/A

DataUsed ht-by-1 logical vector
indicating whether the
software filters using a
particular observation. For
example, if observation
i at time t is a NaN, then

N/A

 filter

9-425

Field Description Estimate of

element i in DataUsed at
time t is 0.

• If Univarite is true, then the fields of Output are the same as in the previous
table, except for the following amendments.

Field Changes

ForecastedObs Same dimensions as if Univariate = 0,
but only the first elements are equal

ForecastedObsCov n-by-1 vector of forecasted observation
variances.

The first element of this vector is
equivalent to ForecastedObsCov(1,1)
when Univariate is false. The rest
of the elements are not necessarily
equivalent to their corresponding values
in ForecastObsCov when Univariate.

KalmanGain Same dimensions as if Univariate is
false, though KalmanGain might have
different entries.

filter pads the first SwitchTime periods of the fields of Output with empty cells.
These empty cells represent the periods required to initialize the diffuse states.

Examples

Filter States of Time-Invariant Diffuse State-Space Model

Suppose that a latent process is a random walk. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

9 Functions — Alphabetical List

9-426

T = 100;

x0 = 1.5;

rng(1); % For reproducibility

u = randn(T,1);

x = cumsum([x0;u]);

x = x(2:end);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 1;

B = 1;

C = 1;

D = 0.75;

Create the diffuse state-space model using the coefficient matrices. Specify that the inital
state distribution is diffuse.

Mdl = dssm(A,B,C,D,'StateType',2)

Mdl =

State-space model type: dssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

 filter

9-427

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 Inf

State types

 x1

 Diffuse

Mdl is an dssm model. Verify that the model is correctly specified using the display in the
Command Window.

Filter states for periods 1 through 100. Plot the true state values and the filtered state
estimates.

filteredX = filter(Mdl,y);

figure

plot(1:T,x,'-k',1:T,filteredX,':r','LineWidth',2)

title({'State Values'})

xlabel('Period')

ylabel('State')

legend({'True state values','Filtered state values'})

9 Functions — Alphabetical List

9-428

The true values and filter estimates are approximately the same, except for the first
filtered state, which is zero.

Filter States of Diffuse State-Space Model Containing Regression Component

Suppose that the linear relationship between unemployment rate and the nominal gross
national product (nGNP) is of interest. Suppose further that unemployment rate is an
AR(1) series. Symbolically, and in state-space form, the model is

where:

 filter

9-429

• is the unemployment rate at time t.
• is the observed change in the unemployment rate being deflated by the return of

nGNP ().
• is the Gaussian series of state disturbances having mean 0 and unknown standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and removing
the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

y = diff(DataTable.UR(~isNaN));

T = size(gnpn,1); % The sample size

Z = price2ret(gnpn);

This example continues using the series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

Specify the coefficient matrices.

A = NaN;

B = NaN;

C = 1;

Create the state-space model using dssm by supplying the coefficient matrices and
specifying that the state values come from a diffuse distribution. The diffuse specification
indicates complete ignorance about the moments of the initial distribution.

StateType = 2;

Mdl = dssm(A,B,C,'StateType',StateType);

Estimate the parameters. Specify the regression component and its initial value for
optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Display the estimates and all optimization diagnostic information. Restrict
the estimate of to all positive, real numbers.

params0 = [0.3 0.2]; % Initial values chosen arbitrarily

9 Functions — Alphabetical List

9-430

Beta0 = 0.1;

[EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,'Beta0',Beta0,...

 'lb',[-Inf 0 -Inf]);

Method: Maximum likelihood (fmincon)

Effective Sample size: 60

Logarithmic likelihood: -110.477

Akaike info criterion: 226.954

Bayesian info criterion: 233.287

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.59436 0.09408 6.31738 0

 c(2) | 1.52554 0.10758 14.17991 0

 y <- z(1) | -24.26161 1.55730 -15.57930 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 2.54764 0 Inf 0

EstMdl is an ssm model, and you can access its properties using dot notation.

Filter the estimated diffuse state-space model. EstMdl does not store the data or the
regression coefficients, so you must pass in them in using the name-value pair arguments
'Predictors' and 'Beta', respectively. Plot the estimated, filtered states.

filteredX = filter(EstMdl,y,'Predictors',Z,'Beta',estParams(end));

figure

plot(dates(end-(T-1)+1:end),filteredX);

xlabel('Period')

ylabel('Change in the unemployment rate')

title('Filtered Change in the Unemployment Rate')

axis tight

 filter

9-431

Extract Other Estimates from Output

Estimate a diffuse state-space model, filter the states, and then extract other estimates
from the Output output argument.

Consider the diffuse state-space model

9 Functions — Alphabetical List

9-432

The state variable is an AR(1) model with autoregressive coefficient . is a
random walk. The disturbances and are independent Gaussian random variables
with mean 0 and standard deviations and , respectively. The observation is the
error-free sum of and .

Generate data from the state-space model. To simulate the data, suppose that the sample
size , , , , and .

rng(1); % For reproducibility

T = 100;

ARMdl = arima('AR',0.6,'Constant',0,'Variance',0.2^2);

x1 = simulate(ARMdl,T,'Y0',2);

u3 = 0.1*randn(T,1);

x3 = cumsum([2;u3]);

x3 = x3(2:end);

y = x1 + x3;

Specify the coefficient matrices of the state-space model. To indicate unknown
parameters, use NaN values.

A = [NaN 0; 0 1];

B = [NaN 0; 0 NaN];

C = [1 1];

Create a diffuse state-space model that describes the model above. Specify that and
 have diffuse initial state distributions.

StateType = [2 2];

Mdl = dssm(A,B,C,'StateType',StateType);

Estimate the unknown parameters of Mdl. Choose initial parameter values for
optimization. Specify that the standard deviations are constrained to be positive, but all
other parameters are unconstrained using the 'lb' name-value pair argument.

params0 = [0.01 0.1 0.01]; % Initial values chosen arbitrarily

EstMdl = estimate(Mdl,y,params0,'lb',[-Inf 0 0]);

Method: Maximum likelihood (fmincon)

Effective Sample size: 98

Logarithmic likelihood: 3.44283

Akaike info criterion: -0.885655

 filter

9-433

Bayesian info criterion: 6.92986

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.54134 0.20494 2.64145 0.00826

 c(2) | 0.18439 0.03305 5.57897 0

 c(3) | 0.11783 0.04347 2.71039 0.00672

 |

 | Final State Std Dev t Stat Prob

 x(1) | 0.24884 0.17168 1.44943 0.14722

 x(2) | 1.73762 0.17168 10.12121 0

The parameters are close to their true values.

Filter the states of EstMdl, and request all other available output.

[X,logL,Output] = filter(EstMdl,y);

X is a T-by-2 matrix of filtered states, logL is the final, optimized log-likelihood value,
and Output is a structure array containing various estimates that the Kalman filter
requires. List the fields of output using fields.

fields(Output)

ans =

 'LogLikelihood'

 'FilteredStates'

 'FilteredStatesCov'

 'ForecastedStates'

 'ForecastedStatesCov'

 'ForecastedObs'

 'ForecastedObsCov'

 'KalmanGain'

 'DataUsed'

Convert Output to a table.

OutputTbl = struct2table(Output);

OutputTbl(1:10,1:5) % Display first ten rows of first five variables

ans =

9 Functions — Alphabetical List

9-434

 LogLikelihood FilteredStates FilteredStatesCov ForecastedStates ForecastedStatesCov

 _____________ ______________ _________________ ________________ ___________________

 [] [] [] [] []

 [] [] [] [] []

 [0.1827] [2x1 double] [2x2 double] [2x1 double] [2x2 double]

 [0.0972] [2x1 double] [2x2 double] [2x1 double] [2x2 double]

 [0.4472] [2x1 double] [2x2 double] [2x1 double] [2x2 double]

 [0.2073] [2x1 double] [2x2 double] [2x1 double] [2x2 double]

 [0.5167] [2x1 double] [2x2 double] [2x1 double] [2x2 double]

 [0.2389] [2x1 double] [2x2 double] [2x1 double] [2x2 double]

 [0.5064] [2x1 double] [2x2 double] [2x1 double] [2x2 double]

 [-0.0105] [2x1 double] [2x2 double] [2x1 double] [2x2 double]

The first two rows of the table contain empty cells or zeros. These correspond to the
observations required to initialize the diffuse Kalman filter. That is, SwitchTime is 2.

SwitchTime = 2;

Plot the filtered and forecasted states.

ForeX = cell2mat(OutputTbl.ForecastedStates')'; % Orient forecasted states

ForeX = [zeros(SwitchTime,2);ForeX]; % Include zeros for initialization

figure;

plot(1:T,X(:,1),'r',1:T,ForeX(:,1),'b');

xlabel('Period');

ylabel('State estimate');

title('State 1 Estimates')

legend('Filtered','Forecasted');

grid on;

figure;

plot(1:T,X(:,2),'r',1:T,ForeX(:,2),'b');

xlabel('Period');

ylabel('State estimate');

title('State 2 Estimates')

legend('Filtered','Forecasted');

grid on;

 filter

9-435

9 Functions — Alphabetical List

9-436

• “Filter Time-Varying Diffuse State-Space Model” on page 8-68
• “Smooth Time-Varying Diffuse State-Space Model” on page 8-91

Algorithms

• The Kalman filter accommodates missing data by not updating filtered state
estimates corresponding to missing observations. In other words, suppose there is
a missing observation at period t. Then, the state forecast for period t based on the
previous t – 1 observations and filtered state for period t are equivalent.

 filter

9-437

• For explicitly defined state-space models, filter applies all predictors to each
response series. However, each response series has its own set of regression
coefficients.

• The diffuse Kalman filter requires presample data. If missing observations begin
the time series, then the diffuse Kalman filter must gather enough nonmissing
observations to initialize the diffuse states.

• For diffuse state-space models, filter usually switches from the diffuse Kalman
filter to the standard Kalman filter when the number of cumulative observations and
the number of diffuse states are equal. However, if a diffuse state-space model has
identifiability issues (e.g., the model is too complex to fit to the data), then filter
might require more observations to initialize the diffuse states. In extreme cases,
filter requires the entire sample.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
dssm | estimate | forecast | refine | smooth

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

Introduced in R2015b

9 Functions — Alphabetical List

9-438

filter
Class: ssm

Forward recursion of state-space models

Syntax

X = filter(Mdl,Y)

X = filter(Mdl,Y,Name,Value)

[X,logL,Output] = filter(___)

Description

X = filter(Mdl,Y) returns filtered states (X) from performing forward recursion of
the fully specified state-space model Mdl. That is, filter applies the standard Kalman
filter using Mdl and the observed responses Y.

X = filter(Mdl,Y,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, specify the regression coefficients and
predictor data to deflate the observations, or specify to use the square-root filter.

If Mdl is not fully specified, then you must specify the unknown parameters as known
scalars using the 'Params' Name,Value pair argument.

[X,logL,Output] = filter(___) uses any of the input arguments in the previous
syntaxes to additionally return the loglikelihood value (logL) and an output structure
array (Output) using any of the input arguments in the previous syntaxes. Output
contains:

• Filtered and forecasted states
• Estimated covariance matrices of the filtered and forecasted states
• Loglikelihood value
• Forecasted observations and its estimated covariance matrix
• Adjusted Kalman gain
• Vector indicating which data the software used to filter

 filter

9-439

Input Arguments

Mdl — Standard state-space model
ssm model object

Standard state-space model, specified as an ssm model object returned by ssm or
estimate.

If Mdl is not fully specified (that is, Mdl contains unknown parameters), then specify
values for the unknown parameters using the 'Params' name-value pair argument.
Otherwise, the software issues an error. estimate returns fully-specified state-space
models.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary using the appropriate input or name-value pair arguments.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix, where each row corresponds to a period and each column corresponds to a
particular observation in the model. T is the sample size and m is the number of
observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1
cell vector. Each element of the cell vector corresponds to a period and contains an
nt-dimensional vector of observations for that period. The corresponding dimensions
of the coefficient matrices in Mdl.C{t} and Mdl.D{t} must be consistent with the
matrix in Y{t} for all periods. The last cell of Y contains the latest observations.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-450.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

9 Functions — Alphabetical List

9-440

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Beta' — Regression coefficients
[] (default) | numeric matrix

Regression coefficients corresponding to predictor variables, specified as the comma-
separated pair consisting of 'Beta' and a d-by-n numeric matrix. d is the number of
predictor variables (see Predictors) and n is the number of observed response series
(see Y).

If Mdl is an estimated state-space model, then specify the estimated regression
coefficients stored in estParams.

'Params' — Values for unknown parameters
numeric vector

Values for unknown parameters in the state-space model, specified as the column-
separated pair consisting of 'Params' and a numeric vector.

The elements of Params correspond to the unknown parameters in the state-space model
matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and covariance
matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of Params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise following the order A, B, C, D, Mean0, and Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-to-
matrix mapping function), then you must set initial parameter values for the state-
space model matrices, initial state values, and state types within the parameter-to-
matrix mapping function.

If Mdl contains unknown parameters, then you must specify their values. Otherwise, the
software ignores the value of Params.

Data Types: double

'Predictors' — Predictor variables in state-space model observation equation
[] (default) | numeric matrix

Predictor variables in the state-space model observation equation, specified as the
comma-separated pair consisting of 'Predictors' and a T-by-d numeric matrix. T is

 filter

9-441

the number of periods and d is the number of predictor variables. Row t corresponds to
the observed predictors at period t (Zt). The expanded observation equation is

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters.

If there are n observations per period, then the software regresses all predictor series
onto each observation.

If you specify Predictors, then Mdl must be time invariant. Otherwise, the software
returns an error.

By default, the software excludes a regression component from the state-space model.
Data Types: double

'SquareRoot' — Square root filter method flag
false (default) | true

Square root filter method flag, specified as the comma-separated pair consisting of
'SquareRoot' and true or false. If true, then estimate applies the square root
filter method when implementing the Kalman filter.

If you suspect that the eigenvalues of the filtered state or forecasted observation
covariance matrices are close to zero, then specify 'SquareRoot',true. The square root
filter is robust to numerical issues arising from finite the precision of calculations, but
requires more computational resources.
Example: 'SquareRoot',true

Data Types: logical

'Tolerance' — Forecast uncertainty threshold
0 (default) | nonnegative scalar

Forecast uncertainty threshold, specified as the comma-separated pair consisting of
'Tolerance' and a nonnegative scalar.

9 Functions — Alphabetical List

9-442

If the forecast uncertainty for a particular observation is less than Tolerance during
numerical estimation, then the software removes the uncertainty corresponding to the
observation from the forecast covariance matrix before its inversion.

It is best practice to set Tolerance to a small number, for example, le-15, to overcome
numerical obstacles during estimation.
Example: 'Tolerance',le-15

Data Types: double

'Univariate' — Univariate treatment of multivariate series flag
false (default) | true

Univariate treatment of a multivariate series flag, specified as the comma-separated pair
consisting of 'Univariate' and true or false. Univariate treatment of a multivariate
series is also known as sequential filtering.

The univariate treatment can accelerate and improve numerical stability of the Kalman
filter. However, all observation innovations must be uncorrelated. That is, DtDt' must be
diagonal, where Dt, t = 1,...,T, is one of the following:

• The matrix D{t} in a time-varying state-space model
• The matrix D in a time-invariant state-space model

Example: 'Univariate',true

Data Types: logical

Output Arguments
X — Filtered states
numeric matrix | cell vector of numeric vectors

Filtered states, returned as a numeric matrix or a cell vector of numeric vectors.

If Mdl is time invariant, then the number of rows of X is the sample size, T, and the
number of columns of X is the number of states, m. The last row of X contains the latest,
filtered states.

If Mdl is time varying, then X is a cell vector with length equal to the sample size. Cell t
of X contains a vector of filtered states with length equal to the number of states in period
t. The last cell of X contains the latest, filtered states.

 filter

9-443

logL — Loglikelihood function value
scalar

Loglikelihood function value, returned as a scalar.

Missing observations do not contribute to the loglikelihood.

Output — Filtering results by period
structure array

Filtering results by period, returned as a structure array.

Output is a T-by-1 structure, where element t corresponds to the filtering result at time
t.

• If Univariate is false (it is by default), then the following table outlines the fields
of Output.

Field Description Estimate of

LogLikelihood Scalar loglikelihood
objective function value

N/A

FilteredStates mt-by-1 vector of filtered
states

E x y yt t| ,...,1()

FilteredStatesCov mt-by-mt variance-
covariance matrix of
filtered states

Var x y yt t| ,...,1()

ForecastedStates mt-by-1 vector of state
forecasts

E x y yt t| ,...,1 1-()

ForecastedStatesCov mt-by-mt variance-
covariance matrix of state
forecasts

Var x y yt t| ,...,1 1-()

ForecastedObs ht-by-1 forecasted
observation vector

E y y yt t| ,...,1 1-()

ForecastedObsCov ht-by-ht variance-
covariance matrix of
forecasted observations

Var y y tt t| ,...,1 1-()

KalmanGain mt-by-nt adjusted Kalman
gain matrix

N/A

9 Functions — Alphabetical List

9-444

Field Description Estimate of

DataUsed ht-by-1 logical vector
indicating whether the
software filters using a
particular observation. For
example, if observation
i at time t is a NaN, then
element i in DataUsed at
time t is 0.

N/A

• If Univarite is true, then the fields of Output are the same as in the previous
table, except for the following amendments.

Field Changes

ForecastedObs Same dimensions as if Univariate = 0,
but only the first elements are equal

ForecastedObsCov n-by-1 vector of forecasted observation
variances.

The first element of this vector is
equivalent to ForecastedObsCov(1,1)
when Univariate is false. The rest
of the elements are not necessarily
equivalent to their corresponding values
in ForecastObsCov when Univariate.

KalmanGain Same dimensions as if Univariate is
false, though KalmanGain might have
different entries.

Examples

Filter States of Time-Invariant State-Space Model

Suppose that a latent process is an AR(1). Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

 filter

9-445

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

9 Functions — Alphabetical List

9-446

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

Filter states for periods 1 through 100. Plot the true state values and the filtered state
estimates.

filteredX = filter(Mdl,y);

figure

plot(1:T,x,'-k',1:T,filteredX,':r','LineWidth',2)

title({'State Values'})

xlabel('Period')

ylabel('State')

legend({'True state values','Filtered state values'})

 filter

9-447

The true values and filter estimates are approximately the same.

Filter States of State-Space Model Containing Regression Component

Suppose that the linear relationship between the change in the unemployment rate and
the nominal gross national product (nGNP) growth rate is of interest. Suppose further
that the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically,
and in state-space form, the model is

9 Functions — Alphabetical List

9-448

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed change in the unemployment rate being deflated by the growth

rate of nGNP ().
• is the Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each series. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

Z = [ones(T-1,1) diff(log(gnpn))];

y = diff(u);

Though this example removes missing values, the software can accommodate series
containing missing values in the Kalman filter framework.

Specify the coefficient matrices.

A = [NaN NaN; 0 0];

B = [1; 1];

C = [1 0];

D = NaN;

Specify the state-space model using ssm.

Mdl = ssm(A,B,C,D);

Estimate the model parameters, and use a random set of initial parameter values for
optimization. Specify the regression component and its initial value for optimization

 filter

9-449

using the 'Predictors' and 'Beta0' name-value pair arguments, respectively.
Restrict the estimate of to all positive, real numbers.

params0 = [0.3 0.2 0.2];

[EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,...

 'Beta0',[0.1 0.2],'lb',[-Inf,-Inf,0,-Inf,-Inf]);

Method: Maximum likelihood (fmincon)

Sample size: 61

Logarithmic likelihood: -99.7245

Akaike info criterion: 209.449

Bayesian info criterion: 220.003

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.34098 0.29608 -1.15164 0.24948

 c(2) | 1.05003 0.41377 2.53771 0.01116

 c(3) | 0.48592 0.36790 1.32080 0.18657

 y <- z(1) | 1.36121 0.22338 6.09358 0

 y <- z(2) | -24.46711 1.60018 -15.29024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.01264 0.44690 2.26592 0.02346

 x(2) | 0.77718 0.58917 1.31912 0.18713

EstMdl is an ssm model, and you can access its properties using dot notation.

Filter the estimated state-space model. EstMdl does not store the data or the regression
coefficients, so you must pass in them in using the name-value pair arguments
'Predictors' and 'Beta', respectively. Plot the estimated, filtered states. Recall that
the first state is the change in the unemployment rate, and the second state helps build
the first.

filteredX = filter(EstMdl,y,'Predictors',Z,'Beta',estParams(end-1:end));

figure

plot(dates(end-(T-1)+1:end),filteredX(:,1));

xlabel('Period')

ylabel('Change in the unemployment rate')

title('Filtered Change in the Unemployment Rate')

9 Functions — Alphabetical List

9-450

• “Filter Time-Varying State-Space Model” on page 8-62

Algorithms

• The Kalman filter accommodates missing data by not updating filtered state
estimates corresponding to missing observations. In other words, suppose there is
a missing observation at period t. Then, the state forecast for period t based on the
previous t – 1 observations and filtered state for period t are equivalent.

• For explicitly defined state-space models, ssm.filter applies all predictors to
each response series. However, each response series has its own set of regression
coefficients.

 filter

9-451

Tips

• Mdl does not store the response data, predictor data, and the regression coefficients.
Supply the data wherever necessary using the appropriate input or name-value pair
arguments.

• To accelerate estimation for low-dimensional, time-invariant models, set
'Univariate',true. Using this specification, the software sequentially updates
rather then updating all at once during the filtering process.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
estimate | forecast | refine | smooth | ssm

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

9 Functions — Alphabetical List

9-452

forecast
Forecast conditional variances from conditional variance models

Syntax
V = forecast(Mdl,numPeriods)

V = forecast(Mdl,numPeriods,Name,Value)

Description
V = forecast(Mdl,numPeriods) forecasts conditional variances of the fully specified,
univariate conditional variance model Mdl over the forecast horizon numPeriods. Mdl
can be a garch, egarch, or gjr model.

V = forecast(Mdl,numPeriods,Name,Value) generates forecasts with additional
options specified by one or more Name,Value pair arguments. For example, you can
specify presample responses or conditional variances.

Examples
Forecast GARCH Model Conditional Variances

Forecast the conditional variance of simulated data over a 30-period horizon.

Simulate 100 observations from a GARCH(1,1) model with known parameters.

Mdl = garch('Constant',0.02,'GARCH',0.8,'ARCH',0.1);

rng default; % For reproducibility

[v,y] = simulate(Mdl,100);

Forecast the conditional variances over a 30-period horizon, with and without using the
simulated data as presample innovations. Plot the forecasts.

vF1 = forecast(Mdl,30,'Y0',y);

vF2 = forecast(Mdl,30);

figure

plot(v,'Color',[.7,.7,.7])

hold on

 forecast

9-453

plot(101:130,vF1,'r','LineWidth',2);

plot(101:130,vF2,':','LineWidth',2);

title('Forecasted Conditional Variances')

legend('Observed','Forecasts with Presamples',...

 'Forecasts without Presamples','Location','NorthEast')

hold off

Forecasts made without using presample innovations equal the unconditional innovation
variance. Forecasts made using presample innovations converge asymptotically to the
unconditional innovation variance.

Forecast EGARCH Model Conditional Variances

Forecast the conditional variance of simulated data over a 30-period horizon.

9 Functions — Alphabetical List

9-454

Simulate 100 observations from an EGARCH(1,1) model with known parameters.

Mdl = egarch('Constant',0.01,'GARCH',0.6,'ARCH',0.2,...

 'Leverage',-0.2);

rng default; % For reproducibility

[v,y] = simulate(Mdl,100);

Forecast the conditional variance over a 30-period horizon, with and without using the
simulated data as presample innovations. Plot the forecasts.

Vf1 = forecast(Mdl,30,'Y0',y);

Vf2 = forecast(Mdl,30);

figure

plot(v,'Color',[.7,.7,.7])

hold on

plot(101:130,Vf1,'r','LineWidth',2);

plot(101:130,Vf2,':','LineWidth',2);

title('Forecasted Conditional Variances')

legend('Observed','Forecasts with Presamples',...

 'Forecasts without Presamples','Location','NorthEast')

hold off

 forecast

9-455

Forecasts made without using presample innovations equal the unconditional innovation
variance. Forecasts made using presample innovations converge asymptotically to the
unconditional innovation variance.

Forecast GJR Model Conditional Variances

Forecast the conditional variance of simulated data over a 30-period horizon.

Simulate 100 observations from a GJR(1,1) model with known parameters.

Mdl = gjr('Constant',0.01,'GARCH',0.6,'ARCH',0.2,...

 'Leverage',0.2);

rng default; % For reproducibility

9 Functions — Alphabetical List

9-456

[v,y] = simulate(Mdl,100);

Forecast the conditional variances over a 30-period horizon, with and without using the
simulated data as presample innovations. Plot the forecasts.

vF1 = forecast(Mdl,30,'Y0',y);

vF2 = forecast(Mdl,30);

figure

plot(v,'Color',[.7,.7,.7])

hold on

plot(101:130,vF1,'r','LineWidth',2);

plot(101:130,vF2,':','LineWidth',2);

title('Forecasted Conditional Variances')

legend('Observed','Forecasts with Presamples',...

 'Forecasts without Presamples','Location','NorthEast')

hold off

 forecast

9-457

Forecasts made without using presample innovations equal the unconditional innovation
variance. Forecasts made using presample innovations converge asymptotically to the
unconditional innovation variance.

Compare Conditional Variance Forecasts of NYSE Returns

Forecast the conditional variance of the NASDAQ Composite Index returns over a 500-
day horizon using GARCH(1,1), EGARCH(1,1) and GJR(1,1) models.

Load the NASDAQ data included with the toolbox. Convert the index to returns. Plot the
returns.

load Data_EquityIdx

9 Functions — Alphabetical List

9-458

nasdaq = DataTable.NASDAQ;

r = price2ret(nasdaq);

T = length(r);

meanR = mean(r)

figure;

plot(dates(2:end),r,dates(2:end),meanR*ones(T,1),'--r');

datetick;

title('Daily NASDAQ Returns');

xlabel('Day');

ylabel('Return');

meanR =

 4.7771e-04

 forecast

9-459

The variance of the series seems to change. This change is an indication of volatility
clustering. The conditional mean model offset is very close to zero.

Fit GARCH(1,1), EGARCH(1,1), and GJR(1,1) models to the data. By default, the
software sets the conditional mean model offset to zero.

MdlGARCH = garch(1,1);

MdlEGARCH = egarch(1,1);

MdlGJR = gjr(1,1);

EstMdlGARCH = estimate(MdlGARCH,r);

EstMdlEGARCH = estimate(MdlEGARCH,r);

EstMdlGJR = estimate(MdlGJR,r);

9 Functions — Alphabetical List

9-460

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 2.01008e-06 5.43141e-07 3.70085

 GARCH{1} 0.883294 0.00845285 104.497

 ARCH{1} 0.109193 0.00766209 14.2511

 EGARCH(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.134944 0.0220955 -6.10729

 GARCH{1} 0.983893 0.00242249 406.149

 ARCH{1} 0.19964 0.0139637 14.2971

 Leverage{1} -0.0602422 0.00564594 -10.67

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 2.45669e-06 5.68278e-07 4.32305

 GARCH{1} 0.881439 0.0094779 92.9995

 ARCH{1} 0.0639391 0.00917697 6.96735

 Leverage{1} 0.0889072 0.00990237 8.97838

Forecast the conditional variance for 500 days using the fitted models. Use the observed
returns as presample innovations for the forecasts.

vFGARCH = forecast(EstMdlGARCH,500,'Y0',r);

vFEGARCH = forecast(EstMdlEGARCH,500,'Y0',r);

vFGJR= forecast(EstMdlGJR,500,'Y0',r);

Plot the forecasts along with the conditional variances inferred from the data.

 forecast

9-461

vGARCH = infer(EstMdlGARCH,r);

vEGARCH = infer(EstMdlEGARCH,r);

vGJR = infer(EstMdlGJR,r);

datesFH = dates(end):(dates(end)+1000); % 1000 period forecast horizon

figure;

subplot(3,1,1);

plot(dates(end-250:end),vGARCH(end-250:end),'b',...

 datesFH(2:end-500),vFGARCH,'b--');

legend('Inferred','Forecast','Location','NorthEast');

title('GARCH(1,1) Conditional Variances');

datetick;

axis tight;

subplot(3,1,2);

plot(dates(end-250:end),vEGARCH(end-250:end),'r',...

 datesFH(2:end-500),vFEGARCH,'r--');

legend('Inferred','Forecast','Location','NorthEast');

title('EGARCH(1,1) Conditional Variances');

datetick;

axis tight;

subplot(3,1,3);

plot(dates(end-250:end),vGJR(end-250:end),'k',...

 datesFH(2:end-500),vFGJR,'k--');

legend('Inferred','Forecast','Location','NorthEast');

title('GJR(1,1) Conditional Variances');

datetick;

axis tight;

9 Functions — Alphabetical List

9-462

Plot conditional variance forecasts for 1000 days.

vF1000GARCH = forecast(EstMdlGARCH,1000,'Y0',r);

vF1000EGARCH = forecast(EstMdlEGARCH,1000,'Y0',r);

vF1000GJR = forecast(EstMdlGJR,1000,'Y0',r);

figure;

plot(datesFH(2:end),vF1000GARCH,'b',...

 datesFH(2:end),vF1000EGARCH,'r',...

 datesFH(2:end),vF1000GJR,'k');

legend('GARCH','EGARCH','GJR','Location','NorthEast');

title('Conditional Variance Forecast Asymptote')

datetick;

 forecast

9-463

The forecasts converge asymptotically to the unconditional variances of their repective
processes.

• “Forecast a Conditional Variance Model” on page 6-126
• “Forecast GJR Models” on page 6-123

Input Arguments

Mdl — Conditional variance model
garch model object | egarch model object | gjr model object

9 Functions — Alphabetical List

9-464

Conditional variance model without any unknown parameters, specified as a garch,
egarch, or gjr model object.

Mdl cannot contain any properties that have NaN value.

numPeriods — Forecast horizon
positive integer

Forecast horizon, specified as a positive integer.

The periods in the forecast horizon must be consistent with the periodicity of Mdl and the
presample data.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Y0',[1 1;0.5 0.5],'V0',[1 0.5;1 0.5] specifies two equivalent
presample paths of response data and two, different presample paths of conditional
variances.

'Y0' — Presample responses
numeric column vector | numeric matrix

Presample responses whose conditional variance is forecasted, specified as the comma-
separated pair consisting of 'Y0' and a numeric column vector or matrix.

Y0 usually represents a time series of presample innovations with mean 0 and variance
encompassed in the input conditional variance model Mdl. Y0 can also represent a time
series of innovations with mean 0 plus an offset. If Mdl has a nonzero offset, then the
software stores its value in the Offset property (Mdl.Offset).

If you specify Y0, then the software derives any necessary presample innovation
observations (E0) from Y0 by subtracting any offset. The software uses these presample
innovations as initial values for the conditional variance model forecast.

 forecast

9-465

Y0 must have at least Mdl.Q elements or rows to initialize the variance equation. If the
number of rows exceeds Mdl.Q, then the software uses the latest Mdl.Q observations to
derive presample innovations (denoted E0 in other methods).

• If Y0 is a column vector, it represents a single path of the underlying innovation
series. If V0 is a matrix, then forecast applies Y0 to each path.

• If Y0 is a matrix, then each column represents a presample path of the underlying
innovation series. If V0 is also a matrix, then Y0 must have the same number of
columns as V0.

The last element or row contains the latest observation.

For GARCH(P,Q) and GJR(P,Q) models, forecast sets any necessary presample
innovations to the unconditional standard deviation of the conditional variance model by
default.

For EGARCH(P,Q) models, filter sets any necessary presample innovations to zero by
default.
Data Types: double

'V0' — Presample conditional variances
numeric column vector with positive entries | numeric matrix with positive entries

Presample conditional variances, specified as the comma-separated pair consisting of
'V0' and a numeric column vector or matrix with positive entries. V0 provides initial
values for the conditional variance model.

• If V0 is a column vector, it represents a single presample path of the conditional
variance series. If Y0 is a matrix, then forecast applies V0 to each path.

• If V0 is a matrix, then each column represents a presample path of the underlying
conditional variance series. If Y0 is also a matrix, then V0 must have the same
number of columns as Y0.

• For GARCH(P,Q) and GJR(P,Q) models, V0 must have at least Mdl.P rows to
initialize the variance equation.

• For EGARCH(P,Q) models, V0 must have at least max(P,Q) rows to initialize the
variance equation.

If the number of elements or rows exceeds the necessary number, then forecast uses
the latest observations only.

9 Functions — Alphabetical List

9-466

The last row contains the latest observation.

If Y0 has at least max(P,Q) + P elements or rows, then forecast infers necessary
presample observations from the corresponding presample response data in Y0. If you do
not specify Y0 or it has insufficient length, the defaults are:

• For GARCH(P,Q) and GJR(P,Q) models, forecast sets any necessary presample
conditional variances to the unconditional variance of the conditional variance
process.

• For EGARCH(P,Q) models, forecast sets any necessary presample conditional
variances to the exponentiated, unconditional mean of the logarithm of the
EGARCH(P,Q) variance process.

Data Types: double

Notes

• NaNs indicate missing values. forecast removes missing values. The software
merges the presample data (Y0 and V0), and then uses list-wise deletion to remove

rows containing at least one NaN. Removing missing values in the data reduces the
sample size. Removing missing values can also create irregular time series.

• forecast assumes that you synchronize presample data such that the last
observation of each presample series occurs simultaneously.

Output Arguments

V — Minimum mean square error forecasts of conditional variances of future model innovations
numeric column vector | numeric matrix

Minimum mean square error forecasts of conditional variances of future model
innovations, returned as a numeric column vector or matrix. V has numPeriods rows
and the same number of columns as Y0 and V0. If you do not specify Y0 and V0, then V is
a column vector.

The first row (or element) of V contains the conditional variance forecasts in period 1, the
second row contains the conditional variance forecasts in period 2, and so on, until the
last row. The last row contains the conditional variance forecasts at the forecast horizon
specified by the input argument numPeriods.

 forecast

9-467

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “MMSE Forecasting of Conditional Variance Models” on page 6-117

References

[1] Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal
of Econometrics. Vol. 31, 1986, pp. 307–327.

[2] Bollerslev, T. “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return.” The Review of Economics and Statistics. Vol. 69,
1987, pp. 542–547.

[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[4] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[5] Engle, R. F. “Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

[6] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The
Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.

[7] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[8] Nelson, D. B. “Conditional Heteroskedasticity in Asset Returns: A New Approach.”
Econometrica. Vol. 59, 1991, pp. 347–370.

See Also
egarch | estimate | filter | garch | gjr | infer | print | simulate

Introduced in R2012a

9 Functions — Alphabetical List

9-468

forecast
Class: arima

Forecast ARIMA or ARIMAX process

Syntax

[Y,YMSE] = forecast(Mdl,numPeriods)

[Y,YMSE,V] = forecast(Mdl,numPeriods)

[Y,YMSE,V] = forecast(Mdl,numPeriods,Name,Value)

Description

[Y,YMSE] = forecast(Mdl,numPeriods) forecasts responses for a univariate
ARIMA model, and generates corresponding mean square errors, YMSE.

[Y,YMSE,V] = forecast(Mdl,numPeriods) additionally forecasts conditional
variances for an ARIMA model with a conditional variance model.

[Y,YMSE,V] = forecast(Mdl,numPeriods,Name,Value) generates the forecasts
with additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — ARIMA or ARIMAX model
arima model

ARIMA or ARIMAX model, specified as an arima model returned by arima or estimate.

The properties of Mdl cannot contain NaNs.

numPeriods — Forecast horizon
positive integer

Forecast horizon, specified as a positive integer.

 forecast

9-469

The periods in the forecast horizon must be consistent with the periodicity of Mdl and the
presample data.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'E0' — Presample innovations
numeric column vector | numeric matrix

Presample innovations that have mean 0 and provide initial values for the model,
specified as the comma-separated pair consisting of 'E0' and a numeric column vector
or numeric matrix. E0 must contain at least Mdl.Q rows. If you specify a conditional
variance model, then E0 might require more than Mdl.Q rows. If E0 contains extra rows,
then forecast only uses the latest presample innovations. The last row contains the
latest presample innovation. If E0 is a column vector, then the software applies it to each
forecasted path.

By default, if Y0 contains enough rows (at least Mdl.P + Mdl.Q), then forecast uses
infer and the presample data to infer E0. For models with a regression component,
if forecast infers E0, but X0 does not contain enough rows (at least the number of
rows of Y0 – Mdl.P), then forecast displays an error. If the number of rows of Y0 is
insufficient, then E0 is 0.

Data Types: double

'V0' — Presample conditional variances
numeric column vector with positive entries | numeric matrix with positive entries

Presample conditional variances providing initial values for any conditional variance
model, specified as the comma-separated pair consisting of 'V0' and a numeric column
vector or matrix with positive entries. If the variance of the model is constant, then V0
is unnecessary. V0 is a column vector or a matrix with numPaths columns with enough
rows to initialize the variance model. If V0 contains extra rows, then forecast only uses
the latest conditional variances. The last row contains the latest conditional variance. If
V0 is a column vector, then forecast applies it to each forecasted path.

9 Functions — Alphabetical List

9-470

By default, if E0 has sufficient length for the conditional variance model, then forecast
infers the necessary presample conditional variances from the corresponding innovations
E0. If E0 does not have sufficient length, then forecast sets V0 to the unconditional
variance of the variance process.
Data Types: double

'X0' — Presample predictor data
numeric matrix

Presample predictor data that indicates the presence of a regression component in the
conditional mean model, specified as the comma-separated pair of 'X0' and a numeric
matrix. The columns of X0 are separate time series. X0 and XF must have the same
number of columns. X0 must contain at least the number of rows of Y0 – Mdl.P. If X0
contains extra rows, then forecast only uses the latest observations. The last row
indicates the latest observation of each series.

By default, forecast does not include a regression component in the conditional mean
model regardless of the value of the regression coefficient Mdl.Beta.

Data Types: double

'XF' — Predictor forecasts
numeric matrix

Predictor forecasts, specified as the comma-separated pair of 'XF' and a numeric matrix.
The columns of XF are separate time series. XF and X0 must have the same number of
columns. XF must have at least numPeriods rows. Row i of XF contains the i period-
ahead forecasts of X0. If XF exceeds numPeriods rows, then forecast only uses the first
numPeriods forecasts. forecast treats XF as a fixed (nonstochastic) matrix.

By default, forecast does not include a regression component in the conditional mean
model regardless of the value of the regression coefficient Mdl.Beta.

'Y0' — Presample responses
numeric column vector | numeric matrix

Presample responses that provide initial values for the model, specified as the comma-
separated pair consisting of 'Y0' and a numeric column vector or numeric matrix. Y0
must contain at least Mdl.P rows. If the number of rows exceeds Mdl.P, then forecast
only uses the latest Mdl.P observations. The last row contains the latest observation. If
Y0 is a column vector, then it is applied to each forecasted path.

 forecast

9-471

By default, if the process is stationary and Mdl does not contain an regression
component, then forecast sets the necessary presample observations to the
unconditional mean of the process. Otherwise, Y0 is 0.

Data Types: double

Notes

• If any of E0, V0, or Y0 contain numPaths > 1 columns, then each must have either
numPaths columns or one column, otherwise an error occurs. For example, if Y0 has

five columns, then E0 and V0 can either have five columns or one column. If E0 has
one column, then it is applied to each path in Y0.

• NaNs indicate missing values and forecast removes them. The software merges the
presample data sets, then uses list-wise deletion to remove any NaNs. Removing NaNs
in the data reduces the sample size, and can also create irregular time series.

• forecast assumes that you synchronize presample data such that the latest
observation of each presample series occurs simultaneously.

• Set X0 to the same predictor matrix as X used in the estimation, simulation, or
inference of Mdl. This assignment ensures correct computation of the innovations E0.

Output Arguments

Y — Minimum mean square error forecasts of response data
numeric matrix

Minimum mean square error (MMSE) forecasts of the conditional mean of the response
data, returned as a numeric matrix. Y has numPeriods rows and numPaths columns.

forecast sets the number of columns of Y (numPaths) to the largest number of columns
of the presample arrays Y0, E0, and V0. If you do not specify Y0, E0, or V0, then Y is a
numPeriods column vector.

In all cases, row i contains the conditional mean forecasts for the ith period.
Data Types: double

YMSE — Mean square errors forecasts of conditional mean
numeric matrix

9 Functions — Alphabetical List

9-472

Mean square errors (MSE) forecasts of the conditional mean Y, returned as a numeric
matrix. YMSE has numPeriods rows and numPaths columns.

forecast sets the number of columns of YMSE (numPaths) to the largest number of
columns of the presample arrays Y0, E0, and V0. If you do not specify Y0, E0, or V0, then
Y is a numPeriods column vector.

In all cases, row i contains the forecast error variances for the ith period.

The square roots of YMSE are the standard errors of the forecasts of Y.

The predictor data does not contribute variability to YMSE because forecast treats XF
as a nonstochastic matrix.
Data Types: double

V — Minimum mean square error forecasts of conditional variances of future model innovations
numeric matrix

Minimum mean square error (MMSE) forecasts of the conditional variances of future
model innovations, returned as a numeric matrix. V has numPeriods rows and
numPaths columns.

forecast sets the number of columns of V (numPaths) to the largest number of columns
of the presample arrays Y0, E0, and V0. If you do not specify Y0, E0, and V0, then V is a
numPeriods column vector.

In all cases, row i contains the conditional variance forecasts for the ith period.
Data Types: double

Examples

Forecast the Conditional Mean Response

Forecast the conditional mean response of simulated data over a 30-period horizon.

Simulate 130 observations from a multiplicative seasonal MA model with known
parameter values.

Mdl = arima('MA',{0.5,-0.3},'SMA',0.4,'SMALags',12,...

 forecast

9-473

 'Constant',0.04,'Variance',0.2);

rng(200);

Y = simulate(Mdl,130);

Fit a seasonal MA model to the first 100 observations, and reserve the remaining 30
observations to evaluate forecast performance.

ToEstMdl = arima('MALags',1:2,'SMALags',12);

EstMdl = estimate(ToEstMdl,Y(1:100));

 ARIMA(0,0,2) Model with Seasonal MA(12):

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.20403 0.0690637 2.95424

 MA{1} 0.502116 0.0972984 5.16058

 MA{2} -0.20174 0.104466 -1.93115

 SMA{12} 0.27028 0.109071 2.47803

 Variance 0.18681 0.0327319 5.70728

EstMdl is a new arima model with parameters estimated.

Use the fitted model to forecast a 30-period horizon, and visually compare the forecasts to
the holdout data.

[YF YMSE] = forecast(EstMdl,30,'Y0',Y(1:100));

figure

h1 = plot(Y,'Color',[.7,.7,.7]);

hold on

h2 = plot(101:130,YF,'b','LineWidth',2);

h3 = plot(101:130,YF + 1.96*sqrt(YMSE),'r:',...

 'LineWidth',2);

plot(101:130,YF - 1.96*sqrt(YMSE),'r:','LineWidth',2);

legend([h1 h2 h3],'Observed','Forecast',...

 '95% Confidence Interval','Location','NorthWest');

title(['30-Period Forecasts and Approximate 95% '...

 'Confidence Intervals'])

hold off

9 Functions — Alphabetical List

9-474

Forecast the NASDAQ Composite Index

Forecast the daily NASDAQ Composite Index over a 500-day horizon.

Load the NASDAQ data included with the toolbox, and extract the first 1500
observations.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ(1:1500);

Fit an ARIMA(1,1,1) model to the data.

nasdaqModel = arima(1,1,1);

nasdaqFit = estimate(nasdaqModel,nasdaq);

 forecast

9-475

 ARIMA(1,1,1) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.430313 0.185554 2.31907

 AR{1} -0.0743894 0.081985 -0.907353

 MA{1} 0.311256 0.0772657 4.02838

 Variance 27.826 0.636248 43.7346

Forecast the Composite Index for 500 days using the fitted model. Use the observed data
as presample data.

[Y,YMSE] = forecast(nasdaqFit,500,'Y0',nasdaq);

Plot the forecasts and 95% forecast intervals.

lower = Y - 1.96*sqrt(YMSE);

upper = Y + 1.96*sqrt(YMSE);

figure

plot(nasdaq,'Color',[.7,.7,.7]);

hold on

h1 = plot(1501:2000,lower,'r:','LineWidth',2);

plot(1501:2000,upper,'r:','LineWidth',2)

h2 = plot(1501:2000,Y,'k','LineWidth',2);

legend([h1 h2],'95% Interval','Forecast',...

 'Location','NorthWest')

title('NASDAQ Composite Index Forecast')

hold off

9 Functions — Alphabetical List

9-476

The process is nonstationary, so the widths of the forecast intervals grow with time.

• “Forecast Multiplicative ARIMA Model” on page 5-192
• “Convergence of AR Forecasts” on page 5-186
• “Model Seasonal Lag Effects Using Indicator Variables” on page 5-117
• “Forecast Conditional Mean and Variance Model” on page 5-197
• “Forecast IGD Rate Using ARIMAX Model” on page 5-122

 forecast

9-477

References

[1] Baillie, R., and T. Bollerslev. “Prediction in Dynamic Models with Time-Dependent
Conditional Variances.” Journal of Econometrics. Vol. 52, 1992, pp. 91–113.

[2] Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal
of Econometrics. Vol. 31, 1996, pp. 307–327.

[3] Bollerslev, T. “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return.” The Review Economics and Statistics. Vol. 69, 1987,
pp. 542–547.

[4] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[5] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[6] Engle, R. F. “Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

[7] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | estimate | filter | impulse | infer | print | simulate

More About
• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

9 Functions — Alphabetical List

9-478

forecast
Class: regARIMA

Forecast responses of regression model with ARIMA errors

Syntax

[Y,YMSE] = forecast(Mdl,numPeriods)

[Y,YMSE,U] = forecast(Mdl,numPeriods)

[Y,YMSE,U] = forecast(Mdl,numPeriods,Name,Value)

Description

[Y,YMSE] = forecast(Mdl,numPeriods) forecasts responses (Y) for a regression
model with ARIMA time series errors and generates corresponding mean square errors
(YMSE).

[Y,YMSE,U] = forecast(Mdl,numPeriods) additionally forecasts unconditional
disturbances for a regression model with ARIMA errors.

[Y,YMSE,U] = forecast(Mdl,numPeriods,Name,Value) forecasts with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — Regression model with ARIMA errors
regARIMA model

Regression model with ARIMA errors, specified as a regARIMA model returned by
regARIMA or estimate.

The properties of Mdl cannot contain NaNs.

numPeriods — Forecast horizon
positive integer

 forecast

9-479

Forecast horizon, specified as a positive integer.

The periods in the forecast horizon must be consistent with the periodicity of Mdl and the
presample data.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'E0' — Presample innovations
numeric column vector | numeric matrix

Presample innovations that have mean 0 and provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'E0' and a numeric column
vector or numeric matrix.

• If E0 is a column vector, then forecast applies it to each forecasted path.
• If E0, Y0, and U0 are matrices with multiple paths, then they require the same

number of columns.
• E0 requires at least Mdl.Q rows. If E0 contains extra rows, then forecast uses the

latest presample innovations. The last row contains the latest presample innovation.

By default, if U0 contains at least Mdl.P + Mdl.Q rows, then forecast infers E0 from
U0. If U0 has an insufficient number of rows and forecast cannot infer sufficient
observations of U0 from the presample data (Y0 and X0), then E0 is 0.

Data Types: double

'U0' — Presample unconditional disturbances
numeric column vector | numeric matrix

Presample unconditional disturbances that provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'U0' and a numeric column
vector or numeric matrix.

• If U0 is a column vector, then forecast applies it to each forecasted path.

9 Functions — Alphabetical List

9-480

• If U0, Y0, and E0 are matrices with multiple paths, then they require the same
number of columns.

• U0 requires at least Mdl.P rows. If U0 contains extra rows, then forecast uses
the latest presample unconditional disturbances. The last row contains the latest
presample unconditional disturbance.

By default, if the presample data (Y0 and X0) contains at least Mdl.P rows, then
forecast infers U0 from the presample data. If you do not specify presample data, then
U0 is 0.

Data Types: double

'X0' — Presample predictor data
matrix

Presample predictor data that provides initial values for the regression model, specified
as the comma-separated pair consisting of 'X0' and a matrix. The columns of X0 are
separate time series.

• If you do not specify U0, then X0 requires at least Mdl.P rows to infer U0. If X0
contains extra rows, then forecast uses the latest observations. The last row
indicates the latest observation of each series.

• X0 requires the same number of columns as the length of Mdl.Beta.
• If you specify X0, then you must also specify XF.
• forecast treats X0 as a fixed (nonstochastic) matrix.

Data Types: double

'XF' — Predictor forecasts
numeric matrix

Predictor forecasts, specified as the comma-separated pair consisting of 'XF' and a
numeric matrix. The columns of XF are separate time series, each corresponding to
forecasts of the series in X0. Row i of XF contains the i period-ahead forecasts of X0.

If you specify X0, then you must also specify XF. XF and X0 require the same number of
columns. XF requires at least numPeriods rows. If XF exceeds numPeriods rows, then
forecast uses the first numPeriods forecasts.

forecast treats XF as a fixed (nonstochastic) matrix.

 forecast

9-481

By default, forecast does not include a regression component in the model regardless of
the presence of regression coefficients in Mdl.

Data Types: double

'Y0' — Presample responses
numeric column vector | numeric matrix

Presample responses that provide initial values for the regression model, specified as
the comma-separated pair consisting of 'Y0' and a numeric column vector or numeric
matrix.

• If Y0 is a column vector, then it is applied to each forecasted path.
• If Y0, E0, and U0 are matrices with multiple paths, then they all require the same

number of columns.
• If you do not specify U0, then Y0 requires at least Mdl.P rows to infer U0. If Y0

contains extra rows, then forecast uses the latest observations. The last row
indicates the latest observation.

Data Types: double

Notes

• NaNs in E0, U0, X0, XF, and Y0 indicate missing values and forecast removes them.
The software merges the presample data sets (E0, U0, X0, and Y0), then uses list-wise

deletion to remove any NaNs. forecast similarly removes NaNs from XF. Removing
NaNs in the data reduces the sample size. Such removal can also create irregular time
series.

• forecast assumes that you synchronize presample data such that the latest
observation of each presample series occurs simultaneously.

• Set X0 to the same predictor matrix as X used in the estimation, simulation, or
inference of Mdl. This assignment ensures correct inference of the unconditional
disturbances, U0.

Output Arguments

Y — Minimum mean square error forecasts of response data
numeric matrix

9 Functions — Alphabetical List

9-482

Minimum mean square error (MMSE) forecasts of the response data, returned as a
numeric matrix. Y has numPeriods rows and numPaths columns.

• If you do not specify Y0, E0, and U0, then Y is a numPeriods column vector.
• If you specify Y0, E0, and U0, all having numPaths columns, then Y is a numPeriods-

by-numPaths matrix.
• Row i of Y contains the forecasts for the ith period.

Data Types: double

YMSE — Mean square errors of forecasted responses
numeric matrix

Mean square errors (MSEs) of the forecasted responses, returned as a numeric matrix.
YMSE has numPeriods rows and numPaths columns.

• If you do not specify Y0, E0, and U0, then YMSE is a numPeriods column vector.
• If you specify Y0, E0, and U0, all having numPaths columns, then YMSE is a

numPeriods-by-numPaths matrix.
• Row i of YMSE contains the forecast error variances for the ith period.
• The predictor data does not contribute variability to YMSE because forecast treats

XF as a nonstochastic matrix.
• The square roots of YMSE are the standard errors of the forecasts of Y.

Data Types: double

U — Minimum mean square error forecasts of future ARIMA error model unconditional
disturbances
numeric matrix

Minimum mean square error (MMSE) forecasts of future ARIMA error model
unconditional disturbances, returned as a numeric matrix. U has numPeriods rows and
numPaths columns.

• If you do not specify Y0, E0, and U0, then U is a numPeriods column vector.
• If you specify Y0, E0, and U0, all having numPaths columns, then U is a numPeriods-

by-numPaths matrix.
• Row i of U contains the forecasted unconditional disturbances for the ith period.

Data Types: double

 forecast

9-483

Examples

Forecast Responses of a Regression Model with ARIMA Errors

Forecast responses from the following regression model with ARMA(2,1) errors over a 30-
period horizon:

where is Gaussian with variance 0.1.

Specify the model. Simulate responses from the model and two predictor series.

Mdl = regARIMA('Intercept',0,'AR',{0.5 -0.8},...

 'MA',-0.5,'Beta',[0.1 -0.2],'Variance',0.1);

rng(1); % For reproducibility

X = randn(130,2);

y = simulate(Mdl,130,'X',X);

Fit the model to the first 100 observations, and reserve the remaining 30 observations to
evaluate forecast performance.

ToEstMdl = regARIMA('ARLags',1:2);

EstMdl = estimate(ToEstMdl,y(1:100),'X',X(1:100,:));

[yF,yMSE] = forecast(EstMdl,30,'Y0',y(1:100),...

 'X0',X(1:100,:),'XF',X(101:end,:));

 Regression with ARIMA(2,0,0) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.00435796 0.0213144 0.20446

 AR{1} 0.368332 0.067103 5.48906

 AR{2} -0.750627 0.0908646 -8.26094

 Beta1 0.0763979 0.0230081 3.32048

 Beta2 -0.139598 0.0232979 -5.99189

 Variance 0.0798765 0.0134196 5.95222

9 Functions — Alphabetical List

9-484

EstMdl is a new regARIMA model containing the estimates. The estimates are close to
their true values.

Use EstMdl to forecast a 30-period horizon. Visually compare the forecasts to the holdout
data using a plot.

[yF,yMSE] = forecast(EstMdl,30,'Y0',y(1:100),...

 'X0',X(1:100,:),'XF',X(101:end,:));

figure

plot(y,'Color',[.7,.7,.7]);

hold on

plot(101:130,yF,'b','LineWidth',2);

plot(101:130,yF+1.96*sqrt(yMSE),'r:',...

 'LineWidth',2);

plot(101:130,yF-1.96*sqrt(yMSE),'r:','LineWidth',2);

h = gca;

ph = patch([repmat(101,1,2) repmat(130,1,2)],...

 [h.YLim fliplr(h.YLim)],...

 [0 0 0 0],'b');

ph.FaceAlpha = 0.1;

legend('Observed','Forecast',...

 '95% Forecast Interval','Location','Best');

title(['30-Period Forecasts and Approximate 95% '...

 'Forecast Intervals'])

axis tight

hold off

 forecast

9-485

Many observations in the holdout sample fall beyond the 95% forecast intervals. Two
reasons for this are:

• The predictors are randomly generated in this example. estimate treats the
predictors as fixed. Subsequently, the 95% forecast intervals based on the estimates
from estimate do not account for the variability in the predictors.

• By shear chance, the estimation period seems less volatile than the forecast period.
estimate uses the less volatile estimation period data to estimate the parameters.

9 Functions — Alphabetical List

9-486

Therefore, forecast intervals based on the estimates should not cover observations
that have an underlying innovations process with larger variability.

Forecast the GDP Using a Regression Model with ARMA Errors

Forecast stationary, log GDP using a regression model with ARMA(1,1) errors, including
CPI as a predictor.

Load the U.S. macroeconomic data set and preprocess the data.

load Data_USEconModel;

logGDP = log(DataTable.GDP);

dlogGDP = diff(logGDP); % For stationarity

dCPI = diff(DataTable.CPIAUCSL); % For stationarity

numObs = length(dlogGDP);

gdp = dlogGDP(1:end-15); % Estimation sample

cpi = dCPI(1:end-15);

T = length(gdp); % Effective sample size

frstHzn = T+1:numObs; % Forecast horizon

hoCPI = dCPI(frstHzn); % Holdout sample

dts = dates(2:end); % Date nummbers

Fit a regression model with ARMA(1,1) errors.

ToEstMdl = regARIMA('ARLags',1,'MALags',1);

EstMdl = estimate(ToEstMdl,gdp,'X',cpi);

 Regression with ARIMA(1,0,1) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.0147934 0.00162892 9.08176

 AR{1} 0.576012 0.100093 5.75477

 MA{1} -0.152584 0.119784 -1.27382

 Beta1 0.00289724 0.00139893 2.07104

 Variance 9.57339e-05 6.55617e-06 14.6021

Forecast the GDP rate over a 15-quarter horizon. Use the estimation sample as a
presample for the forecast.

[gdpF,gdpMSE] = forecast(EstMdl,15,'Y0',gdp,...

 forecast

9-487

 'X0',cpi,'XF',hoCPI);

Plot the forecasts and 95% forecast intervals.

figure

h1 = plot(dts(end-65:end),dlogGDP(end-65:end),...

 'Color',[.7,.7,.7]);

datetick

hold on

h2 = plot(dts(frstHzn),gdpF,'b','LineWidth',2);

h3 = plot(dts(frstHzn),gdpF+1.96*sqrt(gdpMSE),'r:',...

 'LineWidth',2);

plot(dts(frstHzn),gdpF-1.96*sqrt(gdpMSE),'r:','LineWidth',2);

ha = gca;

legend([h1 h2 h3],'Observed GDP rate',...

 'Forecasted GDP rate ',...

 '95% Forecast Interval','Location','Best');

title(['{\bf Forecasts and Approximate 95% }'...

 '{\bf Forecast Intervals for GDP rate}']);

ph = patch([repmat(dts(frstHzn(1)),1,2) repmat(dts(frstHzn(end)),1,2)],...

 [ha.YLim fliplr(ha.YLim)],...

 [0 0 0 0],'b');

ph.FaceAlpha = 0.1;

axis tight

hold off

9 Functions — Alphabetical List

9-488

Forecast Using a Regression Model with ARIMA Errors and a Known Intercept

Forecast unit root nonstationary, log GDP using a regression model with ARIMA(1,1,1)
errors, including CPI as a predictor and a known intercept.

Load the U.S. Macroeconomic data set and preprocess the data.

load Data_USEconModel;

numObs = length(DataTable.GDP);

logGDP = log(DataTable.GDP(1:end-15));

cpi = DataTable.CPIAUCSL(1:end-15);

T = length(logGDP); % Effective sample size

frstHzn = T+1:numObs; % Forecast horizon

hoCPI = DataTable.CPIAUCSL(frstHzn); % Holdout sample

 forecast

9-489

Specify the model for the estimation period.

ToEstMdl = regARIMA('ARLags',1,'MALags',1,'D',1);

The intercept is not identifiable in a model with integrated errors, so fix its value before
estimation. One way to do this is to estimate the intercept using simple linear regression.

Reg4Int = [ones(T,1), cpi]\logGDP;

intercept = Reg4Int(1);

Consider performing a sensitivity analysis by using a grid of intercepts.

Set the intercept and fit the regression model with ARIMA(1,1,1) errors.

ToEstMdl.Intercept = intercept;

EstMdl = estimate(ToEstMdl,logGDP,'X',cpi,...

 'Display','off')

EstMdl =

 Regression with ARIMA(1,1,1) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 5.80142

 Beta: [0.00396694]

 P: 2

 D: 1

 Q: 1

 AR: {0.922708} at Lags [1]

 SAR: {}

 MA: {-0.387844} at Lags [1]

 SMA: {}

 Variance: 0.000108942

Forecast GDP over a 15-quarter horizon. Use the estimation sample as a presample for
the forecast.

[gdpF,gdpMSE] = forecast(EstMdl,15,'Y0',logGDP,...

 'X0',cpi,'XF',hoCPI);

Plot the forecasts and 95% forecast intervals.

figure

h1 = plot(dates(end-65:end),log(DataTable.GDP(end-65:end)),...

 'Color',[.7,.7,.7]);

datetick

9 Functions — Alphabetical List

9-490

hold on

h2 = plot(dates(frstHzn),gdpF,'b','LineWidth',2);

h3 = plot(dates(frstHzn),gdpF+1.96*sqrt(gdpMSE),'r:',...

 'LineWidth',2);

plot(dates(frstHzn),gdpF-1.96*sqrt(gdpMSE),'r:',...

 'LineWidth',2);

ha = gca;

legend([h1 h2 h3],'Observed GDP','Forecasted GDP',...

 '95% Forecast Interval','Location','Best');

title(['{\bf Forecasts and Approximate 95% }'...

 '{\bf Forecast Intervals for log GDP}']);

ph = patch([repmat(dates(frstHzn(1)),1,2) repmat(dates(frstHzn(end)),1,2)],...

 [ha.YLim fliplr(ha.YLim)],...

 [0 0 0 0],'b');

ph.FaceAlpha = 0.1;

axis tight

hold off

 forecast

9-491

The unconditional disturbances, , are nonstationary, therefore the widths of the
forecast intervals grow with time.

Algorithms

forecast computes the forecasted response MSEs, YMSE, by treating the predictor
data matrices (X0 and XF) as nonstochastic and statistically independent of the model
innovations. Therefore, YMSE reflects the variance associated with the unconditional
disturbances of the ARIMA error model alone.

9 Functions — Alphabetical List

9-492

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Davidson, R., and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[3] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc.,
1995.

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[5] Pankratz, A. Forecasting with Dynamic Regression Models. John Wiley & Sons, Inc.,
1991.

[6] Tsay, R. S. Analysis of Financial Time Series. 2nd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2005.

See Also
regARIMA | estimate | infer | simulate

More About
• “MMSE Forecasting of Conditional Mean Models” on page 5-182
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

 forecast

9-493

forecast

Class: dssm

Forecast states and observations of diffuse state-space models

Syntax

[Y,YMSE] = forecast(Mdl,numPeriods,Y0)

[Y,YMSE] = forecast(Mdl,numPeriods,Y0,Name,Value)

[Y,YMSE,X,XMSE] = forecast(___)

Description

[Y,YMSE] = forecast(Mdl,numPeriods,Y0) returns forecasted observations (Y) and
their corresponding variances (YMSE) from forecasting the diffuse state-space model Mdl
using a numPeriods forecast horizon and in-sample observations Y0.

[Y,YMSE] = forecast(Mdl,numPeriods,Y0,Name,Value) uses additional options
specified by one or more Name,Value pair arguments. For example, for state-space
models that include a linear regression component in the observation model, include
in-sample predictor data, predictor data for the forecast horizon, and the regression
coefficient.

[Y,YMSE,X,XMSE] = forecast(___) uses any of the input arguments in the
previous syntaxes to additionally return state forecasts (X) and their corresponding
variances (XMSE).

Tip

Mdl does not store the response data, predictor data, and the regression coefficients.
Supply them whenever necessary using the appropriate input or name-value pair
arguments.

9 Functions — Alphabetical List

9-494

Input Arguments

Mdl — Diffuse state-space model
dssm model object

Diffuse state-space model, specified as an dssm model object returned by dssm or
estimate.

If Mdl is not fully specified (that is, Mdl contains unknown parameters), then specify
values for the unknown parameters using the 'Params' name-value pair argument.
Otherwise, the software issues an error. estimate returns fully-specified state-space
models.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary using the appropriate input or name-value pair arguments.

numPeriods — Forecast horizon
positive integer

Forecast horizon, specified as a positive integer. That is, the software returns
1,..,numPeriods forecasts.

Data Types: double

Y0 — In-sample, observed responses
cell vector of numeric vectors | numeric matrix

In-sample, observed responses, specified as a cell vector of numeric vectors or a matrix.

• If Mdl is time invariant, then Y0 is a T-by-n numeric matrix, where each row
corresponds to a period and each column corresponds to a particular observation in
the model. Therefore, T is the sample size and m is the number of observations per
period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1
cell vector. Each element of the cell vector corresponds to a period and contains an
nt-dimensional vector of observations for that period. The corresponding dimensions
of the coefficient matrices in Mdl.C{t} and Mdl.D{t} must be consistent with the
matrix in Y{t} for all periods. The last cell of Y contains the latest observations.

If Mdl is an estimated state-space model (that is, returned by estimate), then it is best
practice to set Y0 to the same data set that you used to fit Mdl.

 forecast

9-495

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-510.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'A' — Forecast-horizon, state-transition, coefficient matrices
cell vector of numeric matrices

Forecast-horizon, state-transition, coefficient matrices, specified as the comma-separated
pair consisting of 'A' and a cell vector of numeric matrices.

A must contain at least numPeriods cells. Each cell must contain a matrix specifying
how the states transition in the forecast horizon. If the length of A is greater than
numPeriods, then the software uses the first numPeriods cells. The last cell indicates
the latest period in the forecast horizon.

The matrices in A cannot contain NaN values.

If Mdl is time invariant with respect to the states, then each cell of A must contain an m-
by-m matrix, where m is the number of the in-sample states per period. By default, the
software uses Mdl.A throughout the forecast horizon.

If Mdl is time varying with respect to the states, then the dimensions of the matrices
in the cells of A may vary, but the dimensions of each matrix must be consistent with
the matrices in B and C in the corresponding periods. By default, the software uses
Mdl.A{end} throughout the forecast horizon.

Data Types: cell

'B' — Forecast-horizon, state-disturbance-loading, coefficient matrices
cell vector of matrices

Forecast-horizon, state-disturbance-loading, coefficient matrices, specified as the comma-
separated pair consisting of 'B' and a cell vector of matrices.

9 Functions — Alphabetical List

9-496

B must contain at least numPeriods cells. Each cell must contain a matrix specifying
how the states transition in the forecast horizon. If the length of B is greater than
numPeriods, then the software uses the first numPeriods cells. The last cell indicates
the latest period in the forecast horizon.

The matrices in B cannot contain NaN values.

If Mdl is time invariant with respect to the states and state disturbances, then each cell
of B must contain an m-by-k matrix, where m is the number of the in-sample states per
period, and k is the number of in-sample, state disturbances per period. By default, the
software uses Mdl.B throughout the forecast horizon.

If Mdl is time varying, then the dimensions of the matrices in the cells of B may vary,
but the dimensions of each matrix must be consistent with the matrices in A in the
corresponding periods. By default, the software uses Mdl.B{end} throughout the
forecast horizon.
Data Types: cell

'C' — Forecast-horizon, measurement-sensitivity, coefficient matrices
cell vector of matrices

Forecast-horizon, measurement-sensitivity, coefficient matrices, specified as the comma-
separated pair consisting of 'C' and a cell vector of matrices.

C must contain at least numPeriods cells. Each cell must contain a matrix specifying
how the states transition in the forecast horizon. If the length of C is greater than
numPeriods, then the software uses the first numPeriods cells. The last cell indicates
the latest period in the forecast horizon.

The matrices in C cannot contain NaN values.

If Mdl is time invariant with respect to the states and the observations, then each cell of
C must contain an n-by-m matrix, where n is the number of the in-sample observations
per period, and m is the number of in-sample states per period. By default, the software
uses Mdl.C throughout the forecast horizon.

If Mdl is time varying with respect to the states or the observations, then the dimensions
of the matrices in the cells of C may vary, but the dimensions of each matrix must be
consistent with the matrices in A and D in the corresponding periods. By default, the
software uses Mdl.C{end} throughout the forecast horizon.

Data Types: cell

 forecast

9-497

'D' — Forecast-horizon, observation-innovation, coefficient matrices
cell vector of matrices

Forecast-horizon, observation-innovation, coefficient matrices, specified as the comma-
separated pair consisting of 'D' and a cell vector of matrices.

D must contain at least numPeriods cells. Each cell must contain a matrix specifying
how the states transition in the forecast horizon. If the length of D is greater than
numPeriods, then the software uses the first numPeriods cells. The last cell indicates
the latest period in the forecast horizon.

The matrices in D cannot contain NaN values.

If Mdl is time invariant with respect to the observations and the observation innovations,
then each cell of D must contain an n-by-h matrix, where n is the number of the
in-sample observations per period, and h is the number of in-sample, observation
innovations per period. By default, the software uses Mdl.D throughout the forecast
horizon.

If Mdl is time varying with respect to the observations or the observation innovations,
then the dimensions of the matrices in the cells of D may vary, but the dimensions of
each matrix must be consistent with the matrices in C in the corresponding periods. By
default, the software uses Mdl.D{end} throughout the forecast horizon.

Data Types: cell

'Beta' — Regression coefficients
[] (default) | numeric matrix

Regression coefficients corresponding to predictor variables, specified as the comma-
separated pair consisting of 'Beta' and a d-by-n numeric matrix. d is the number
of predictor variables (see Predictors0 and PredictorsF) and n is the number of
observed response series (see Y0).

If you specify Beta, then you must also specify Predictors0 and PredictorsF.

If Mdl is an estimated state-space model, then specify the estimated regression
coefficients stored in Mdl.estParams.

By default, the software excludes a regression component from the state-space model.

'Predictors0' — In-sample, predictor variables in state-space model observation equation
[] (default) | matrix

9 Functions — Alphabetical List

9-498

In-sample, predictor variables in the state-space model observation equation, specified as
the comma-separated pair consisting of 'Predictors0' and a matrix. The columns of
Predictors0 correspond to individual predictor variables. Predictors0 must have T
rows, where row t corresponds to the observed predictors at period t (Zt). The expanded
observation equation is

y Z Cx Dut t t t- = +b .

that is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters.

If there are n observations per period, then the software regresses all predictor series
onto each observation.

If you specify Predictors0, then Mdl must be time invariant. Otherwise, the software
returns an error.

If you specify Predictors0, then you must also specify Beta and PredictorsF.

If Mdl is an estimated state-space model (that is, returned by estimate), then it is best
practice to set Predictors0 to the same predictor data set that you used to fit Mdl.

By default, the software excludes a regression component from the state-space model.
Data Types: double

'PredictorsF' — Forecast-horizon, predictor variables in state-space model observation
equation
[] (default) | numeric matrix

In-sample, predictor variables in the state-space model observation equation, specified as
the comma-separated pair consisting of 'Predictors0' and a T-by-d numeric matrix.
T is the number of in-sample periods and d is the number of predictor variables. Row
t corresponds to the observed predictors at period t (Zt). The expanded observation
equation is

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters.

 forecast

9-499

If there are n observations per period, then the software regresses all predictor series
onto each observation.

If you specify Predictors0, then Mdl must be time invariant. Otherwise, the software
returns an error.

If you specify Predictors0, then you must also specify Beta and PredictorsF.

If Mdl is an estimated state-space model (that is, returned by estimate), then it is best
practice to set Predictors0 to the same predictor data set that you used to fit Mdl.

By default, the software excludes a regression component from the state-space model.
Data Types: double

Output Arguments

Y — Forecasted observations
matrix | cell vector of numeric vectors

Forecasted observations, returned as a matrix or a cell vector of numeric vectors.

If Mdl is a time-invariant, state-space model with respect to the observations, then Y is a
numPeriods-by-n matrix.

If Mdl is a time-varying, state-space model with respect to the observations, then Y is a
numPeriods-by-1 cell vector of numeric vectors. Cell t of Y contains an nt-by-1 numeric
vector of forecasted observations for period t.

YMSE — Error variances of forecasted observations
matrix | cell vector of numeric vectors

Error variances of forecasted observations, returned as a matrix or a cell vector of
numeric vectors.

If Mdl is a time-invariant, state-space model with respect to the observations, then YMSE
is a numPeriods-by-n matrix.

If Mdl is a time-varying, state-space model with respect to the observations, then YMSE
is a numPeriods-by-1 cell vector of numeric vectors. Cell t of YMSE contains an nt-by-1
numeric vector of error variances for the corresponding forecasted observations for period
t.

9 Functions — Alphabetical List

9-500

X — State forecasts
matrix | cell vector of numeric vectors

State forecasts, returned as a matrix or a cell vector of numeric vectors.

If Mdl is a time-invariant, state-space model with respect to the states, then X is a
numPeriods-by-m matrix.

If Mdl is a time-varying, state-space model with respect to the states, then X is a
numPeriods-by-1 cell vector of numeric vectors. Cell t of X contains an mt-by-1 numeric
vector of forecasted observations for period t.

XMSE — Error variances of state forecasts
matrix | cell vector of numeric vectors

Error variances of state forecasts, returned as a matrix or a cell vector of numeric
vectors.

If Mdl is a time-invariant, state-space model with respect to the states, then XMSE is a
numPeriods-by-m matrix.

If Mdl is a time-varying, state-space model with respect to the states, then XMSE is a
numPeriods-by-1 cell vector of numeric vectors. Cell t of XMSE contains an mt-by-1
numeric vector of error variances for the corresponding forecasted observations for period
t.

Examples
Forecast Observations of Time-Invariant Diffuse State-Space Model

Suppose that a latent process is a random walk. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

x0 = 1.5;

rng(1); % For reproducibility

u = randn(T,1);

 forecast

9-501

x = cumsum([x0;u]);

x = x(2:end);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 1;

B = 1;

C = 1;

D = 0.75;

Create the diffuse state-space model using the coefficient matrices. Specify that the inital
state distribution is diffuse.

Mdl = dssm(A,B,C,D,'StateType',2)

Mdl =

State-space model type: dssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

9 Functions — Alphabetical List

9-502

x1(t) = x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 Inf

State types

 x1

 Diffuse

Mdl is an dssm model. Verify that the model is correctly specified using the display in the
Command Window.

Forecast observations 10 periods into the future, and estimate the mean squared errors
of the forecasts.

numPeriods = 10;

[ForecastedY,YMSE] = forecast(Mdl,numPeriods,y);

Plot the forecasts with the in-sample responses, and 95% Wald-type forecast intervals.

ForecastIntervals(:,1) = ForecastedY - 1.96*sqrt(YMSE);

ForecastIntervals(:,2) = ForecastedY + 1.96*sqrt(YMSE);

figure

plot(T-20:T,y(T-20:T),'-k',T+1:T+numPeriods,ForecastedY,'-.r',...

 T+1:T+numPeriods,ForecastIntervals,'-.b',...

 T:T+1,[y(end)*ones(3,1),[ForecastedY(1);ForecastIntervals(1,:)']],':k',...

 'LineWidth',2)

hold on

title({'Observed Responses and Their Forecasts'})

xlabel('Period')

ylabel('Responses')

legend({'Observations','Forecasted observations','95% forecast intervals'},...

 'Location','Best')

 forecast

9-503

hold off

The forecast intervals flare out because the process is nonstationary.

Forecast Observations of Diffuse State-Space Model Containing Regression Component

Suppose that the linear relationship between unemployment rate and the nominal gross
national product (nGNP) is of interest. Suppose further that unemployment rate is an
AR(1) series. Symbolically, and in state-space form, the model is

where:

9 Functions — Alphabetical List

9-504

• is the unemployment rate at time t.
• is the observed change in the unemployment rate being deflated by the return of

nGNP ().
• is the Gaussian series of state disturbances having mean 0 and unknown standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and removing
the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

y = diff(DataTable.UR(~isNaN));

T = size(gnpn,1); % The sample size

Z = price2ret(gnpn);

This example continues using the series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

To determine how well the model forecasts observations, remove the last 10 observations
for comparison.

numPeriods = 10; % Forecast horizon

isY = y(1:end-numPeriods); % In-sample observations

oosY = y(end-numPeriods+1:end); % Out-of-sample observations

ISZ = Z(1:end-numPeriods); % In-sample predictors

OOSZ = Z(end-numPeriods+1:end); % Out-of-sample predictors

Specify the coefficient matrices.

A = NaN;

B = NaN;

C = 1;

Create the state-space model using dssm by supplying the coefficient matrices and
specifying that the state values come from a diffuse distribution. The diffuse specification
indicates complete ignorance about the moments of the initial distribution.

StateType = 2;

Mdl = dssm(A,B,C,'StateType',StateType);

 forecast

9-505

Estimate the parameters. Specify the regression component and its initial value for
optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Display the estimates and all optimization diagnostic information. Restrict
the estimate of to all positive, real numbers.

params0 = [0.3 0.2]; % Initial values chosen arbitrarily

Beta0 = 0.1;

[EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,'Beta0',Beta0,...

 'lb',[-Inf 0 -Inf]);

Method: Maximum likelihood (fmincon)

Effective Sample size: 60

Logarithmic likelihood: -110.477

Akaike info criterion: 226.954

Bayesian info criterion: 233.287

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.59436 0.09408 6.31738 0

 c(2) | 1.52554 0.10758 14.17991 0

 y <- z(1) | -24.26161 1.55730 -15.57930 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 2.54764 0 Inf 0

EstMdl is a dssm model, and you can access its properties using dot notation.

Forecast observations over the forecast horizon. EstMdl does not store the data set, so
you must pass it in appropriate name-value pair arguments.

[fY,yMSE] = forecast(EstMdl,numPeriods,isY,'Predictors0',ISZ,...

 'PredictorsF',OOSZ,'Beta',estParams(end));

fY is a 10-by-1 vector containing the forecasted observations, and yMSE is a 10-by-1
vector containing the variances of the forecasted observations.

Obtain 95% Wald-type forecast intervals. Plot the forecasted observations with their true
values and the forecast intervals.

ForecastIntervals(:,1) = fY - 1.96*sqrt(yMSE);

ForecastIntervals(:,2) = fY + 1.96*sqrt(yMSE);

figure

h = plot(dates(end-numPeriods-9:end-numPeriods),isY(end-9:end),'-k',...

 dates(end-numPeriods+1:end),oosY,'-k',...

9 Functions — Alphabetical List

9-506

 dates(end-numPeriods+1:end),fY,'--r',...

 dates(end-numPeriods+1:end),ForecastIntervals,':b',...

 dates(end-numPeriods:end-numPeriods+1),...

 [isY(end)*ones(4,1),[oosY(1);ForecastIntervals(1,:)';fY(1)]],':k',...

 'LineWidth',2);

xlabel('Period')

ylabel('Change in unemployment rate')

legend(h([1,3,4]),{'Observations','Forecasted responses',...

 '95% forecast intervals'})

title('Observed and Forecasted Changes in the Unemployment Rate')

Forecast States of Diffuse State-Space Model

Suppose that a latent process is a random walk. Subsequently, the state equation is

 forecast

9-507

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

x0 = 1.5;

rng(1); % For reproducibility

u = randn(T,1);

x = cumsum([x0;u]);

x = x(2:end);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 1;

B = 1;

C = 1;

D = 0.75;

Create the diffuse state-space model using the coefficient matrices. Specify that the inital
state distribution is diffuse.

Mdl = dssm(A,B,C,D,'StateType',2)

Mdl =

State-space model type: dssm

9 Functions — Alphabetical List

9-508

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 Inf

State types

 x1

 Diffuse

Mdl is an dssm model. Verify that the model is correctly specified using the display in the
Command Window.

Forecast states 10 periods into the future, and estimate the mean squared errors of the
forecasts.

numPeriods = 10;

[~,~,ForecastedX,XMSE] = forecast(Mdl,numPeriods,y);

Plot the forecasts with the in-sample states, and 95% Wald-type forecast intervals.

ForecastIntervals(:,1) = ForecastedX - 1.96*sqrt(XMSE);

 forecast

9-509

ForecastIntervals(:,2) = ForecastedX + 1.96*sqrt(XMSE);

figure

plot(T-20:T,x(T-20:T),'-k',T+1:T+numPeriods,ForecastedX,'-.r',...

 T+1:T+numPeriods,ForecastIntervals,'-.b',...

 T:T+1,[x(end)*ones(3,1),[ForecastedX(1);ForecastIntervals(1,:)']],':k',...

 'LineWidth',2)

hold on

title({'State Values and Their Forecasts'})

xlabel('Period')

ylabel('State value')

legend({'State Values','Forecasted states','95% forecast intervals'},...

 'Location','Best')

hold off

9 Functions — Alphabetical List

9-510

The forecast intervals flare out because the process is nonstationary.

• “Forecast Time-Varying Diffuse State-Space Model” on page 8-156
• “Choose State-Space Model Specification Using Backtesting” on page 8-181

Algorithms

The Kalman filter accommodates missing data by not updating filtered state estimates
corresponding to missing observations. In other words, suppose there is a missing
observation at period t. Then, the state forecast for period t based on the previous t – 1
observations and filtered state for period t are equivalent.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
dssm | estimate | filter | smooth

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8
• “Rolling Window Analysis for Predictive Performance” on page 8-169

Introduced in R2015b

 forecast

9-511

forecast
Class: ssm

Forecast states and observations of state-space models

Syntax
[Y,YMSE] = forecast(Mdl,numPeriods,Y0)

[Y,YMSE] = forecast(Mdl,numPeriods,Y0,Name,Value)

[Y,YMSE,X,XMSE] = forecast(___)

Description
[Y,YMSE] = forecast(Mdl,numPeriods,Y0) returns forecasted observations (Y) and
their corresponding variances (YMSE) from forecasting the state-space model Mdl using a
numPeriods forecast horizon and in-sample observations Y0.

[Y,YMSE] = forecast(Mdl,numPeriods,Y0,Name,Value) uses additional options
specified by one or more Name,Value pair arguments. For example, for state-space
models that include a linear regression component in the observation model, include
in-sample predictor data, predictor data for the forecast horizon, and the regression
coefficient.

[Y,YMSE,X,XMSE] = forecast(___) uses any of the input arguments in the
previous syntaxes to additionally return state forecasts (X) and their corresponding
variances (XMSE).

Input Arguments
Mdl — Standard state-space model
ssm model object

Standard state-space model, specified as an ssm model object returned by ssm or
estimate.

If Mdl is not fully specified (that is, Mdl contains unknown parameters), then specify
values for the unknown parameters using the 'Params' name-value pair argument.

9 Functions — Alphabetical List

9-512

Otherwise, the software issues an error. estimate returns fully-specified state-space
models.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary using the appropriate input or name-value pair arguments.

numPeriods — Forecast horizon
positive integer

Forecast horizon, specified as a positive integer. That is, the software returns
1,..,numPeriods forecasts.

Data Types: double

Y0 — In-sample, observed responses
cell vector of numeric vectors | numeric matrix

In-sample, observed responses, specified as a cell vector of numeric vectors or a matrix.

• If Mdl is time invariant, then Y0 is a T-by-n numeric matrix, where each row
corresponds to a period and each column corresponds to a particular observation in
the model. Therefore, T is the sample size and m is the number of observations per
period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1
cell vector. Each element of the cell vector corresponds to a period and contains an
nt-dimensional vector of observations for that period. The corresponding dimensions
of the coefficient matrices in Mdl.C{t} and Mdl.D{t} must be consistent with the
matrix in Y{t} for all periods. The last cell of Y contains the latest observations.

If Mdl is an estimated state-space model (that is, returned by estimate), then it is best
practice to set Y0 to the same data set that you used to fit Mdl.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-450.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 forecast

9-513

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'A' — Forecast-horizon, state-transition, coefficient matrices
cell vector of numeric matrices

Forecast-horizon, state-transition, coefficient matrices, specified as the comma-separated
pair consisting of 'A' and a cell vector of numeric matrices.

A must contain at least numPeriods cells. Each cell must contain a matrix specifying
how the states transition in the forecast horizon. If the length of A is greater than
numPeriods, then the software uses the first numPeriods cells. The last cell indicates
the latest period in the forecast horizon.

The matrices in A cannot contain NaN values.

If Mdl is time invariant with respect to the states, then each cell of A must contain an m-
by-m matrix, where m is the number of the in-sample states per period. By default, the
software uses Mdl.A throughout the forecast horizon.

If Mdl is time varying with respect to the states, then the dimensions of the matrices
in the cells of A may vary, but the dimensions of each matrix must be consistent with
the matrices in B and C in the corresponding periods. By default, the software uses
Mdl.A{end} throughout the forecast horizon.

Data Types: cell

'B' — Forecast-horizon, state-disturbance-loading, coefficient matrices
cell vector of matrices

Forecast-horizon, state-disturbance-loading, coefficient matrices, specified as the comma-
separated pair consisting of 'B' and a cell vector of matrices.

B must contain at least numPeriods cells. Each cell must contain a matrix specifying
how the states transition in the forecast horizon. If the length of B is greater than
numPeriods, then the software uses the first numPeriods cells. The last cell indicates
the latest period in the forecast horizon.

The matrices in B cannot contain NaN values.

If Mdl is time invariant with respect to the states and state disturbances, then each cell
of B must contain an m-by-k matrix, where m is the number of the in-sample states per

9 Functions — Alphabetical List

9-514

period, and k is the number of in-sample, state disturbances per period. By default, the
software uses Mdl.B throughout the forecast horizon.

If Mdl is time varying, then the dimensions of the matrices in the cells of B may vary,
but the dimensions of each matrix must be consistent with the matrices in A in the
corresponding periods. By default, the software uses Mdl.B{end} throughout the
forecast horizon.
Data Types: cell

'C' — Forecast-horizon, measurement-sensitivity, coefficient matrices
cell vector of matrices

Forecast-horizon, measurement-sensitivity, coefficient matrices, specified as the comma-
separated pair consisting of 'C' and a cell vector of matrices.

C must contain at least numPeriods cells. Each cell must contain a matrix specifying
how the states transition in the forecast horizon. If the length of C is greater than
numPeriods, then the software uses the first numPeriods cells. The last cell indicates
the latest period in the forecast horizon.

The matrices in C cannot contain NaN values.

If Mdl is time invariant with respect to the states and the observations, then each cell of
C must contain an n-by-m matrix, where n is the number of the in-sample observations
per period, and m is the number of in-sample states per period. By default, the software
uses Mdl.C throughout the forecast horizon.

If Mdl is time varying with respect to the states or the observations, then the dimensions
of the matrices in the cells of C may vary, but the dimensions of each matrix must be
consistent with the matrices in A and D in the corresponding periods. By default, the
software uses Mdl.C{end} throughout the forecast horizon.

Data Types: cell

'D' — Forecast-horizon, observation-innovation, coefficient matrices
cell vector of matrices

Forecast-horizon, observation-innovation, coefficient matrices, specified as the comma-
separated pair consisting of 'D' and a cell vector of matrices.

D must contain at least numPeriods cells. Each cell must contain a matrix specifying
how the states transition in the forecast horizon. If the length of D is greater than

 forecast

9-515

numPeriods, then the software uses the first numPeriods cells. The last cell indicates
the latest period in the forecast horizon.

The matrices in D cannot contain NaN values.

If Mdl is time invariant with respect to the observations and the observation innovations,
then each cell of D must contain an n-by-h matrix, where n is the number of the
in-sample observations per period, and h is the number of in-sample, observation
innovations per period. By default, the software uses Mdl.D throughout the forecast
horizon.

If Mdl is time varying with respect to the observations or the observation innovations,
then the dimensions of the matrices in the cells of D may vary, but the dimensions of
each matrix must be consistent with the matrices in C in the corresponding periods. By
default, the software uses Mdl.D{end} throughout the forecast horizon.

Data Types: cell

'Beta' — Regression coefficients
[] (default) | numeric matrix

Regression coefficients corresponding to predictor variables, specified as the comma-
separated pair consisting of 'Beta' and a d-by-n numeric matrix. d is the number
of predictor variables (see Predictors0 and PredictorsF) and n is the number of
observed response series (see Y0).

If you specify Beta, then you must also specify Predictors0 and PredictorsF.

If Mdl is an estimated state-space model, then specify the estimated regression
coefficients stored in Mdl.estParams.

By default, the software excludes a regression component from the state-space model.

'Predictors0' — In-sample, predictor variables in state-space model observation equation
[] (default) | matrix

In-sample, predictor variables in the state-space model observation equation, specified as
the comma-separated pair consisting of 'Predictors0' and a matrix. The columns of
Predictors0 correspond to individual predictor variables. Predictors0 must have T
rows, where row t corresponds to the observed predictors at period t (Zt). The expanded
observation equation is

9 Functions — Alphabetical List

9-516

y Z Cx Dut t t t- = +b .

that is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters.

If there are n observations per period, then the software regresses all predictor series
onto each observation.

If you specify Predictors0, then Mdl must be time invariant. Otherwise, the software
returns an error.

If you specify Predictors0, then you must also specify Beta and PredictorsF.

If Mdl is an estimated state-space model (that is, returned by estimate), then it is best
practice to set Predictors0 to the same predictor data set that you used to fit Mdl.

By default, the software excludes a regression component from the state-space model.
Data Types: double

'PredictorsF' — Forecast-horizon, predictor variables in state-space model observation
equation
[] (default) | numeric matrix

In-sample, predictor variables in the state-space model observation equation, specified as
the comma-separated pair consisting of 'Predictors0' and a T-by-d numeric matrix.
T is the number of in-sample periods and d is the number of predictor variables. Row
t corresponds to the observed predictors at period t (Zt). The expanded observation
equation is

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters.

If there are n observations per period, then the software regresses all predictor series
onto each observation.

 forecast

9-517

If you specify Predictors0, then Mdl must be time invariant. Otherwise, the software
returns an error.

If you specify Predictors0, then you must also specify Beta and PredictorsF.

If Mdl is an estimated state-space model (that is, returned by estimate), then it is best
practice to set Predictors0 to the same predictor data set that you used to fit Mdl.

By default, the software excludes a regression component from the state-space model.
Data Types: double

Output Arguments

Y — Forecasted observations
matrix | cell vector of numeric vectors

Forecasted observations, returned as a matrix or a cell vector of numeric vectors.

If Mdl is a time-invariant, state-space model with respect to the observations, then Y is a
numPeriods-by-n matrix.

If Mdl is a time-varying, state-space model with respect to the observations, then Y is a
numPeriods-by-1 cell vector of numeric vectors. Cell t of Y contains an nt-by-1 numeric
vector of forecasted observations for period t.

YMSE — Error variances of forecasted observations
matrix | cell vector of numeric vectors

Error variances of forecasted observations, returned as a matrix or a cell vector of
numeric vectors.

If Mdl is a time-invariant, state-space model with respect to the observations, then YMSE
is a numPeriods-by-n matrix.

If Mdl is a time-varying, state-space model with respect to the observations, then YMSE
is a numPeriods-by-1 cell vector of numeric vectors. Cell t of YMSE contains an nt-by-1
numeric vector of error variances for the corresponding forecasted observations for period
t.

9 Functions — Alphabetical List

9-518

X — State forecasts
matrix | cell vector of numeric vectors

State forecasts, returned as a matrix or a cell vector of numeric vectors.

If Mdl is a time-invariant, state-space model with respect to the states, then X is a
numPeriods-by-m matrix.

If Mdl is a time-varying, state-space model with respect to the states, then X is a
numPeriods-by-1 cell vector of numeric vectors. Cell t of X contains an mt-by-1 numeric
vector of forecasted observations for period t.

XMSE — Error variances of state forecasts
matrix | cell vector of numeric vectors

Error variances of state forecasts, returned as a matrix or a cell vector of numeric
vectors.

If Mdl is a time-invariant, state-space model with respect to the states, then XMSE is a
numPeriods-by-m matrix.

If Mdl is a time-varying, state-space model with respect to the states, then XMSE is a
numPeriods-by-1 cell vector of numeric vectors. Cell t of XMSE contains an mt-by-1
numeric vector of error variances for the corresponding forecasted observations for period
t.

Examples

Forecast Observations of Time-Invariant State-Space Model

Suppose that a latent process is an AR(1). Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

 forecast

9-519

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

9 Functions — Alphabetical List

9-520

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

Forecast the observations 10 periods into the future, and estimate their variances.

numPeriods = 10;

[ForecastedY,YMSE] = forecast(Mdl,numPeriods,y);

Plot the forecasts with the in-sample responses, and 95% Wald-type forecast intervals.

ForecastIntervals(:,1) = ForecastedY - 1.96*sqrt(YMSE);

ForecastIntervals(:,2) = ForecastedY + 1.96*sqrt(YMSE);

figure

plot(T-20:T,y(T-20:T),'-k',T+1:T+numPeriods,ForecastedY,'-.r',...

 T+1:T+numPeriods,ForecastIntervals,'-.b',...

 T:T+1,[y(end)*ones(3,1),[ForecastedY(1);ForecastIntervals(1,:)']],':k',...

 forecast

9-521

 'LineWidth',2)

hold on

title({'Observed Responses and Their Forecasts'})

xlabel('Period')

ylabel('Responses')

legend({'Observations','Forecasted observations','95% forecast intervals'},...

 'Location','Best')

hold off

Forecast Observations of State-Space Model Containing Regression Component

Suppose that the linear relationship between the change in the unemployment rate and
the nominal gross national product (nGNP) growth rate is of interest. Suppose further

9 Functions — Alphabetical List

9-522

that the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically,
and in state-space form, the model is

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed change in the unemployment rate being deflated by the growth

rate of nGNP ().
• is the Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each series. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

Z = [ones(T-1,1) diff(log(gnpn))];

y = diff(u);

Though this example removes missing values, the software can accommodate series
containing missing values in the Kalman filter framework.

To determine how well the model forecasts observations, remove the last 10 observations
for comparison.

numPeriods = 10; % Forecast horizon

 forecast

9-523

isY = y(1:end-numPeriods); % In-sample observations

oosY = y(end-numPeriods+1:end); % Out-of-sample observations

ISZ = Z(1:end-numPeriods,:); % In-sample predictors

OOSZ = Z(end-numPeriods+1:end,:); % Out-of-sample predictors

Specify the coefficient matrices.

A = [NaN NaN; 0 0];

B = [1; 1];

C = [1 0];

D = NaN;

Specify the state-space model using ssm.

Mdl = ssm(A,B,C,D);

Estimate the model parameters, and use a random set of initial parameter values for
optimization. Specify the regression component and its initial value for optimization
using the 'Predictors' and 'Beta0' name-value pair arguments, respectively.
Restrict the estimate of to all positive, real numbers. For numerical stability, specify
the Hessian when the software computes the parameter covariance matrix, using the
'CovMethod' name-value pair argument.

params0 = [0.3 0.2 0.1]; % Chosen arbitrarily

[EstMdl,estParams] = estimate(Mdl,isY,params0,'Predictors',ISZ,...

 'Beta0',[0.1 0.2],'lb',[-Inf,-Inf,0,-Inf,-Inf],'CovMethod','hessian');

Method: Maximum likelihood (fmincon)

Sample size: 51

Logarithmic likelihood: -87.2409

Akaike info criterion: 184.482

Bayesian info criterion: 194.141

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.31780 0.19429 -1.63572 0.10190

 c(2) | 1.21242 0.48882 2.48031 0.01313

 c(3) | 0.45583 0.63930 0.71301 0.47584

 y <- z(1) | 1.32407 0.26313 5.03201 0

 y <- z(2) | -24.48733 1.90115 -12.88024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.38117 0.42842 -0.88971 0.37363

 x(2) | 0.23402 0.66222 0.35339 0.72380

9 Functions — Alphabetical List

9-524

EstMdl is an ssm model, and you can access its properties using dot notation.

Forecast observations over the forecast horizon. EstMdl does not store the data set, so
you must pass it in appropriate name-value pair arguments.

[fY,yMSE] = forecast(EstMdl,numPeriods,isY,'Predictors0',ISZ,...

 'PredictorsF',OOSZ,'Beta',estParams(end-1:end));

fY is a 10-by-1 vector containing the forecasted observations, and yMSE is a 10-by-1
vector containing the variances of the forecasted observations.

Obtain 95% Wald-type forecast intervals. Plot the forecasted observations with their true
values and the forecast intervals.

ForecastIntervals(:,1) = fY - 1.96*sqrt(yMSE);

ForecastIntervals(:,2) = fY + 1.96*sqrt(yMSE);

figure

h = plot(dates(end-numPeriods-9:end-numPeriods),isY(end-9:end),'-k',...

 dates(end-numPeriods+1:end),oosY,'-k',...

 dates(end-numPeriods+1:end),fY,'--r',...

 dates(end-numPeriods+1:end),ForecastIntervals,':b',...

 dates(end-numPeriods:end-numPeriods+1),...

 [isY(end)*ones(3,1),[oosY(1);ForecastIntervals(1,:)']],':k',...

 'LineWidth',2);

xlabel('Period')

ylabel('Change in the unemployment rate')

legend(h([1,3,4]),{'Observations','Forecasted responses',...

 '95% forecast intervals'})

title('Observed and Forecasted Changes in the Unemployment Rate')

 forecast

9-525

This model seems to forecast the changes in the unemployment rate well.

Forecast States of State-Space Model

Suppose that a latent process is an AR(1). Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

9 Functions — Alphabetical List

9-526

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D);

Mdl is an ssm model.

Forecast the states 10 periods into the future, and estimate their variances.

numPeriods = 10;

[~,~,ForecastedX,XMSE] = forecast(Mdl,numPeriods,y);

Plot the forecasts with the smoothed states, and 95% Wald-type forecast intervals.

smoothX = smooth(Mdl,y);

ForecastIntervals(:,1) = ForecastedX - 1.96*sqrt(XMSE);

ForecastIntervals(:,2) = ForecastedX + 1.96*sqrt(XMSE);

figure

plot(T-20:T,smoothX(T-20:T),'-k',T+1:T+numPeriods,ForecastedX,'-.r',...

 T+1:T+numPeriods,ForecastIntervals,'-.b',...

 forecast

9-527

 T:T+1,[smoothX(end)*ones(3,1),[ForecastedX(1);ForecastIntervals(1,:)']],...

 ':k','LineWidth',2)

hold on

title({'Smoothed and Forecasted States'})

xlabel('Period')

ylabel('States')

legend({'Smoothed states','Forecasted states','95% forecast intervals'},...

 'Location','Best')

hold off

• “Forecast Time-Varying State-Space Model” on page 8-143
• “Forecast State-Space Model Using Monte-Carlo Methods” on page 8-125
• “Choose State-Space Model Specification Using Backtesting” on page 8-181

9 Functions — Alphabetical List

9-528

Algorithms

The Kalman filter accommodates missing data by not updating filtered state estimates
corresponding to missing observations. In other words, suppose there is a missing
observation at period t. Then, the state forecast for period t based on the previous t – 1
observations and filtered state for period t are equivalent.

Tip

Mdl does not store the response data, predictor data, and the regression coefficients.
Supply them whenever necessary using the appropriate input or name-value pair
arguments.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
estimate | filter | smooth | ssm

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8
• “Rolling Window Analysis for Predictive Performance” on page 8-169

 garch

9-529

garch

Create GARCH conditional variance model object

Create a garch model object to represent a generalized autoregressive conditional
heteroscedastic (GARCH) model. The GARCH(P,Q) conditional variance model includes
P past conditional variances composing the GARCH polynomial, and Q past squared
innovations composing the ARCH polynomial.

Use garch to create a model with known or unknown coefficients, and then estimate
any unknown coefficients from data using estimate. You can also simulate or forecast
conditional variances from fully specified models using simulate or forecast,
respectively.

For more information about garch model objects, see Using garch Objects.

Syntax

Mdl = garch

Mdl = garch(P,Q)

Mdl = garch(Name,Value)

Description

Mdl = garch creates a zero-degree conditional variance GARCH model object.

Mdl = garch(P,Q) creates a GARCH model with GARCH polynomial degree P and
ARCH polynomial degree Q.

Mdl = garch(Name,Value) creates a GARCH model with additional options specified
by one or more Name,Value pair arguments. For example, you can specify a conditional
variance model constant, the number of ARCH polynomial lags, and the innovation
distribution.

9 Functions — Alphabetical List

9-530

Examples

Create Default GARCH Model

Create a default garch model object and specify its parameter values using dot notation.

Create a GARCH(0,0) model.

Mdl = garch

Mdl =

 GARCH(0,0) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 0

 Constant: NaN

 GARCH: {}

 ARCH: {}

Mdl is a garch model. It contains an unknown constant, its offset is 0, and the
innovation distribution is 'Gaussian'. The model does not have a GARCH or ARCH
polynomial.

Specify two unknown ARCH coefficients for lags one and two using dot notation.

Mdl.ARCH = {NaN NaN}

Mdl =

 GARCH(0,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 2

 Constant: NaN

 GARCH: {}

 ARCH: {NaN NaN} at Lags [1 2]

 garch

9-531

The Q and ARCH properties are updated to 2 and {NaN NaN}. The two ARCH coefficients
are associated with lags 1 and 2.

Create GARCH Model Using Shorthand Syntax

Create a garch model using the shorthand notation garch(P,Q), where P is the degree
of the GARCH polynomial and Q is the degree of the ARCH polynomial.

Create a GARCH(3,2) model.

Mdl = garch(3,2)

Mdl =

 GARCH(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

Mdl is a garch model object. All properties of Mdl, except P, Q, and Distribution, are
NaN values. By default, the software:

• Includes a conditional variance model constant
• Excludes a conditional mean model offset (i.e., the offset is 0)
• Includes all lag terms in the ARCH and GARCH lag-operator polynomials up to lags Q

and P, respectively

Mdl specifies only the functional form of a GARCH model. Because it contains unknown
parameter values, you can pass Mdl and the time-series data to estimate to estimate
the parameters.

Create GARCH Model

Create a garch model using name-value pair arguments.

Specify a GARCH(1,1) model. By default, the conditional mean model offset is zero.
Specify that the offset is NaN.

Mdl = garch('GARCHLags',1,'ARCHLags',1,'Offset',NaN)

9 Functions — Alphabetical List

9-532

Mdl =

 GARCH(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Offset: NaN

Mdl is a garch model object. The software sets all parameters (the properties of the
model object) to NaN, except P, Q, and Distribution.

Since Mdl contains NaN values, Mdl is only appropriate for estimation only. Pass Mdl and
time-series data to estimate. For a continuation of this example, see “Estimate GARCH
Model”.

Create GARCH Model with Known Coefficients

Create a GARCH(1,1) model with mean offset,

where

and is an independent and identically distributed standard Gaussian process.

Mdl = garch('Constant',0.0001,'GARCH',0.75,...

 'ARCH',0.1,'Offset',0.5)

Mdl =

 GARCH(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 0.0001

 garch

9-533

 GARCH: {0.75} at Lags [1]

 ARCH: {0.1} at Lags [1]

 Offset: 0.5

garch assigns default values to any properties you do not specify with name-value pair
arguments.

• “Specify GARCH Models Using garch” on page 6-8
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify the Conditional Variance Model Innovation Distribution” on page 6-48
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53

Input Arguments

P — Number of past consecutive conditional variance terms
nonnegative integer

Number of past consecutive conditional variance terms to include in the GARCH
polynomial, specified as a nonnegative integer. That is, P is the degree of the GARCH
polynomial, where the polynomial includes each lag term from t – 1 to t – P. P also
specifies the minimum number of presample conditional variances the software requires
to initiate the model.

You can specify P using the garch(P,Q) shorthand syntax only. You cannot specify P in
conjunction with Name,Value pair arguments.

If P > 0, then you must specify Q as a positive integer.

Example: garch(3,2)

Data Types: double

Q — Number of past consecutive squared innovation terms
nonnegative integer

Number of past consecutive squared innovation terms to include in the ARCH
polynomial, specified as a nonnegative integer. That is, Q is the degree of the ARCH
polynomial, where the polynomial includes each lag term from t – 1 to t – Q. Q also
specifies the minimum number of presample innovations the software requires to initiate
the model.

9 Functions — Alphabetical List

9-534

You can specify this property using the garch(P,Q) shorthand syntax only. You cannot
specify Q in conjunction with Name,Value pair arguments.

If P > 0, then you must specify Q as a positive integer.

Example: garch(3,2)

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Constant',0.5,'ARCHLags',2,'Distribution',struct('Name','t','DoF',5)

specifies a conditional variance model constant of 0.5, two squared innovation terms at
lags 1 and 2 of the ARCH polynomial, and a t distribution with 5 degrees of freedom for
the innovations.

'Constant' — Conditional variance model constant
NaN (default) | positive scalar

Conditional variance model constant, specified as the comma-separated pair consisting of
'Constant' and a positive scalar.

Example: 'Constant',0.5

Data Types: double

'GARCH' — Coefficients corresponding to past conditional variance terms
cell vector of NaNs (default) | cell vector of nonnegative scalars

Coefficients corresponding to the past conditional variance terms that compose the
GARCH polynomial, specified as the comma-separated pair consisting of 'GARCH' and a
cell vector of nonnegative scalars.

If you specify GARCHLags, then GARCH is an equivalent-length cell vector of coefficients
associated with the lags in GARCHLags. Otherwise, GARCH is a P-element cell vector of
coefficients corresponding to lags 1, 2,..., P.

 garch

9-535

The coefficients must compose a stationary model. For details, see “GARCH Model” on
page 9-537.

By default, GARCH is a cell vector of NaNs of length P (the degree of the GARCH
polynomial) or numel(GARCHLags).

Example: 'GARCH',{0.1 0 0 0.02}

Data Types: cell

'ARCH' — Coefficients corresponding to past squared innovation terms
cell vector of NaNs (default) | cell vector of nonnegative scalars

Coefficients corresponding to the past squared innovation terms that compose the ARCH
polynomial, specified as the comma-separated pair consisting of 'ARCH' and a cell vector
of nonnegative scalars.

If you specify ARCHLags, then ARCH is an equivalent-length cell vector of coefficients
associated with the lags in ARCHLags. Otherwise, ARCH is a Q-element cell vector of
coefficients corresponding to lags 1, 2,..., Q.

The coefficients must compose a stationary model. For details, see “GARCH Model” on
page 9-537.

By default, ARCH is a cell vector of NaNs of length Q (the degree of the ARCH polynomial)
or numel(ARCHLags).

Example: 'ARCH',{0.5 0 0.2}

Data Types: cell

'Offset' — Innovation mean model offset
0 (default) | scalar

Innovation mean model offset or additive constant, specified as the comma-separated
pair consisting of 'Offset' and a scalar.

Example: 'Offset',0.1

Data Types: double

'GARCHLags' — Lags associated with GARCH polynomial coefficients
vector of positive integers

9 Functions — Alphabetical List

9-536

Lags associated with the GARCH polynomial coefficients, specified as the comma-
separated pair consisting of 'GARCHLags' and a vector of positive integers. The
maximum value of GARCHLags determines P, the GARCH polynomial degree.

If you specify GARCH, then GARCHLags is an equivalent-length vector of positive integers
specifying the lags of the corresponding coefficients in GARCH. Otherwise, GARCHLags
indicates the lags of unknown coefficients in the GARCH polynomial.

By default, GARCHLags is a vector containing the integers 1 through P.

Example: 'GARCHLags',[1 2 4 3]

Data Types: double

'ARCHLags' — Lags associated with the ARCH polynomial coefficients
vector of positive integers

Lags associated with the ARCH polynomial coefficients, specified as the comma-
separated pair consisting of 'ARCHLags' and a vector of positive integers. The maximum
value of ARCHLags determines Q, the ARCH polynomial degree.

If you specify ARCH, then ARCHLags is an equivalent-length vector of positive integers
specifying the lags of the corresponding coefficients in ARCH. Otherwise, ARCHLags
indicates the lags of unknown coefficients in the ARCH polynomial.

By default, ARCHLags is a vector containing the integers 1 through Q.

Example: 'ARCHLags',[3 1 2]

Data Types: double

'Distribution' — Conditional probability distribution of innovation process
'Gaussian' (default) | string | structure array

Conditional probability distribution of the innovation process, specified as the comma-
separated pair consisting of 'Distribution' and a string or a structure array.

This table contains the available distributions.

Distribution String Structure Array

Gaussian 'Gaussian' struct('Name','Gaussian')

t 't'

By default, DoF is NaN.
struct('Name','t','DoF',DoF)

DoF > 2 or DoF = NaN

 garch

9-537

Example: 'Distribution',struct('Name','t','DoF',10)

Data Types: char | struct

Note: All GARCH and ARCH coefficients are subject to a near-zero tolerance exclusion test.
That is, the software:

1 Creates lag operator polynomials for each of the GARCH and ARCH components.

2 Compares each coefficient to the default lag operator zero tolerance, 1e-12.
3 Includes a coefficient in the model if its magnitude is greater than 1e-12, and

excludes the coefficient otherwise. In other words, the software considers excluded
coefficients to be sufficiently close to zero.

For details, see LagOp.

Output Arguments

Mdl — GARCH model
garch model object

GARCH model, returned as a garch model object.

For the property descriptions of Mdl, see Conditional Variance Model Properties.

If Mdl contains unknown parameters (indicated by NaNs), then you can specify them
using dot notation. Alternatively, you can pass Mdl and time series data to estimate to
obtain estimates.

If Mdl is fully specified, then you can simulate or forecast conditional variances using
simulate or forecast, respectively.

More About

GARCH Model

A GARCH model is an innovations process that addresses conditional heteroscedasticity.
Specifically, the model posits that the current conditional variance is the sum of these
linear processes, with coefficients for each term:

9 Functions — Alphabetical List

9-538

• Past conditional variances (the GARCH component or polynomial)
• Past squared innovations (the ARCH component or polynomial)

Consider the time series

yt t= +m e ,

where e s
t t t

z= . The GARCH(P,Q) conditional variance process, s
t

2 , has the form

s k g s g s a e a et t P t P t Q t Q
2

1 1
2 2

1 1
2 2

= + + + + + +- - - -… … .

In lag operator notation, the model is

1
1

2

1

2- - -() = + + +()g g s k a a eL L L LP t Q
P Q

t… … .

The table shows how the variables correspond to the properties of the garch model
object.

Variable Description Property

μ Innovation mean model
constant offset

'Offset'

κ > 0 Conditional variance model
constant

'Constant'

g
i

≥ 0 GARCH component
coefficients

'GARCH'

a j ≥ 0 ARCH component
coefficients

'ARCH'

zt Series of independent
random variables with
mean 0 and variance 1

'Distribution'

For stationarity and positivity, GARCH models use these constraints:

• k > 0

• g ai j≥ ≥0 0,

 garch

9-539

•
g ai jj

Q

i

P
+ <

== ÂÂ 11
1

Engle’s original ARCH(Q) model is equivalent to a GARCH(0,Q) specification.

GARCH models are appropriate when positive and negative shocks of equal magnitude
contribute equally to volatility [1].
• “GARCH Model” on page 6-3

References

[1] Tsay, R. S. Analysis of Financial Time Series. 3rd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2010.

See Also
estimate | filter | forecast | infer | print | simulate

Introduced in R2012a

9 Functions — Alphabetical List

9-540

Using garch Objects
GARCH conditional variance time series model

Description

A garch model object specifies the functional form and stores the parameter values
of a generalized autoregressive conditional heteroscedastic (GARCH) model. “GARCH
Model” on page 9-537 attempt to address volatility clustering in an innovations process.
Volatility clustering occurs when an innovations process does not exhibit significant
autocorrelation, but the variance of the process changes with time. GARCH models are
appropriate when positive and negative shocks of equal magnitude contribute equally to
volatility [1].

The GARCH(P,Q) conditional variance model includes:

• P past conditional variances that compose the GARCH component polynomial
• Q past squared innovations that compose the ARCH component polynomial

To create a garch model object, use garch. Specify only the GARCH and ARCH
polynomial degrees P and Q, respectively, using the shorthand syntax garch(P,Q).
Then, pass the model and time series data to estimate to fit the model to the data. Or,
specify the values of some parameters, and then estimate others.

Use a completely specified model (i.e., all parameter values of the model are known) to:

• Simulate conditional variances or responses using simulate
• Forecast conditional variances using forecast

Examples

Create GARCH Model

Create a garch model using name-value pair arguments.

Specify a GARCH(1,1) model. By default, the conditional mean model offset is zero.
Specify that the offset is NaN.

 Using garch Objects

9-541

Mdl = garch('GARCHLags',1,'ARCHLags',1,'Offset',NaN)

Mdl =

 GARCH(1,1) Conditional Variance Model with Offset:

 --

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Offset: NaN

Mdl is a garch model object. The software sets all parameters (the properties of the
model object) to NaN, except P, Q, and Distribution.

Since Mdl contains NaN values, Mdl is only appropriate for estimation only. Pass Mdl and
time-series data to estimate. For a continuation of this example, see “Estimate GARCH
Model”.

Create GARCH Model Using Shorthand Syntax

Create a garch model using the shorthand notation garch(P,Q), where P is the degree
of the GARCH polynomial and Q is the degree of the ARCH polynomial.

Create a GARCH(3,2) model.

Mdl = garch(3,2)

Mdl =

 GARCH(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

Mdl is a garch model object. All properties of Mdl, except P, Q, and Distribution, are
NaN values. By default, the software:

9 Functions — Alphabetical List

9-542

• Includes a conditional variance model constant
• Excludes a conditional mean model offset (i.e., the offset is 0)
• Includes all lag terms in the ARCH and GARCH lag-operator polynomials up to lags Q

and P, respectively

Mdl specifies only the functional form of a GARCH model. Because it contains unknown
parameter values, you can pass Mdl and the time-series data to estimate to estimate
the parameters.

Access GARCH Model Properties

Access the properties of a garch model object using dot notation.

Create a garch model object.

Mdl = garch(3,2)

Mdl =

 GARCH(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

Remove the second GARCH term from the model. That is, specify that the GARCH
coefficient of the second lagged conditional variance is 0.

Mdl.GARCH{2} = 0

Mdl =

 GARCH(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Using garch Objects

9-543

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN NaN} at Lags [1 2]

The GARCH polynomial has two unknown parameters corresponding to lags 1 and 3.

Display the distribution of the disturbances.

Mdl.Distribution

ans =

 Name: 'Gaussian'

The disturbances are Gaussian with mean 0 and variance 1.

Specify that the underlying I.I.D. disturbances have a t distribution with five degrees of
freedom.

Mdl.Distribution = struct('Name','t','DoF',5)

Mdl =

 GARCH(3,2) Conditional Variance Model:

 Distribution: Name = 't', DoF = 5

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN NaN} at Lags [1 2]

Specify that the ARCH coefficients are 0.2 for the first lag and 0.1 for the second lag.

Mdl.ARCH = {0.2 0.1}

Mdl =

 GARCH(3,2) Conditional Variance Model:

9 Functions — Alphabetical List

9-544

 Distribution: Name = 't', DoF = 5

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {0.2 0.1} at Lags [1 2]

To estimate the remaining parameters, you can pass Mdl and your data to estimate and
use the specified parameters as equality constraints. Or, you can specify the rest of the
parameter values, and then simulate or forecast conditional variances from the GARCH
model by passing the fully specified model to simulate or forecast, respectively.

Estimate GARCH Model

Fit a GARCH model to an annual time series of Danish nominal stock returns from
1922-1999. The example follows from “Create GARCH Model”.

Load the Data_Danish data set. Plot the nominal returns (nr).

load Data_Danish;

nr = DataTable.RN;

figure;

plot(dates,nr);

hold on;

plot([dates(1) dates(end)],[0 0],'r:'); % Plot y = 0

hold off;

title('Danish Nominal Stock Returns');

ylabel('Nominal return (%)');

xlabel('Year');

 Using garch Objects

9-545

The nominal return series seems to have a nonzero conditional mean offset and seems
to exhibit volatility clustering. That is, the variability is smaller for earlier years than it
is for later years. For this example, assume that a GARCH(1,1) model is appropriate for
this series.

Create a GARCH(1,1) model. The conditional mean offset is zero by default. To estimate
the offset, specify that it is NaN.

Mdl = garch('GARCHLags',1,'ARCHLags',1,'Offset',NaN);

Fit the GARCH(1,1) model to the data.

EstMdl = estimate(Mdl,nr);

9 Functions — Alphabetical List

9-546

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.00444761 0.00781404 0.569182

 GARCH{1} 0.849317 0.264946 3.20563

 ARCH{1} 0.0732495 0.149532 0.489857

 Offset 0.112266 0.0392138 2.86293

EstMdl is a fully specified garch model object. That is, it does not contain NaN values.
You can assess the adequacy of the model by generating residuals using infer, and then
analyzing them.

To simulate conditional variances or responses, pass EstMdl to simulate. See “Simulate
GARCH Model Observations and Conditional Variances”.

To forecast innovations, pass EstMdl to forecast. See “Forecast GARCH Model
Conditional Variances”.

Simulate GARCH Model Observations and Conditional Variances

Simulate conditional variance or response paths from a fully specified garch model
object. That is, simulate from an estimated garch model or a known garch model in
which you specify all parameter values. This example follows from “Estimate GARCH
Model”.

Load the Data_Danish data set.

load Data_Danish;

nr = DataTable.RN;

Create a GARCH(1,1) model with an unknown conditional mean offset. Fit the model to
the annual nominal return series.

Mdl = garch('GARCHLags',1,'ARCHLags',1,'Offset',NaN);

EstMdl = estimate(Mdl,nr);

 GARCH(1,1) Conditional Variance Model:

 Using garch Objects

9-547

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.00444761 0.00781404 0.569182

 GARCH{1} 0.849317 0.264946 3.20563

 ARCH{1} 0.0732495 0.149532 0.489857

 Offset 0.112266 0.0392138 2.86293

Simulate 100 paths of conditional variances and responses for each period from the
estimated GARCH model.

numObs = numel(nr); % Sample size (T)

numPaths = 100; % Number of paths to simulate

rng(1); % For reproducibility

[VSim,YSim] = simulate(EstMdl,numObs,'NumPaths',numPaths);

VSim and YSim are T-by- numPaths matrices. Rows correspond to a sample period, and
columns correspond to a simulated path.

Plot the average and the 97.5% and 2.5% percentiles of the simulated paths. Compare the
simulation statistics to the original data.

VSimBar = mean(VSim,2);

VSimCI = quantile(VSim,[0.025 0.975],2);

YSimBar = mean(YSim,2);

YSimCI = quantile(YSim,[0.025 0.975],2);

figure;

subplot(2,1,1);

h1 = plot(dates,VSim,'Color',0.8*ones(1,3));

hold on;

h2 = plot(dates,VSimBar,'k--','LineWidth',2);

h3 = plot(dates,VSimCI,'r--','LineWidth',2);

hold off;

title('Simulated Conditional Variances');

ylabel('Cond. var.');

xlabel('Year');

subplot(2,1,2);

h1 = plot(dates,YSim,'Color',0.8*ones(1,3));

hold on;

9 Functions — Alphabetical List

9-548

h2 = plot(dates,YSimBar,'k--','LineWidth',2);

h3 = plot(dates,YSimCI,'r--','LineWidth',2);

hold off;

title('Simulated Nominal Returns');

ylabel('Nominal return (%)');

xlabel('Year');

legend([h1(1) h2 h3(1)],{'Simulated path' 'Mean' 'Confidence bounds'},...

 'FontSize',7,'Location','NorthWest');

Forecast GARCH Model Conditional Variances

Forecast conditional variances from a fully specified garch model object. That is, forecast
from an estimated garch model or a known garch model in which you specify all
parameter values. The example follows from “Estimate GARCH Model”.

 Using garch Objects

9-549

Load the Data_Danish data set.

load Data_Danish;

nr = DataTable.RN;

Create a GARCH(1,1) model with an unknown conditional mean offset, and fit the model
to the annual, nominal return series.

Mdl = garch('GARCHLags',1,'ARCHLags',1,'Offset',NaN);

EstMdl = estimate(Mdl,nr);

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.00444761 0.00781404 0.569182

 GARCH{1} 0.849317 0.264946 3.20563

 ARCH{1} 0.0732495 0.149532 0.489857

 Offset 0.112266 0.0392138 2.86293

Forecast the conditional variance of the nominal return series 10 years into the future
using the estimated GARCH model. Specify the entire returns series as presample
observations. The software infers presample conditional variances using the presample
observations and the model.

numPeriods = 10;

vF = forecast(EstMdl,numPeriods,'Y0',nr);

Plot the forecasted conditional variances of the nominal returns. Compare the forecasts
to the observed conditional variances.

v = infer(EstMdl,nr);

figure;

plot(dates,v,'k:','LineWidth',2);

hold on;

plot(dates(end):dates(end) + 10,[v(end);vF],'r','LineWidth',2);

title('Forecasted Conditional Variances of Nominal Returns');

ylabel('Conditional variances');

xlabel('Year');

9 Functions — Alphabetical List

9-550

legend({'Estimation sample cond. var.','Forecasted cond. var.'},...

 'Location','Best');

• “Specify GARCH Models Using garch” on page 6-8
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Infer Conditional Variances and Residuals” on page 6-77
• “Compare Conditional Variance Models Using Information Criteria” on page 6-87
• “Simulate GARCH Models” on page 6-97
• “Forecast a Conditional Variance Model” on page 6-126

 Using garch Objects

9-551

Properties
Conditional Variance Model Properties Specify conditional variance model

functional form and parameter values

Object Functions
estimate Fit conditional variance model to data
filter Filter disturbances through conditional

variance model
forecast Forecast conditional variances from

conditional variance models
infer Infer conditional variances of conditional

variance models
print Display parameter estimation results for

conditional variance models
simulate Monte Carlo simulation of conditional

variance models

Create Object

Create garch models using garch.

You can specify a garch model as part of a composition of conditional mean and variance
models. For details, see arima.

See Also
arima | egarch | gjr

More About
• “Conditional Variance Models” on page 6-2
• “GARCH Model” on page 6-3

Introduced in R2012a

9 Functions — Alphabetical List

9-552

garchar

Convert ARMA model to AR model

Compatibility

garchar has been removed. Use arma2ar instead.

Syntax

InfiniteAR = garchar(AR,MA,NumLags)

Description

InfiniteAR = garchar(AR,MA,NumLags) computes the coefficients of an infinite-
order AR model, using the coefficients of the equivalent univariate, stationary, invertible,
finite-order ARMA(R,M) model as input. garchar truncates the infinite-order AR
coefficients to accommodate a user-specified number of lagged AR coefficients.

Input Arguments

AR R-element vector of autoregressive coefficients associated with the lagged
observations of a univariate return series modeled as a finite-order,
stationary, invertible ARMA(R,M) model.

MA M-element vector of moving-average coefficients associated with the
lagged innovations of a finite-order, stationary, invertible univariate
ARMA(R,M) model.

NumLags (optional) Number of lagged AR coefficients that garchar includes in the
approximation of the infinite-order AR representation. NumLags is an
integer scalar and determines the length of the infinite-order AR output
vector. If NumLags = [] or is unspecified, the default is 10.

 garchar

9-553

Output Arguments

InfiniteAR Vector of coefficients of the infinite-order AR representation
associated with the finite-order ARMA model specified by the AR
and MA input vectors. InfiniteAR is a vector of length NumLags.
The jth element of InfiniteAR is the coefficient of the jth lag of the
input series in an infinite-order AR representation. Box, Jenkins,
and Reinsel refer to the infinite-order AR coefficients as "π weights."

In the following ARMA(R,M) model, {yt} is the return series of interest and {εt} the
innovations noise process.

y yt i

i

R

t t j

j

M

j= +
=

-
=

-Â Âf e q e
1

1

1

1

If you write this model equation as

y y yt t R t R t t M t M= + + + + + +- - - -f f e q e q e
1 1 1 1

... ...

you can specify the garchar input coefficient vectors, AR and MA, as you read them from
the model. In general, the jth elements of AR and MA are the coefficients of the jth lag of
the return series and innovations processes yt-j and εt-j, respectively. garchar assumes
that the current-time-index coefficients of yt and εt are 1 and are not part of AR and MA.

In theory, you can use the π weights returned in InfiniteAR to approximateyt as a pure
AR process.

y yt i
i

t i t= +

=

•

-Âp e

1

In this equation, the jth element of the truncated infinite-order autoregressive output
vector,πj or InfiniteAR(j), is consistently the coefficient of the jth lag of the observed
return series, yt-j. See Box, Jenkins, and Reinsel [15], Section 4.2.3, pages 106-109.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

9 Functions — Alphabetical List

9-554

See Also
garchma

Introduced before R2006a

 garchma

9-555

garchma
Convert ARMA model to MA model

Compatibility
garchma has been removed. Use arma2ma instead.

Syntax
InfiniteMA = garchma(AR,MA,NumLags)

Description
InfiniteMA = garchma(AR,MA,NumLags) computes the coefficients of an infinite-
order MA model, using the coefficients of the equivalent univariate, stationary,
invertible, finite-order ARMA(R,M) model as input. garchma truncates the infinite-order
MA coefficients to accommodate the number of lagged MA coefficients you specify in
NumLags.

This function is useful for calculating the standard errors of minimum mean square error
forecasts of univariate ARMA models.

Arguments

AR R-element vector of autoregressive coefficients associated with the lagged
observations of a univariate return series modeled as a finite-order,
stationary, invertible ARMA(R,M) model.

MA M-element vector of moving-average coefficients associated with the
lagged innovations of a finite-order, stationary, invertible, univariate
ARMA(R,M) model.

NumLags (optional) Number of lagged MA coefficients that garchma includes in
the approximation of the infinite-order MA representation. NumLags
is an integer scalar and determines the length of the infinite-order MA
output vector. If NumLags = [] or is unspecified, the default is 10.

9 Functions — Alphabetical List

9-556

Output Arguments

InfiniteMA Vector of coefficients of the infinite-order MA representation
associated with the finite-order ARMA model specified by AR and
MA. InfiniteMA is a vector of length NumLags. The jth element of
InfiniteMA is the coefficient of the jth lag of the innovations noise
sequence in an infinite-order MA representation. Box, Jenkins, and
Reinsel refer to the infinite-order MA coefficients as the "ψ weights."

In the following ARMA(R,M) model,{yt} is the return series of interest and {εt} the
innovations noise process.

y yt i

i

R

t t j

j

M

j= +
=

-
=

-Â Âf e q e
1

1

1

1

If you write this model equation as

y y yt t R t R t t M t M= + + + + + +- - - -f f e q e q e
1 1 1 1

... ...

you can specify the garchma input coefficient vectors, AR and MA, as you read them from
the model. In general, the jth elements of AR and MA are the coefficients of the jth lag of
the return series and innovations processes yt-j and εt-j, respectively. garchma assumes
that the current-time-index coefficients of yt and εt are 1 and are not part of AR and MA.

In theory, you can use the ψ weights returned in InfiniteMA to approximate yt as a
pure MA process.

yt t i
i

t i= +
=

•

-Âe y e
1

The jth element of the truncated infinite-order moving-average output vector, ψj or
InfiniteMA(j), is consistently the coefficient of the jth lag of the innovations process,
εt-j, in this equation. See Box, Jenkins, and Reinsel [15], Section 5.2.2, pages 139-141.

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

 garchma

9-557

See Also
garchar

Introduced before R2006a

9 Functions — Alphabetical List

9-558

gjr

Create GJR conditional variance model object

Create a gjr model object to represent a Glosten, Jagannathan, and Runkle (GJR)
model. The GJR(P,Q) conditional variance model includes P past conditional variances
composing the GARCH polynomial, and Q past squared innovations composing the
ARCH and leverage polynomials.

Use gjr to create a model with known or unknown coefficients, and then estimate any
unknown coefficients from data using estimate. You can also simulate or forecast
conditional variances from fully specified models using simulate or forecast,
respectively.

For more information about gjr model objects, see Using gjr Objects.

Syntax

Mdl = gjr

Mdl = gjr(P,Q)

Mdl = gjr(Name,Value)

Description

Mdl = gjr creates a zero-degree conditional variance GJR model object.

Mdl = gjr(P,Q) creates a GJR model with GARCH polynomial degree P, and ARCH
and leverage polynomials having degree Q.

Mdl = gjr(Name,Value) creates a GJR model with additional options specified by
one or more Name,Value pair arguments. For example, you can specify a conditional
variance model constant, the number of ARCH polynomial lags, and the innovation
distribution.

 gjr

9-559

Examples

Create Default GJR Model

Create a default gjr model object and specify its parameter values using dot notation.

Create a GJR(0,0) model.

Mdl = gjr

Mdl =

 GJR(0,0) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 0

 Constant: NaN

 GARCH: {}

 ARCH: {}

 Leverage: {}

Mdl is a gjr model object. It contains an unknown constant, its offset is 0, and the
innovation distribution is 'Gaussian'. The model does not have GARCH, ARCH, or
leverage polynomials.

Specify two unknown ARCH and leverage coefficients for lags one and two using dot
notation.

Mdl.ARCH = {NaN NaN};

Mdl.Leverage = {NaN NaN};

Mdl

Mdl =

 GJR(0,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 0

 Q: 2

 Constant: NaN

 GARCH: {}

9 Functions — Alphabetical List

9-560

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

The Q, ARCH, and Leverage properties update to 2, {NaN NaN}, and {NaN NaN},
respectively. The two ARCH and leverage coefficients are associated with lags 1 and 2.

Create GJR Model Using Shorthand Syntax

Create a gjr model object using the shorthand notation gjr(P,Q), where P is the degree
of the GARCH polynomial and Q is the degree of the ARCH and leverage polynomials.

Create an GJR(3,2) model.

Mdl = gjr(3,2)

Mdl =

 GJR(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

Mdl is a gjr model object. All properties of Mdl, except P, Q, and Distribution, are NaN
values. By default, the software:

• Includes a conditional variance model constant
• Excludes a conditional mean model offset (i.e., the offset is 0)
• Includes all lag terms in the GARCH polynomial up to lags P
• Includes all lag terms in the ARCH and leverage polynomials up to lag Q

Mdl specifies only the functional form of a GJR model. Because it contains unknown
parameter values, you can pass Mdl and time-series data to estimate to estimate the
parameters.

Create GJR Model

Create a gjr model using name-value pair arguments.

 gjr

9-561

Specify a GJR(1,1) model.

Mdl = gjr('GARCHLags',1,'ARCHLags',1,'LeverageLags',1)

Mdl =

 GJR(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

Mdl is a gjr model object. The software sets all parameters to NaN, except P, Q,
Distribution, and Offset (which is 0 by default).

Since Mdl contains NaN values, Mdl is only appropriate for estimation only. Pass Mdl and
time-series data to estimate. For a continuation of this example, see “Estimate GJR
Model”.

Create GJR Model with Known Coefficients

Create a GJR(1,1) model with mean offset

where

and is an independent and identically distributed standard Gaussian process.

Mdl = gjr('Constant',0.0001,'GARCH',0.35,...

 'ARCH',0.1,'Offset',0.5,'Leverage',{0.03 0 0.01})

Mdl =

 GJR(1,3) Conditional Variance Model with Offset:

9 Functions — Alphabetical List

9-562

 --

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 3

 Constant: 0.0001

 GARCH: {0.35} at Lags [1]

 ARCH: {0.1} at Lags [1]

 Leverage: {0.03 0.01} at Lags [1 3]

 Offset: 0.5

gjr assigns default values to any properties you do not specify with name-value pair
arguments. An alternative way to specify the leverage component is 'Leverage',{0.03
0.01},'LeverageLags',[1 3].

• “Specify GJR Models Using gjr” on page 6-31
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify the Conditional Variance Model Innovation Distribution” on page 6-48
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Specify Conditional Variance Model For Exchange Rates” on page 6-53

Input Arguments

P — Number of past consecutive conditional variance terms
nonnegative integer

Number of past consecutive conditional variance terms to include in the GARCH
polynomial, specified as a nonnegative integer. That is, P is the degree of the GARCH
polynomial, where the polynomial includes each lag term from t – 1 to t – P. P also
specifies the minimum number of presample conditional variances the software requires
to initiate the model.

You can specify P using the gjr(P,Q) shorthand syntax only. You cannot specify P in
conjunction with Name,Value pair arguments.

If P > 0, then you must specify Q as a positive integer.

Example: gjr(3,2)

Data Types: double

 gjr

9-563

Q — Number of past consecutive squared innovation terms
nonnegative integer

Number of past consecutive squared innovation terms to include in the ARCH and
leverage polynomials, specified as a nonnegative integer. That is, Q is the degrees of the
ARCH and leverage polynomials, where each polynomial includes each lag term from t
– 1 to t – Q. Q also specifies the minimum number of presample innovations the software
requires to initiate the model.

You can specify this property when using the gjr(P,Q) shorthand syntax only. You
cannot specify Q in conjunction with Name,Value pair arguments.

If P > 0, then you must specify Q as a positive integer.

Example: gjr(3,2)

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Constant',0.5,'ARCHLags',2,'Distribution',struct('Name','t','DoF',5)

specifies a conditional variance model constant of 0.5, two squared innovation terms at
lags 1 and 2 of the ARCH polynomial, and a t distribution with 5 degrees of freedom for
the innovations.

'Constant' — Conditional variance model constant
NaN (default) | positive scalar

Conditional variance model constant, specified as the comma-separated pair consisting of
'Constant' and a positive scalar.

Example: 'Constant',0.5

Data Types: double

'GARCH' — Coefficients corresponding to past conditional variance terms
cell vector of NaNs (default) | cell vector of nonnegative scalars

9 Functions — Alphabetical List

9-564

Coefficients corresponding to the past conditional variance terms that compose the
GARCH polynomial, specified as the comma-separated pair consisting of 'GARCH' and a
cell vector of nonnegative scalars.

If you specify GARCHLags, then GARCH is an equivalent-length cell vector of coefficients
associated with the lags in GARCHLags. Otherwise, GARCH is a P-element cell vector of
coefficients corresponding to lags 1, 2,..., P.

The coefficients must compose a stationary model. For details, see “GJR Model” on page
9-568.

By default, GARCH is a cell vector of NaNs of length P (the degree of the GARCH
polynomial) or numel(GARCHLags).

Example: 'GARCH',{0.1 0 0 0.02}

Data Types: cell

'ARCH' — Coefficients corresponding to past squared innovation terms
cell vector of NaNs (default) | cell vector of nonnegative scalars

Coefficients corresponding to the past squared innovation terms that compose the ARCH
polynomial, specified as the comma-separated pair consisting of 'ARCH' and a cell vector
of nonnegative scalars.

If you specify ARCHLags, then ARCH is an equivalent-length cell vector of coefficients
associated with the lags in ARCH. Otherwise, ARCH is a Q-element cell vector of
coefficients corresponding to lags 1 through the number of elements in ARCH.

The coefficients must compose a stationary model. For details, see “GJR Model” on page
9-568.

By default, ARCH is a cell vector of NaNs of length Q (the degree of the ARCH polynomial)
or numel(ARCHLags).

Example: 'ARCH',{0.5 0 0.2}

Data Types: cell

'Leverage' — Coefficients corresponding to past sign-weighted, squared innovation terms
cell vector of NaNs (default) | cell vector of scalars

Coefficients corresponding to the past sign-weighted, squared innovation terms that
compose the leverage polynomial, specified as the comma-separated pair consisting of
'Leverage' and a cell vector of scalars.

 gjr

9-565

If you specify LeverageLags, then Leverage is an equivalent-length cell vector of
coefficients associated with the lags in ARCHLags. Otherwise, Leverage is a cell vector of
coefficients corresponding to lags 1 through the number of elements in Leverage.

The coefficients must compose a stationary model. For details, see “GJR Model” on page
9-568.

By default, Leverage is a cell vector of NaNs with the same length as the leverage
polynomial degree or numel(LeverageLags).

Example: 'Leverage',{-0.1 0 0 0.03}

'Offset' — Innovation mean model offset
0 (default) | scalar

Innovation mean model offset or additive constant, specified as the comma-separated
pair consisting of 'Offset' and a scalar.

Example: 'Offset',0.1

Data Types: double

'GARCHLags' — Lags associated with GARCH polynomial coefficients
vector of positive integers

Lags associated with the GARCH polynomial coefficients, specified as the comma-
separated pair consisting of 'GARCHLags' and a vector of positive integers. The
maximum value of GARCHLags determines P, the GARCH polynomial degree.

If you specify GARCH, then GARCHLags is an equivalent-length vector of positive integers
specifying the lags of the corresponding coefficients in GARCH. Otherwise, GARCHLags
indicates the lags of unknown coefficients in the GARCH polynomial.

By default, GARCHLags is a vector containing the integers 1 through P.

Example: 'GARCHLags',[1 2 4 3]

Data Types: double

'ARCHLags' — Lags associated with ARCH polynomial coefficients
vector of positive integers

Lags associated with the ARCH polynomial coefficients, specified as the comma-
separated pair consisting of 'ARCHLags' and a vector of positive integers. The maximum
value of ARCHLags determines the ARCH polynomial degree.

9 Functions — Alphabetical List

9-566

If you specify ARCH, then ARCHLags is an equivalent-length vector of positive integers
specifying the lags of the corresponding coefficients in ARCH. Otherwise, ARCHLags
indicates the lags of unknown coefficients in the ARCH polynomial.

By default, ARCHLags is a vector containing the integers 1 through the ARCH polynomial
degree.
Example: 'ARCHLags',[3 1 2]

Data Types: double

'LeverageLags' — Lags associated with leverage polynomial coefficients
vector of positive integers

Lags associated with the leverage polynomial coefficients, specified as the comma-
separated pair consisting of 'LeverageLags' and a vector of positive integers. The
maximum value of LeverageLags determines the leverage polynomial degree.

If you specify Leverage, then LeverageLags is an equivalent-length vector of positive
integers specifying the lags of the corresponding coefficients in LeverageLags.
Otherwise, LeverageLags indicates the lags of unknown coefficients in the leverage
polynomial.

By default, LeverageLags is a vector containing the integers 1 through the leverage
polynomial degree.
Example: 'LeverageLags',1:4

Data Types: double

'Distribution' — Conditional probability distribution of innovation process
'Gaussian' (default) | string | structure array

Conditional probability distribution of the innovation process, specified as the comma-
separated pair consisting of 'Distribution' and a string or a structure array.

This table contains the available distributions.

Distribution String Structure Array

Gaussian 'Gaussian' struct('Name','Gaussian')

t 't'

By default, DoF is NaN.
struct('Name','t','DoF',DoF)

DoF > 2 or DoF = NaN

 gjr

9-567

Example: 'Distribution',struct('Name','t','DoF',10)

Data Types: char | struct

Notes:

• All GARCH, ARCH and Leverage coefficients are subject to a near-zero tolerance
exclusion test. That is, the software:

1 Creates lag operator polynomials for each of the GARCH, ARCH and Leverage
components.

2 Compares each coefficient to the default lag operator zero tolerance, 1e-12.
3 Includes a coefficient in the model if its magnitude is greater than 1e-12,

and excludes the coefficient otherwise. In other words, the software considers
excluded coefficients to be sufficiently close to zero.

For details, see LagOp.
• The lengths of ARCH and Leverage might differ. The difference can occur because the

software defines the property Q as the largest lag associated with nonzero ARCH and
Leverage coefficients, or max(ARCHLags,LeverageLags). Typically, the number
and corresponding lags of nonzero ARCH and Leverage coefficients are equivalent,
but this is not a requirement.

Output Arguments

Mdl — GJR model
gjr model object

GJR model, returned as a gjr model object.

For the property descriptions of Mdl, see Conditional Variance Model Properties.

If Mdl contains unknown parameters (indicated by NaNs), then you can specify them
using dot notation. Alternatively, you can pass Mdl and time series data to estimate to
obtain estimates.

If Mdl is fully specified, then you can simulate or forecast conditional variances using
simulate or forecast, respectively.

9 Functions — Alphabetical List

9-568

More About

GJR Model

The Glosten, Jagannathan, and Runkle (GJR) model is a generalization of the GARCH
model that is appropriate for modelling asymmetric volatility clustering [1]. Specifically,
the model posits that the current conditional variance is the sum of these linear
processes, with coefficients:

• Past conditional variances (the GARCH component or polynomial).
• Past squared innovations (the ARCH component or polynomial).
• Past squared, negative innovations (the leverage component or polynomial).

Consider the time series

yt t= +m e ,

where e s
t t t

z= . The GJR(P,Q) conditional variance process, s
t

2 , has the form

s k g s a e x e et i t i

i

P

j

j

Q

t j j

j

Q

t j t jI2 2

1 1

2

1

2
0= + + + <È

Î
˘
˚-

= =
-

=
- -Â Â Â .

The table shows how the variables correspond to the properties of the garch model
object. In the table, I[x < 0] = 1, and 0 otherwise.

Variable Description Property

μ Innovation mean model
constant offset

'Offset'

κ > 0 Conditional variance model
constant

'Constant'

γj GARCH component
coefficients

'GARCH'

αj ARCH component
coefficients

'ARCH'

ξj Leverage component
coefficients

'Leverage'

 gjr

9-569

Variable Description Property

zt Series of independent
random variables with
mean 0 and variance 1

'Distribution'

For stationarity and positivity, GJR models use these constraints:

• k > 0

• g ai j≥ ≥0 0,

• a xj j+ ≥ 0

•
g a xii

P
jj

Q
jj

Q

= = =Â Â Â+ + <
1 1 1

1

2
1

GJR models are appropriate when negative shocks of contribute more to volatility than
positive shocks [2].

If all leverage coefficients are zero, then the GJR model reduces to the GARCH model.
Because the GARCH model is nested in the GJR model, you can use likelihood ratio tests
to compare a GARCH model fit against a GJR model fit.
• “Conditional Variance Models” on page 6-2
• “GJR Model” on page 6-6

References

[1] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The
Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.

[2] Tsay, R. S. Analysis of Financial Time Series. 3rd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2010.

See Also
estimate | filter | forecast | infer | print | simulate

Introduced in R2012a

9 Functions — Alphabetical List

9-570

Using gjr Objects
GJR conditional variance time series model

Description

A gjr model object specifies the functional form and stores the parameter values
of a Glosten, Jagannathan, and Runkle (GJR) model [1], which is a generalized
autoregressive conditional heteroscedastic (GARCH) model generalization. “GJR
Model” on page 9-568 attempt to address volatility clustering in an innovations process.
Volatility clustering occurs when an innovations process does not exhibit significant
autocorrelation, but the variance of the process changes with time. GJR models are
appropriate when negative shocks contribute more to volatility than positive shocks [2].

The GJR(P,Q) conditional variance model includes:

• P past conditional variances that compose the GARCH component polynomial
• Q past squared innovations that compose the ARCH and leverage component

polynomials

To create a gjr model object, use gjr. Specify only the GARCH and ARCH (and
leverage) polynomial degrees P and Q, respectively, using the shorthand syntax
gjr(P,Q). Then, pass the model and time series data to estimate to fit the model to the
data. Or, specify the values of some parameters, and then estimate others.

Use a completely specified model (i.e., all parameter values of the model are known) to:

• Simulate conditional variances or responses using simulate
• Forecast conditional variances using forecast

Examples

Create GJR Model

Create a gjr model using name-value pair arguments.

Specify a GJR(1,1) model.

Mdl = gjr('GARCHLags',1,'ARCHLags',1,'LeverageLags',1)

 Using gjr Objects

9-571

Mdl =

 GJR(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: NaN

 GARCH: {NaN} at Lags [1]

 ARCH: {NaN} at Lags [1]

 Leverage: {NaN} at Lags [1]

Mdl is a gjr model object. The software sets all parameters to NaN, except P, Q,
Distribution, and Offset (which is 0 by default).

Since Mdl contains NaN values, Mdl is only appropriate for estimation only. Pass Mdl and
time-series data to estimate. For a continuation of this example, see “Estimate GJR
Model”.

Create GJR Model Using Shorthand Syntax

Create a gjr model object using the shorthand notation gjr(P,Q), where P is the degree
of the GARCH polynomial and Q is the degree of the ARCH and leverage polynomials.

Create an GJR(3,2) model.

Mdl = gjr(3,2)

Mdl =

 GJR(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

Mdl is a gjr model object. All properties of Mdl, except P, Q, and Distribution, are NaN
values. By default, the software:

9 Functions — Alphabetical List

9-572

• Includes a conditional variance model constant
• Excludes a conditional mean model offset (i.e., the offset is 0)
• Includes all lag terms in the GARCH polynomial up to lags P
• Includes all lag terms in the ARCH and leverage polynomials up to lag Q

Mdl specifies only the functional form of a GJR model. Because it contains unknown
parameter values, you can pass Mdl and time-series data to estimate to estimate the
parameters.

Access GJR Model Properties

Access the properties of a gjr model object using dot notation.

Create a gjr model object.

Mdl = gjr(3,2)

Mdl =

 GJR(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN NaN} at Lags [1 2 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

Remove the second GARCH term from the model. That is, specify that the GARCH
coefficient of the second lagged conditional variance is 0.

Mdl.GARCH{2} = 0

Mdl =

 GJR(3,2) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 3

 Using gjr Objects

9-573

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

The GARCH polynomial has two unknown parameters corresponding to lags 1 and 3.

Display the distribution of the disturbances.

Mdl.Distribution

ans =

 Name: 'Gaussian'

The disturbances are Gaussian with mean 0 and variance 1.

Specify that the underlying disturbances have a t distribution with five degrees of
freedom.

Mdl.Distribution = struct('Name','t','DoF',5)

Mdl =

 GJR(3,2) Conditional Variance Model:

 Distribution: Name = 't', DoF = 5

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {NaN NaN} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

Specify that the ARCH coefficients are 0.2 for the first lag and 0.1 for the second lag.

Mdl.ARCH = {0.2 0.1}

Mdl =

9 Functions — Alphabetical List

9-574

 GJR(3,2) Conditional Variance Model:

 Distribution: Name = 't', DoF = 5

 P: 3

 Q: 2

 Constant: NaN

 GARCH: {NaN NaN} at Lags [1 3]

 ARCH: {0.2 0.1} at Lags [1 2]

 Leverage: {NaN NaN} at Lags [1 2]

To estimate the remaining parameters, you can pass Mdl and your data to estimate and
use the specified parameters as equality constraints. Or, you can specify the rest of the
parameter values, and then simulate or forecast conditional variances from the GARCH
model by passing the fully specified model to simulate or forecast, respectively.

Estimate GJR Model

Fit a GJR model to an annual time series of stock price index returns from 1861-1970.
The example follows from “Create GJR Model”.

Load the Nelson-Plosser data set. Convert the yearly stock price indices (SP) to returns.
Plot the returns.

load Data_NelsonPlosser;

sp = price2ret(DataTable.SP);

figure;

plot(dates(2:end),sp);

hold on;

plot([dates(2) dates(end)],[0 0],'r:'); % Plot y = 0

hold off;

title('Returns');

ylabel('Return (%)');

xlabel('Year');

axis tight;

 Using gjr Objects

9-575

The return series does not seem to have a conditional mean offset, and seems to exhibit
volatility clustering. That is, the variability is smaller for earlier years than it is for later
years. For this example, assume that an GJR(1,1) model is appropriate for this series.

Create a GJR(1,1) model. The conditional mean offset is zero by default. The software
includes a conditional variance model constant by default.

Mdl = gjr('GARCHLags',1,'ARCHLags',1,'LeverageLags',1);

Fit the GJR(1,1) model to the data.

EstMdl = estimate(Mdl,sp);

9 Functions — Alphabetical List

9-576

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.00457276 0.00441991 1.03458

 GARCH{1} 0.558076 0.240004 2.32528

 ARCH{1} 0.204606 0.178856 1.14397

 Leverage{1} 0.180658 0.268015 0.674059

EstMdl is a fully specified gjr model object. That is, it does not contain NaN values. You
can assess the adequacy of the model by generating residuals using infer, and then
analyzing them.

To simulate conditional variances or responses, pass EstMdl to simulate. See “Simulate
GJR Model Observations and Conditional Variances”.

To forecast innovations, pass EstMdl to forecast. See “Forecast GJR Model
Conditional Variances”.

Simulate GJR Model Observations and Conditional Variances

Simulate conditional variance or response paths from a fully specified gjr model object.
That is, simulate from an estimated gjr model or a known gjr model in which you
specify all parameter values. This example follows from “Estimate GJR Model”.

Load the Nelson-Plosser data set. Convert the yearly stock price indices to returns.

load Data_NelsonPlosser;

sp = price2ret(DataTable.SP);

Create a GJR(1,1) model. Fit the model to the return series.

Mdl = gjr(1,1);

EstMdl = estimate(Mdl,sp);

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Using gjr Objects

9-577

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.00457276 0.00441991 1.03458

 GARCH{1} 0.558076 0.240004 2.32528

 ARCH{1} 0.204606 0.178856 1.14397

 Leverage{1} 0.180658 0.268015 0.674059

Simulate 100 paths of conditional variances and responses from the estimated GJR
model.

numObs = numel(sp); % Sample size (T)

numPaths = 100; % Number of paths to simulate

rng(1); % For reproducibility

[VSim,YSim] = simulate(EstMdl,numObs,'NumPaths',numPaths);

VSim and YSim are T-by- numPaths matrices. Rows correspond to a sample period, and
columns correspond to a simulated path.

Plot the average and the 97.5% and 2.5% percentiles of the simulated paths. Compare the
simulation statistics to the original data.

dates = dates(2:end);

VSimBar = mean(VSim,2);

VSimCI = quantile(VSim,[0.025 0.975],2);

YSimBar = mean(YSim,2);

YSimCI = quantile(YSim,[0.025 0.975],2);

figure;

subplot(2,1,1);

h1 = plot(dates,VSim,'Color',0.8*ones(1,3));

hold on;

h2 = plot(dates,VSimBar,'k--','LineWidth',2);

h3 = plot(dates,VSimCI,'r--','LineWidth',2);

hold off;

title('Simulated Conditional Variances');

ylabel('Cond. var.');

xlabel('Year');

axis tight;

subplot(2,1,2);

h1 = plot(dates,YSim,'Color',0.8*ones(1,3));

hold on;

h2 = plot(dates,YSimBar,'k--','LineWidth',2);

h3 = plot(dates,YSimCI,'r--','LineWidth',2);

hold off;

9 Functions — Alphabetical List

9-578

title('Simulated Nominal Returns');

ylabel('Nominal return (%)');

xlabel('Year');

axis tight;

legend([h1(1) h2 h3(1)],{'Simulated path' 'Mean' 'Confidence bounds'},...

 'FontSize',7,'Location','NorthWest');

Forecast GJR Model Conditional Variances

Forecast conditional variances from a fully specified gjr model object. That is, forecast
from an estimated gjr model or a known gjr model in which you specify all parameter
values. This example follows from “Estimate GJR Model”.

Load the Nelson-Plosser data set. Convert the yearly stock price indices (SP) to returns.

 Using gjr Objects

9-579

load Data_NelsonPlosser;

sp = price2ret(DataTable.SP);

Create a GJR(1,1) model and fit it to the return series.

Mdl = gjr('GARCHLags',1,'ARCHLags',1,'LeverageLags',1);

EstMdl = estimate(Mdl,sp);

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.00457276 0.00441991 1.03458

 GARCH{1} 0.558076 0.240004 2.32528

 ARCH{1} 0.204606 0.178856 1.14397

 Leverage{1} 0.180658 0.268015 0.674059

Forecast the conditional variance of the nominal return series 10 years into the
future using the estimated GJR model. Specify the entire return series as presample
observations. The software infers presample conditional variances using the presample
observations and the model.

numPeriods = 10;

vF = forecast(EstMdl,numPeriods,'Y0',sp);

Plot the forecasted conditional variances of the nominal returns. Compare the forecasts
to the observed conditional variances.

v = infer(EstMdl,sp);

nV = size(v,1);

dates = dates((end - nV + 1):end);

figure;

plot(dates,v,'k:','LineWidth',2);

hold on;

plot(dates(end):dates(end) + 10,[v(end);vF],'r','LineWidth',2);

title('Forecasted Conditional Variances of Returns');

ylabel('Conditional variances');

xlabel('Year');

axis tight;

9 Functions — Alphabetical List

9-580

legend({'Estimation Sample Cond. Var.','Forecasted Cond. var.'},...

 'Location','NorthWest');

• “Specify GJR Models Using gjr” on page 6-31
• “Modify Properties of Conditional Variance Models” on page 6-42
• “Specify Conditional Mean and Variance Models” on page 5-79
• “Infer Conditional Variances and Residuals” on page 6-77
• “Compare Conditional Variance Models Using Information Criteria” on page 6-87
• “Simulate GARCH Models” on page 6-97
• “Forecast GJR Models” on page 6-123

 Using gjr Objects

9-581

Properties
Conditional Variance Model Properties Specify conditional variance model

functional form and parameter values

Object Functions
estimate Fit conditional variance model to data
filter Filter disturbances through conditional

variance model
forecast Forecast conditional variances from

conditional variance models
infer Infer conditional variances of conditional

variance models
print Display parameter estimation results for

conditional variance models
simulate Monte Carlo simulation of conditional

variance models

Create Object

Create gjr models using gjr.

You can specify a gjr model as part of a composition of conditional mean and variance
models. For details, see arima.

See Also
arima | egarch | garch

More About
• “Conditional Variance Models” on page 6-2
• “GJR Model” on page 6-6

Introduced in R2012a

9 Functions — Alphabetical List

9-582

hac

Heteroscedasticity and autocorrelation consistent covariance estimators

Syntax

EstCov = hac(X,y)

EstCov = hac(Tbl)

EstCov = hac(Mdl)

EstCov = hac(___ ,Name,Value)

[EstCov,se,coeff] = hac(___)

Description

EstCov = hac(X,y) returns robust covariance estimates for ordinary least squares
(OLS) coefficient estimates of multiple linear regression models y = Xβ + ε under general
forms of heteroscedasticity and autocorrelation in the innovations process ε.

NaNs in the data indicate missing values, which hac removes using list-wise deletion.
hac sets Data = [X y], then it removes any row in Data containing at least one NaN.
This reduces the effective sample size, and changes the time base of the series.

EstCov = hac(Tbl) returns robust covariance estimates for OLS coefficient estimates
of multiple linear regression models, with predictor data, X, in the first numPreds
columns of the tabular array, Tbl, and response data, y, in the last column.

hac removes all missing values in Tbl, indicated by NaNs, using list-wise deletion. In
other words, hac removes all rows in Tbl containing at least one NaN. This reduces the
effective sample size, and changes the time base of the series.

EstCov = hac(Mdl) returns robust covariance estimates for OLS coefficient estimates
from a fitted multiple linear regression model, Mdl, as returned by fitlm.

 hac

9-583

EstCov = hac(___ ,Name,Value) uses any of the input arguments in the previous
syntaxes and additional options that you specify by one or more Name,Value pair
arguments.

For example, use Name,Value pair arguments to choose weights for HAC or HC
estimators, set a bandwidth for a HAC estimator, or prewhiten the residuals.

[EstCov,se,coeff] = hac(___) additionally returns a vector of corrected coefficient
standard errors, se = sqrt(diag(EstCov)), and a vector of OLS coefficient estimates,
coeff.

Examples

Estimate White's Robust Covariance for OLS Coefficient Estimates

Model an automobile's price with its curb weight, engine size, and cylinder bore diameter
using the linear model:

Estimate model coefficients and White's robust covariance.

Load the 1985 automobile imports data set (Frank and Asuncion, 2012). Extract the
columns that correspond to the predictor and response variables.

load imports-85

Tbl = table(X(:,7),X(:,8),X(:,9),X(:,15),...

 'Variablenames',{'curbWeight','engineSize',...

 'bore','price'});

Fit the linear model to the data and plot the residuals versus the fitted values.

Mdl = fitlm(Tbl);

plotResiduals(Mdl,'fitted')

9 Functions — Alphabetical List

9-584

The residuals seem to flare out, which indicates heteroscedasticity.

Compare the coefficient covariance estimate from OLS and from using hac to calculate
White's heteroscedasticity robust estimate.

[LSCov,LSSe,coeff] = hac(Mdl,'type','HC','weights',...

 'CLM','display','off');

 %Usual OLS estimates, also found in

 %Mdl.CoefficientCovariance

LSCov

[WhiteCov,WhiteSe,coeff] = hac(Mdl,'type','HC','weights',...

 'HC0','display','off'); % White's estimates

WhiteCov

 hac

9-585

LSCov =

 13.7124 0.0000 0.0120 -4.5609

 0.0000 0.0000 -0.0000 -0.0005

 0.0120 -0.0000 0.0002 -0.0017

 -4.5609 -0.0005 -0.0017 1.8195

WhiteCov =

 15.5122 -0.0008 0.0137 -4.4461

 -0.0008 0.0000 -0.0000 -0.0003

 0.0137 -0.0000 0.0001 -0.0010

 -4.4461 -0.0003 -0.0010 1.5707

The OLS coefficient covariance estimate is not equal to White's robust estimate because
the latter accounts for the heteroscedasticity in the residuals.

Estimate the Newey-West OLS Coefficient Covariance Matrix

Model nominal GNP (GNPN) with consumer price index (CPI), real wages (WR), and the
money stock (MS) using the linear model:

Estimate the model coefficients and the Newey-West OLS coefficient covariance matrix.

Load the Nelson Plosser data set.

load Data_NelsonPlosser

Tbl = DataTable(:,[8,10,11,2]); % Tabular array containing the variables

T = sum(~any(ismissing(Tbl),2)); % Remove NaNs to obtain sample size

y = Tbl{:,4}; % Numeric response

X = Tbl{:,1:3}; % Numeric matrix of predictors

Fit the linear model. Remove the beginning block of NaN values in the residual vector for
autocorr.

Mdl = fitlm(X,y);

resid = Mdl.Residuals.Raw(~isnan(Mdl.Residuals.Raw));

figure

9 Functions — Alphabetical List

9-586

subplot(2,1,1)

hold on

plotResiduals(Mdl,'fitted')

axis tight

plot([min(Mdl.Fitted) max(Mdl.Fitted)],[0 0],'k-')

title('Residual Plot')

xlabel('$\hat y$','Interpreter','latex')

ylabel('Residuals')

axis tight

subplot(2,1,2)

autocorr(resid)

The residual plot exhibits signs of heteroscedasticity, autocorrelation, and possibly model
misspecification. The sample autocorrelation function clearly exhibits autocorrelation.

 hac

9-587

Calculate the lag selection parameter for the standard Newey-West HAC estimate
(Andrews and Monohan, 1992).

maxLag = floor(4*(T/100)^(2/9));

Estimate the standard Newey-West OLS coefficient covariance using hac by setting the
bandwidth to maxLag + 1. Display the OLS coefficient estimates, their standard errors,
and the covariance matrix.

EstCov = hac(X,y,'bandwidth',maxLag+1,'display','full');

Estimator type: HAC

Estimation method: BT

Bandwidth: 4.0000

Whitening order: 0

Effective sample size: 62

Small sample correction: on

Coefficient Estimates:

 | Coeff SE

 Const | 20.2317 35.0767

 x1 | -0.1000 0.7965

 x2 | -1.5602 1.1546

 x3 | 2.6329 0.2043

Coefficient Covariances:

 | Const x1 x2 x3

--

 Const | 1230.3727 -15.3285 -24.2677 6.7855

 x1 | -15.3285 0.6343 -0.2960 -0.0957

 x2 | -24.2677 -0.2960 1.3331 -0.1285

 x3 | 6.7855 -0.0957 -0.1285 0.0418

The first column in the output contains the OLS estimates (, respectively),
and the second column contains their standard errors. The last four columns contained
in the table represent the estimated coefficient covariance matrix. For example,

.

Alternatively, pass in a tabular array to hac.

9 Functions — Alphabetical List

9-588

EstCov = hac(Tbl,'bandwidth',maxLag+1,'display','off');

The advantage of passing in a tabular array is that the top and left margins of the
covariance table use the variable names.

Plot Kernel Densities

Plot the kernel density functions available in hac.

Set domain, x, and range w.

x = (0:0.001:3.2)';

w = zeros(size(x));

Compute the truncated kernel density.

cTR = 2; % Renormalization constant

TR = (abs(x) <= 1);

TRRn = (abs(cTR*x) <= 1);

wTR = w;

wTR(TR) = 1;

wTRRn = w;

wTRRn(TRRn) = 1;

Compute the Bartlett kernel density.

cBT = 2/3; % Renormalization constant

BT = (abs(x) <= 1);

BTRn = (abs(cBT*x) <= 1);

wBT = w;

wBT(BT) = 1-abs(x(BT));

wBTRn = w;

wBTRn(BTRn) = 1-abs(cBT*x(BTRn));

Compute the Parzen kernel density.

cPZ = 0.539285; % Renormalization constant

PZ1 = (abs(x) >= 0) & (abs(x) <= 1/2);

PZ2 = (abs(x) >= 1/2) & (abs(x) <= 1);

PZ1Rn = (abs(cPZ*x) >= 0) & (abs(cPZ*x) <= 1/2);

PZ2Rn = (abs(cPZ*x) >= 1/2) & (abs(cPZ*x) <= 1);

wPZ = w;

wPZ(PZ1) = 1-6*x(PZ1).^2+6*abs(x(PZ1)).^3;

 hac

9-589

wPZ(PZ2) = 2*(1-abs(x(PZ2))).^3;

wPZRn = w;

wPZRn(PZ1Rn) = 1-6*(cPZ*x(PZ1Rn)).^2 ...

 + 6*abs(cPZ*x(PZ1Rn)).^3;

wPZRn(PZ2Rn) = 2*(1-abs(cPZ*x(PZ2Rn))).^3;

Compute the Tukey-Hanning kernel density.

cTH = 3/4; % Renormalization constant

TH = (abs(x) <= 1);

THRn = (abs(cTH*x) <= 1);

wTH = w;

wTH(TH) = (1+cos(pi*x(TH)))/2;

wTHRn = w;

wTHRn(THRn) = (1+cos(pi*cTH*x(THRn)))/2;

Compute the quadratic spectral kernel density.

argQS = 6*pi*x/5;

w1 = 3./(argQS.^2);

w2 = (sin(argQS)./argQS)-cos(argQS);

wQS = w1.*w2;

wQS(x == 0) = 1;

wQSRn = wQS; % Renormalization constant = 1

Plot the kernel densities.

figure

plot(x,[wTR,wBT,wPZ,wTH,wQS],'LineWidth',2)

hold on

plot(x,w,'k','LineWidth',2)

axis([0 3.2 -0.2 1.2])

grid on

title('{\bf HAC Kernels}')

legend({'Truncated','Bartlett','Parzen','Tukey-Hanning',...

 'Quadratic Spectral'})

xlabel('Covariance Lag')

ylabel('Weight')

9 Functions — Alphabetical List

9-590

All graphs are truncated at Covariance Lag = 1, except for the quadratic spectral. The
quadratic spectral density approaches 0 as Covariance Lag gets large, but does not get
truncated.

Plot renormalized kernels. Unlike the densities in the previous plot, these have the same
asymptotic variance (Andrews, 1991).

figure

plot(x,[wTRRn,wBTRn,wPZRn,wTHRn,wQSRn],'LineWidth',2)

hold on

plot(x,w,'k','LineWidth',2)

axis([0 3.2 -0.2 1.2])

grid on

title('{\bf Renormalized HAC Kernels} (Equal Asymptotic Variance)')

 hac

9-591

legend({'Truncated','Bartlett','Parzen','Tukey-Hanning',...

 'Quadratic Spectral'})

xlabel('Covariance Lag')

ylabel('Weight')

Examine the effects of changing the bandwidth parameter on the quadratic spectral
density.

Assign several bandwidth values to b. Assign the domain to l. Calculate x = l/|b|.

b = (1:5)';

l = (0:0.1:10);

x = bsxfun(@rdivide,repmat(l,[size(b),1]),b)';

9 Functions — Alphabetical List

9-592

Calculate the quadratic spectral density under the domain for each bandwidth value.

argQS = 6*pi*x/5;

w1 = 3./(argQS.^2);

w2 = (sin(argQS)./argQS)-cos(argQS);

wQS = w1.*w2;

wQS(x == 0) = 1;

Plot the quadratic spectral densities.

figure;

plot(l,wQS,'LineWidth',2);

grid on;

xlabel('Covariance Lag');

ylabel('Quadratic Spectral Density');

title('Change in Bandwidth for Quadratic Spectral Denisty');

legend('Bandwidth = 1','Bandwidth = 2','Bandwidth = 3',...

 'Bandwidth = 4','Bandwidth = 5');

 hac

9-593

As the bandwidth increases, the kernel imparts more weight to larger lags.

• “Classical Model Misspecification Tests”
• “Time Series Regression I: Linear Models”
• “Time Series Regression VI: Residual Diagnostics”
• “Time Series Regression X: Generalized Least Squares and HAC Estimators”
• “Plot a Confidence Band Using HAC Estimates” on page 3-95
• “Change the Bandwidth of a HAC Estimator” on page 3-105

9 Functions — Alphabetical List

9-594

Input Arguments

X — Predictor data
numeric matrix

Predictor data for the multiple linear regression model, specified as a numObs-
by-numPreds numeric matrix.

numObs is the number of observations and numPreds is the number of predictor
variables.
Data Types: double

y — Response data
vector

Response data for the multiple linear regression model, specified as a numObs-by-1 vector
with numeric or logical entries.
Data Types: double | logical

Tbl — Predictor and response data
tabular array

Predictor and response data for the multiple linear regression model, specified as a
numObs-by-numPreds + 1 tabular array.

The first numPreds variables of Tbl are the predictor data, and the last variable is the
response data.

The predictor data must be numeric, and the response data must be numeric or logical.
Data Types: table

Mdl — Fitted linear model
LinearModel model

Fitted linear model, specified as a model returned by fitlm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 hac

9-595

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'type','HAC','bandwidth',floor(4*(T/100)^(2/9))+1,'weights','BT'

specifies the standard Newey-West OLS coefficient covariance estimate.

'varNames' — Variable names
cell vector of strings

Variable names used in displays and plots of the results, specified as the comma-
separated pair consisting of 'varNames' and a cell vector of strings. varNames must
have length numPreds, and each cell corresponds to a variable name. The software
truncates all variable names to the first five characters.

varNames must include variable names for all variables in the model, such as an
intercept term (e.g., 'Const') or higher-order terms (e.g., 'x1^2' or 'x1:x2').

The default variable names for:

• The matrix X is the cell vector of strings {'x1','x2',...}
• The tabular array Tbl is the property Tbl.Properties.VariableNames
• The linear model Mdl is the property Mdl.CoefficientNames

Example: 'varNames',{'Const','AGE','BBD'}

Data Types: cell

'intercept' — Indicate whether to include model intercept
true (default) | false

Indicate whether to include model intercept when hac fits the model, specified as the
comma-separated pair consisting of 'intercept' and a logical value.

Value Description

true Include an intercept in the model.
false Exclude an intercept from the model.

If you specify Mdl, then hac ignores intercept and uses the intercept in Mdl.

Example: 'intercept',false

9 Functions — Alphabetical List

9-596

Data Types: logical

'type' — Coefficient covariance estimator type
'HAC' (default) | 'HC'

Coefficient covariance estimator type, specified as the comma-separated pair consisting
of 'type' and a string.

Value Covariance Estimate Usage

'HAC' Return heteroscedasticity-
and-autocorrelation-
consistent (HAC) estimate
as described in [1], [2], [6],
and [10].

When residuals exhibit
both heteroscedasticity and
autocorrelation

'HC' Return heteroscedasticity-
consistent (HC) estimate
as described in [3], [9], and
[12].

When residuals exhibit only
heteroscedasticity

Example: 'type','HC'

'weights' — Coefficient covariance estimator weighting scheme
'CLM' | 'HC0' | 'HC1' | 'HC2' | 'HC3' | 'HC4' | 'TR' | 'BT' | 'PZ' | 'TH' |
'QS' | vector

Coefficient covariance estimator weighting scheme, specified as the comma-specified pair
consisting of 'weights' and a string or length numObs numeric vector.

Set 'weights' to specify the structure of the innovations covariance Ω. hac uses this
specification to compute ˆ ˆF W=

¢
X X (see “Sandwich Estimators” on page 9-601).

• If type is HC, then ˆ (),W = diag w where ωi estimates the ith innovation variance,
i = 1,...,T, and T = numObs. hac estimates ωi using the ith residual, εi, its leverage

h X xx Xi i i=
¢ - ¢() ,1 d

h

h
i

i=
Ê

Ë
Á

ˆ

¯
˜min , ,4 and the degrees of freedom, dfe.

Use the following table to choose 'weights'.

 hac

9-597

Value Weight Reference

'CLM'

w ei i

i

T

dfe
=

=

Â
1

1

2

[7]

'HCO' (default when
'type','HC') w e

i i
=

2 [12]

'HC1'
w ei i

T

dfe
=

2
[9]

'HC2'

w
e

i
i

ih
=

-

2

1

[9]

'HC3'

w
e

i
i

ih

=

-

2

2
1()

[9]

'HC4'

w
e

i
i

i
d

h i

=

-

2

1()

[3]

• If type is HAC, then hac weights the component products that form F̂ , x xi i j j
¢
e e ,

using a measure of autocorrelation strength, ω(l), at each lag, l = |i – j|. ω(l) =
k(l/b), where k is a kernel density estimator and b is a bandwidth specified by
'bandwidth'.

Use the following table to choose 'weights'.

Value Kernel Density Kernel Density Function Reference

'TR' Truncated
k z

z
() =

Ï
Ì
Ô

ÓÔ

£1 1

0

 for

 otherwise

[13]

'BT' (default when
'type','HAC')

Bartlett
k z

z z
() =

-Ï
Ì
Ô

ÓÔ

£1 1 for

0 otherwise

[10]

9 Functions — Alphabetical List

9-598

Value Kernel Density Kernel Density Function Reference

'PZ' Parzen

k z

x z z

z z()

.

() .=

-Ï

Ì

+ £ <

- £ £

1 6 6 0 0 5

2 1 0 5 1

0

2 3

3

 for

 for

 otherwise

ÔÔ
Ô

Ó

Ô
Ô

[6]

'TH' Tukey-Hanning
k z

z
z

()

cos()

=

Ï

Ì
Ô

ÓÔ

+
£

1

2
1

0

p
 for

 otherwise

[1]

'QS' Quadratic
spectral k z

z

z

z
z()

sin(/)

/
cos /= ()Ê

ËÁ
ˆ
¯̃

-25

12

6 5

6 5
6 5

2 2p

p
p

p
[1]

For a visual description of these kernel densities, see “Plot Kernel Densities” on page
9-588.

• For either type, you can set 'weights' to any length numObs numeric vector
without containing NaNs. However, a user-defined weights vector might not produce
positive definite matrices.

If you set weights to a numeric vector, then hac sets Data = [X y weights] = [DS
weights] and removes any row in Data containing at least one NaN.

Example: 'weights','QS'

Data Types: single | double

'bandwidth' — Bandwidth value or method
'AR1''AR1MLE' (default) | 'AR1OLS' | 'ARMA11' | positive scalar

Bandwidth value or method indicating how hac estimates the data-driven bandwidth
parameter, specified as the comma-separated pair consisting of 'bandwidth' and either
a scalar or a string.

• If type is HC, then hac ignores bandwidth.
• If type is HAC, then provide a nonzero scalar for the bandwidth, or use a string listed

in the following table to indicate which model and method hac uses to estimate the
data-driven bandwidth. For details, see [1].

 hac

9-599

Value Model Method

'AR1' AR(1) Maximum Likelihood
'AR1MLE' AR(1) Maximum Likelihood
'AR1OLS' AR(1) OLS
'ARMA11' ARMA(1,1) Maximum Likelihood

Example: 'bandwidth',floor(4*(T/100)^(2/9))+1

Data Types: single | double

'smallT' — Indicate whether to apply small sample correction
true | false

Indicate whether to apply the small sample correction to the estimated covariance
matrix, specified as the comma-separated pair consisting of 'smallT' and a logical
value.

The small sample correction factor is T

dfe
, where T is the sample size and dfe is the

residual degrees of freedom. For details, see [1].

Value Description

true Apply the small sample correction.
false Do not apply the small sample correction.

• If type is HC, then smallT is false.
• If type is HAC, then smallT is true.

Example: 'smallT',false

Data Types: logical

'whiten' — Lag order for VAR filter
0 (default) | nonnegative integer

Lag order for the VAR model prewhitening filter, specified as the comma-separated pair
consisting of 'whiten' and a nonnegative integer.

9 Functions — Alphabetical List

9-600

For details on prewhitening filters, see [2].

• If type is HC, then hac ignores 'whiten'.
• If 'whiten' is 0, then hac does not apply a prewhitening filter.

Example: 'whiten',1

Data Types: single | double

'display' — Display results in Command Window
'cov' (default) | 'full' | 'off'

Display results in the Command Window in tabular form, specified as the comma-
separated pair consisting of 'display' and a string in the following table.

Value Description

'cov' Display a table of the estimated
covariances of the OLS coefficients.

'full' Display a table of coefficient estimates,
their standard errors, and their estimated
covariances.

'off' Do not display an estimates table to the
Command Window.

Example: 'display','off'

Output Arguments

EstCov — Coefficient covariance estimate
array

Coefficient covariance estimate, returned as a numPreds-by-numPreds array.

EstCov is organized according to the order of the predictor matrix columns, or as
specified by Mdl. For example, in a model with an intercept, the estimated covariance of
b̂

1 (corresponding to the predictor x1) and b̂
2 (corresponding to the predictor x2) are in

positions (2,3) and (3,2) of EstCov, respectively.

 hac

9-601

se — Coefficient standard error estimates
vector

Coefficient standard error estimates, returned as a length numPreds vector whose
elements are sqrt(diag(EstCov)).

se is organized according to the order of the predictor matrix columns, or as specified
by Mdl. For example, in a model with an intercept, the estimated standard error of b̂

1

(corresponding to the predictor x1) is in position 2 of se, and is the square root of the
value in position (2,2) of EstCov.

coeff — OLS coefficient estimates
vector

OLS coefficient estimates, returned as a numPreds vector.

coeff is organized according to the order of the predictor matrix columns, or as specified
by Mdl. For example, in a model with an intercept, the value of b̂

1 (corresponding to the
predictor x1) is in position 2 of coeff.

More About

Sandwich Estimators

This estimator has the form A BA
- -1 1 .

The estimated covariance matrix that hac returns is called a sandwich estimator
because of its form:

c X XX X() () ,�¢ - ¢ -1 1
F

where ()X X
¢ -1 is the bread, ˆ ˆF W=

¢
X X is the meat, and c is an optional small sample

correction.

Lag-Truncation Parameter

This parameter directs a kernel density to assign no weight to all lags above its value.

9 Functions — Alphabetical List

9-602

For kernel densities with unit-interval support, the bandwidth parameter, b, is often
called the lag-truncation parameter since w(l) = k(l/b) = 0 for lags l > b.

Tips

[2] recommends prewhitening for HAC estimators to reduce bias. The procedure tends to
increase estimator variance and mean-squared error, but can improve confidence interval
coverage probabilities and reduce the over-rejection of t statistics.

Algorithms

• The original White HC estimator, specified by 'type','HC','weights','HC0',
is justified asymptotically. The other weights values, HC1, HC2, HC3, and HC4, are
meant to improve small-sample performance. [6] and [3] recommend using HC3 and
HC4, respectively, in the presence of influential observations.

• HAC estimators formed using the truncated kernel might not be positive semidefinite
in finite samples. [10] proposes using the Bartlett kernel as a remedy, but the
resulting estimator is suboptimal in terms of its rate of consistency. The quadratic
spectral kernel achieves an optimal rate of consistency.

• The default estimation method for HAC bandwidth selection is AR1MLE. It is generally
more accurate, but slower, than the AR(1) alternative, AR1OLS. If you specify
'bandwidth','ARMA11', then hac estimates the model using maximum likelihood.

• Bandwidth selection models might exhibit sensitivity to the relative scale of the
predictors in X.

• “Autocorrelation and Partial Autocorrelation” on page 3-13
• “Engle’s ARCH Test” on page 3-25
• “Nonspherical Models” on page 3-94

References

[1] Andrews, D. W. K. “Heteroskedasticity and Autocorrelation Consistent Covariance
Matrix Estimation.” Econometrica. Vol. 59, 1991, pp. 817–858.

[2] Andrews, D. W. K., and J. C. Monohan. “An Improved Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix Estimator.” Econometrica. Vol. 60,
1992, pp. 953–966.

[3] Cribari-Neto, F. "Asymptotic Inference Under Heteroskedasticity of Unknown Form."
Computational Statistics & Data Analysis. Vol. 45, 2004, pp. 215–233.

 hac

9-603

[4] den Haan, W. J., and A. Levin. "A Practitioner's Guide to Robust Covariance Matrix
Estimation." In Handbook of Statistics. Edited by G. S. Maddala and C. R. Rao.
Amsterdam: Elsevier, 1997.

[5] Frank, A., and A. Asuncion. UCI Machine Learning Repository. Irvine, CA:
University of California, School of Information and Computer Science. http://
archive.ics.uci.edu/ml, 2012.

[6] Gallant, A. R. Nonlinear Statistical Models. Hoboken, NJ: John Wiley & Sons, Inc.,
1987.

[7] Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. Applied Linear Statistical
Models. 5th ed. New York: McGraw-Hill/Irwin, 2005.

[8] Long, J. S., and L. H. Ervin. "Using Heteroscedasticity-Consistent Standard Errors in
the Linear Regression Model." The American Statistician. Vol. 54, 2000, pp. 217–
224.

[9] MacKinnon, J. G., and H. White. "Some Heteroskedasticity-Consistent Covariance
Matrix Estimators with Improved Finite Sample Properties." Journal of
Econometrics. Vol. 29, 1985, pp. 305–325.

[10] Newey, W. K., and K. D. West. "A Simple, Positive-Definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix." Econometrica. Vol. 55, 1987, pp.
703–708.

[11] Newey, W. K, and K. D. West. “Automatic Lag Selection in Covariance Matrix
Estimation.” The Review of Economic Studies. Vol. 61 No. 4, 1994, pp. 631–653.

[12] White, H. "A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for
Heteroskedasticity." Econometrica. Vol. 48, 1980, pp. 817–838.

[13] White, H. Asymptotic Theory for Econometricians. New York: Academic Press, 1984.

See Also
fitlm | lscov

Introduced in R2013a

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

9 Functions — Alphabetical List

9-604

hpfilter
Hodrick-Prescott filter for trend and cyclical components

Syntax

hpfilter(S)

hpfilter(S,smoothing)

T = hpfilter(...)

[T,C] = hpfilter(...)

Description

• hpfilter(S) uses a Hodrick-Prescott filter and a default smoothing parameter of
1600 to separate the columns of S into trend and cyclical components. S is an m-by-n
matrix with m samples from n time series. A plot displays each time series together
with its trend (the time series with the cyclic component removed).

• hpfilter(S,smoothing) applies the smoothing parameter smoothing to the
columns of S. If smoothing is a scalar, hpfilter applies it to all columns. If S has n
columns and smoothing is a conformable vector (n-by-1 or 1-by-n), hpfilter applies
the vector components of smoothing to the corresponding columns of S.

If the smoothing parameter is 0, no smoothing takes place. As the smoothing
parameter increases in value, the smoothed series becomes more linear. A smoothing
parameter of Inf produces a linear trend component.

Appropriate values of the smoothing parameter depend upon the periodicity of the
data. The following reference suggests the following values:

• Yearly — 100
• Quarterly — 1600
• Monthly — 14400

• T = hpfilter(...) returns the trend components of the columns of S in T, without
plotting.

• [T,C] = hpfilter(...) returns the cyclical components of the columns of S in C,
without plotting.

 hpfilter

9-605

Examples

Apply the HP Filter to Time Series Data

Plot the cyclical component of the U.S. post-WWII seasonally-adjusted real GNP. In
hpfilter, specify that smoothing is 1600, which is appropriate for quarterly data.

load Data_GNP

gnpDate = dates;

realgnp = DataTable.GNPR;

[~,c] = hpfilter(realgnp,1600);

plot(gnpDate,c)

axis tight

9 Functions — Alphabetical List

9-606

More About

Algorithms

The Hodrick-Prescott filter separates a time series yt into a trend component Tt and a
cyclical component Ct such that yt = Tt + Ct. It is equivalent to a cubic spline smoother,
with the smoothed portion in Tt.

The objective function for the filter has the form

 hpfilter

9-607

C T T T Tt

t

m

t t t t

t

m
2

1

1 1
2

2

1

=

+ -

=

-

Â Â+ - - -l (() ())

where m is the number of samples and λ is the smoothing parameter. The programming
problem is to minimize the objective over all T1, ..., Tm. The first sum minimizes the
difference between the time series and its trend component (which is its cyclical
component). The second sum minimizes the second-order difference of the trend
component (which is analogous to minimization of the second derivative of the trend
component).

References

[1] Hodrick, Robert J, and Edward C. Prescott. “Postwar U.S. Business Cycles: An
Empirical Investigation.” Journal of Money, Credit, and Banking. Vol. 29, No. 1,
February 1997, pp. 1–16.

Introduced in R2006b

9 Functions — Alphabetical List

9-608

i10test
Paired integration and stationarity tests

Syntax

i10test(X)

i10test(X,Name,Value)

H = i10test(___)

[H,PValue] = i10test(___)

Description

i10test(X) displays the results of paired integration and stationarity tests on the
variables in X.

i10test(X,Name,Value) uses additional options specified by one or more Name,Value
pairs. If you specify the numDiffs option, the paired integration and stationarity tests
are conducted on the variables in X and their specified differences.

H = i10test(___) returns logical values with the rejection decisions for the tests. You
can use any of the previous input arguments.

[H,PValue] = i10test(___) additionally returns the p-values for the test statistics.

Examples

Conduct the Default Integration and Stationarity Tests

Conduct paired integration and stationarity tests on two time series using the default
tests and settings.

Load the Nelson-Plosser data, and extract the series of real GNP, GNPR, and consumer
price index, CPI.

load Data_NelsonPlosser

 i10test

9-609

X = DataTable{:,{'GNPR','CPI'}};

X is a matrix containing the data for the variables GNPR and CPI.

Conduct the default integration (adftest) stationarity (kpsstest) tests on the two time
series.

i10test(X)

Warning: Test statistic #1 above tabulated critical values:

maximum p-value = 0.999 reported.

Warning: Test statistic #1 above tabulated critical values:

minimum p-value = 0.010 reported.

Warning: Test statistic #1 above tabulated critical values:

maximum p-value = 0.999 reported.

Warning: Test statistic #1 above tabulated critical values:

minimum p-value = 0.010 reported.

Test Results

 I(1) I(0)

======================

var1 0 1

 0.9990 0.0100

var2 0 1

 0.9990 0.0100

The warnings indicate that the p-values are very large for adftest and very small for
kpsstest (that is, they are outside the Monte Carlo simulated tables). For both series, a
unit root is not rejected (H = 0 for I(1)), and stationarity is rejected (H = 1 for I(0)).

Test for the Degree of Integration

Conduct paired integration and stationarity tests on two time series and their
differences.

Load the Nelson-Plosser data, and extract the series of real GNP, GNPR, and consumer
price index, CPI.

load Data_NelsonPlosser

X = DataTable(:,{'GNPR','CPI'});

9 Functions — Alphabetical List

9-610

X is a tabular array containing the variables GNPR and CPI.

Set the integration and stationarity test parameters.

I.names = {'lags','model'};

I.vals = {1,'TS'};

S.names = {'trend'};

S.vals = {true};

The integration test is the default (adftest), augmented with one lagged difference term
and a trend-stationary alternative. The stationarity test is the default (kpsstest) with a
trend.

Conduct the integration and stationarity tests on the variables and their first differences,
specified using numDiffs.

i10test(X,'numDiffs',1,'itest','adf','iparams',I,...

 'stest','kpss','sparams',S)

Warning: Test statistic #1 above tabulated critical values:

minimum p-value = 0.010 reported.

Warning: Test statistic #1 below tabulated critical values:

maximum p-value = 0.100 reported.

Warning: Test statistic #1 above tabulated critical values:

minimum p-value = 0.010 reported.

Warning: Test statistic #1 below tabulated critical values:

minimum p-value = 0.001 reported.

Test Results

 I(1) I(0)

======================

GNPR 0 1

 0.8760 0.0100

D1GNPR 1 0

 0.0054 0.1000

CPI 0 1

 0.9799 0.0100

D1CPI 1 0

 0.0010 0.0568

 i10test

9-611

The warnings indicate that the p-values are very large or small for some of the tests (that
is, they are outside the Monte Carlo simulated tables). For each original series, a unit
root is not rejected (H = 0 for I(1)), and stationarity is rejected (H = 1 for I(0)). For
the differenced series, a unit root is rejected and stationarity is not rejected.

At the given parameter settings, the tests suggest that both series have one degree of
integration.

Return Test Results Without Display

Conduct paired integration and stationarity tests on two time series and their
differences. Turn the results display off, and return the test decisions and p-values.

Load the Nelson-Plosser data, and extract the series of real GNP, GNPR, and consumer
price index, CPI.

load Data_NelsonPlosser

X = DataTable(:,{'GNPR','CPI'});

X is a tabular array containing the variables GNPR and CPI.

Set the integration and stationarity test parameters.

I.names = {'lags','model'};

I.vals = {1,'TS'};

S.names = {'trend'};

S.vals = {true};

Conduct the integration and stationarity tests on the variables and their first differences,
specified using numDiffs.

[H,PValue] = i10test(X,'numDiffs',1,'itest','adf',...

 'iparams',I,'stest','kpss',...

 'sparams',S,'display','off')

Warning: Test statistic #1 above tabulated critical values:

minimum p-value = 0.010 reported.

Warning: Test statistic #1 below tabulated critical values:

maximum p-value = 0.100 reported.

Warning: Test statistic #1 above tabulated critical values:

minimum p-value = 0.010 reported.

Warning: Test statistic #1 below tabulated critical values:

9 Functions — Alphabetical List

9-612

minimum p-value = 0.001 reported.

H =

 0 1

 1 0

 0 1

 1 0

PValue =

 0.8760 0.0100

 0.0054 0.1000

 0.9799 0.0100

 0.0010 0.0568

The warnings indicate that the p-values are very large or small for some of the tests (that
is, they are outside the Monte Carlo simulated tables). The test decisions and p-values
are stored in H and PValue, respectively.

For each original series, a unit root is not rejected (H = 0), and stationarity is rejected (H
= 1), as indicated in the first and third rows of the output H. For each differenced series,
a unit root is rejected (H = 1), and stationarity is not rejected (H = 0), as indicated in
the second and fourth rows of the output H.

At the given parameter settings, the tests suggest that both series have one degree of
integration.

• “Unit Root Tests” on page 3-44

Input Arguments

X — Input variables
numeric matrix | tabular array

Input variables on which to perform the stationary and integration tests, specified as a
numObs-by-numVars numeric matrix or tabular array. X consists of numObs observations
made on numVars variables.

If X is a tabular array, then the variables must be numeric.

 i10test

9-613

Data Types: double | table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'itest','pp','numDiffs',1 specifies a Phillips-Perron integration test
(and default stationarity test) on all variables and their first differences

'varNames' — Variable names
cell array of strings

Variable names to be used in the display, specified as the comma-separated pair
consisting of 'varNames' and a cell array of strings with numVars names. All variable
names are truncated to the first five characters.

• If X is a matrix, then the default variable names are {'var1','var2',...}.
• If X is a tabular array, then the default variable names are

X.Properties.VariableNames.

Example: 'varNames',{'CPF','AGE','BBD'}

'numDiffs' — Number of differences
0 (default) | scalar

Number of differences of each variable in X to test, specified as the comma-separated pair
consisting of 'numDiffs' and a scalar number.

Example: 'numDiffs',2

'itest' — Integration test
'adf' (default) | 'pp'

Integration test to conduct, specified as the comma-separated pair consisting of 'itest'
and one of the following:

'adf' Augmented Dickey-Fuller test
'pp' Phillips-Perron test

9 Functions — Alphabetical List

9-614

Example: 'itest','pp'

'iparams' — Integration test parameters
structure

Integration test parameters, specified as the comma-separated pair consisting of
'iparams' and a structure, I, with two fields, I.names and I.vals.

• I.names is a cell array of strings listing valid parameter names for the integration
test specified in itest.

• I.vals is a cell array the same length as I.names containing corresponding
parameter values for the parameter names in I.names.

If any parameters for the integration test are unspecified, then i10test uses default
values. The default value for I is an empty structure, meaning i10test uses test
defaults.

'stest' — Stationarity test
'kpss' (default) | 'lmc'

Stationarity test to conduct, specified as the comma-separated pair consisting of
'stest' and one of the following:

'kpss' KPSS test
'lmc' Leybourne-McCabe test

Example: 'stest','lmc'

'sparams' — Stationarity test parameters
structure

Stationarity test parameters, specified as the comma-separated pair consisting of
'sparams' and a structure, S, with two fields, S.names and S.vals.

• S.names is a cell array of strings listing valid parameter names for the integration
test specified in stest.

• S.vals is a cell array the same length as S.names containing corresponding
parameter values for the parameter names in S.names.

If any parameters for the stationarity test are unspecified, then i10test uses default
values. The default value for S is an empty structure, meaning i10test uses test
defaults.

 i10test

9-615

'display' — Results table flag
'on' (default) | 'off'

Results table flag for whether to display a results table in the Command Window,
specified as the comma-separated pair consisting of 'display' and one of 'on' or
'off'.

If you specify the value 'on', then the outputs are displayed to the Command Window in
a table showing test results, H, and corresponding p-values, PValue. Rows are labeled by
variable names and their differences. Columns are labeled as I(1) (for integration) and
I(0) (for stationarity), respectively, indicating the null hypothesis of the tests.

Example: 'display','off'

Output Arguments

H — Test decisions
matrix of logical values

Test decisions, returned as a numVars*numDiffs+1-by-2 matrix of logical values. H
equal to 1 indicates rejection of the null hypothesis in favor of the alternative. H equal to
0 indicates failure to reject the null hypothesis.

•
Rows of H correspond, in order, to x x x x x x x x

D D

1 1
2

1 1 2 2
2

2 2, , , , , , , , , ,D D D D D D… … … ,
where Δ is the differencing operator and D is the specified number of differences.

• Columns of H correspond to the null hypothesis of integration, I(1), and the null
hypothesis of stationarity, I(0), respectively.

PValue — P-values
matrix

P-values for the tests, returned as a numVars*numDiffs+1-by-2 matrix.

• Rows of PValue correspond, in order, to
x x x x x x x x

D D

1 1
2

1 1 2 2
2

2 2, , , , , , , , , ,D D D D D D… … … , where Δ is the differencing operator
and D is the specified number of differences.

• Columns of PValue correspond to the null hypothesis of integration, I(1), and the
null hypothesis of stationarity, I(0), respectively.

9 Functions — Alphabetical List

9-616

More About

Tips

• Paired integration and stationarity tests have been suggested as a method for mutual
confirmation of individual test results (for example, Kwiatkowski, Phillips, Schmidt,
and Shin [1]). However, on the same set of data, different integration tests might
disagree, different stationarity tests might disagree, and stationarity tests might
fail to confirm integration tests. Still, Monte Carlo studies (for example, Amano and
van Norden [2], Burke[3]) suggest that paired testing is generally more reliable than
using either type of test alone.

• “Unit Root Nonstationarity” on page 3-34

References

[1] Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin. “Testing the Null
Hypothesis of Stationarity Against the Alternative of a Unit Root.” Journal of
Econometrics. Vol. 54, 1992, pp. 159–178.

[2] Amano, R. A., and S. van Norden. “Unit Root Tests and the Burden of Proof.” Bank of
Canada. Working paper 92–7, 1992.

[3] Burke, S. P. “Confirmatory Data Analysis: The Joint Application of Stationarity and
Unit Root Tests.” University of Reading, UK. Discussion paper 20, 1994.

See Also
adftest | kpsstest | lmctest | pptest

Introduced in R2012a

 infer

9-617

infer
Infer conditional variances of conditional variance models

Syntax
V = infer(Mdl,Y)

[V,logL] = infer(Mdl,Y)

[V,logL] = infer(Mdl,Y,Name,Value)

Description
V = infer(Mdl,Y) infers the conditional variances of the fully specified, univariate
conditional variance model Mdl fit to the response data Y. Mdl can be a garch, egarch,
or gjr model.

[V,logL] = infer(Mdl,Y) additionally returns the loglikelihood objective function
values.

[V,logL] = infer(Mdl,Y,Name,Value) infers the conditional variances of Mdl with
additional options specified by one or more Name,Value pair arguments. For example,
you can specify presample innovations or conditional variances.

Examples
Infer GARCH Model Conditional Variances

Infer conditional variances from a GARCH(1,1) model with known coefficients. When you
use, and then do not use presample data, compare the results from infer.

Specify a GARCH(1,1) model with known parameters. Simulate 101 conditional
variances and responses (innovations) from the model. Set aside the first observation
from each series to use as presample data.

Mdl = garch('Constant',0.01,'GARCH',0.8,'ARCH',0.15);

rng default; % For reproducibility

[vS,yS] = simulate(Mdl,101);

y0 = yS(1);

9 Functions — Alphabetical List

9-618

v0 = vS(1);

y = yS(2:end);

v = vS(2:end);

figure

subplot(2,1,1)

plot(v)

title('Conditional Variances')

subplot(2,1,2)

plot(y)

title('Innovations')

Infer the conditional variances of y without using presample data. Compare them to the
known (simulated) conditional variances.

 infer

9-619

vI = infer(Mdl,y);

figure

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vI,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - No Presamples')

hold off

Notice the transient response (discrepancy) in the early time periods due to the absence
of presample data.

9 Functions — Alphabetical List

9-620

Infer conditional variances using the set-aside presample innovation, y0. Compare them
to the known (simulated) conditional variances.

vE = infer(Mdl,y,'E0',y0);

figure

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vE,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presample E')

hold off

There is a slightly reduced transient response in the early time periods.

 infer

9-621

Infer conditional variances using the set-aside presample conditional variance, v0.
Compare them to the known (simulated) conditional variances.

vO = infer(Mdl,y,'V0',v0);

figure

plot(v)

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vO,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presample V')

hold off

9 Functions — Alphabetical List

9-622

There is a much smaller transient response in the early time periods.

Infer conditional variances using both the presample innovation and conditional
variance. Compare them to the known (simulated) conditional variances.

vEO = infer(Mdl,y,'E0',y0,'V0',v0);

figure

plot(v)

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vEO,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presamples')

hold off

 infer

9-623

When you use sufficient presample innovations and conditional variances, the inferred
conditional variances are exact (there is no transient response).

Infer EGARCH Model Conditional Variances

Infer conditional variances from an EGARCH(1,1) model with known coefficients. When
you use, and then do not use presample data, compare the results from infer.

Specify an EGARCH(1,1) model with known parameters. Simulate 101 conditional
variances and responses (innovations) from the model. Set aside the first observation
from each series to use as presample data.

Mdl = egarch('Constant',0.001,'GARCH',0.8,...

 'ARCH',0.15,'Leverage',-0.1);

9 Functions — Alphabetical List

9-624

rng default; % For reproducibility

[vS,yS] = simulate(Mdl,101);

y0 = yS(1);

v0 = vS(1);

y = yS(2:end);

v = vS(2:end);

figure

subplot(2,1,1)

plot(v)

title('Conditional Variances')

subplot(2,1,2)

plot(y)

title('Innovations')

 infer

9-625

Infer the conditional variances of y without using any presample data. Compare them to
the known (simulated) conditional variances.

vI = infer(Mdl,y);

figure

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vI,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - No Presamples')

hold off

9 Functions — Alphabetical List

9-626

Notice the transient response (discrepancy) in the early time periods due to the absence
of presample data.

Infer conditional variances using the set-aside presample innovation, y0. Compare them
to the known (simulated) conditional variances.

vE = infer(Mdl,y,'E0',y0);

figure

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vE,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presample E')

 infer

9-627

hold off

There is a slightly reduced transient response in the early time periods.

Infer conditional variances using the set-aside presample variance, v0. Compare them to
the known (simulated) conditional variances.

vO = infer(Mdl,y,'V0',v0);

figure

plot(v)

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vO,'k:','LineWidth',1.5)

9 Functions — Alphabetical List

9-628

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presample V')

hold off

The transient response is almost eliminated.

Infer conditional variances using both the presample innovation and conditional
variance. Compare them to the known (simulated) conditional variances.

vEO = infer(Mdl,y,'E0',y0,'V0',v0);

figure

plot(v)

plot(1:100,v,'r','LineWidth',2)

 infer

9-629

hold on

plot(1:100,vEO,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presamples')

hold off

When you use sufficient presample innovations and conditional variances, the inferred
conditional variances are exact (there is no transient response).

Infer GJR Model Conditional Variances

Infer conditional variances from a GJR(1,1) model with known coefficients. When you
use, and then do not use presample data, compare the results from infer.

9 Functions — Alphabetical List

9-630

Specify a GJR(1,1) model with known parameters. Simulate 101 conditional variances
and responses (innovations) from the model. Set aside the first observation from each
series to use as presample data.

Mdl = gjr('Constant',0.01,'GARCH',0.8,'ARCH',0.14,...

 'Leverage',0.1);

rng default; % For reproducibility

[vS,yS] = simulate(Mdl,101);

y0 = yS(1);

v0 = vS(1);

y = yS(2:end);

v = vS(2:end);

figure

subplot(2,1,1)

plot(v)

title('Conditional Variances')

subplot(2,1,2)

plot(y)

title('Innovations')

 infer

9-631

Infer the conditional variances of y without using any presample data. Compare them to
the known (simulated) conditional variances.

vI = infer(Mdl,y);

figure

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vI,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - No Presamples')

hold off

9 Functions — Alphabetical List

9-632

Notice the transient response (discrepancy) in the early time periods due to the absence
of presample data.

Infer conditional variances using the set-aside presample innovation, y0. Compare them
to the known (simulated) conditional variances.

vE = infer(Mdl,y,'E0',y0);

figure

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vE,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presample E')

 infer

9-633

hold off

There is a slightly reduced transient response in the early time periods.

Infer conditional variances using the set-aside presample conditional variance, vO.
Compare them to the known (simulated) conditional variances.

vO = infer(Mdl,y,'V0',v0);

figure

plot(v)

plot(1:100,v,'r','LineWidth',2)

hold on

plot(1:100,vO,'k:','LineWidth',1.5)

9 Functions — Alphabetical List

9-634

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presample V')

hold off

There is a much smaller transient response in the early time periods.

Infer conditional variances using both the presample innovation and conditional
variance. Compare them to the known (simulated) conditional variances.

vEO = infer(Mdl,y,'E0',y0,'V0',v0);

figure

plot(v)

plot(1:100,v,'r','LineWidth',2)

 infer

9-635

hold on

plot(1:100,vEO,'k:','LineWidth',1.5)

legend('Simulated','Inferred','Location','NorthEast')

title('Inferred Conditional Variances - Presamples')

hold off

When you use sufficient presample innovations and conditional variances, the inferred
conditional variances are exact (there is no transient response).

Conduct Likelihood Ratio Test for EGARCH Fit Comparison

Infer the loglikelihood objective function values for an EGARCH(1,1) and EGARCH(2,1)
model fit to NASDAQ Composite Index returns. To identify which model is the more
parsimonious, adequate fit, conduct a likelihood ratio test.

9 Functions — Alphabetical List

9-636

Load the NASDAQ data included with the toolbox, and convert the index to returns. Set
aside the first two observations to use as presample data.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

r = price2ret(nasdaq);

r0 = r(1:2);

rn = r(3:end);

Fit an EGARCH(1,1) model to the returns, and infer the loglikelihood objective function
value.

Mdl1 = egarch(1,1);

EstMdl1 = estimate(Mdl1,rn,'E0',r0);

[~,logL1] = infer(EstMdl1,rn,'E0',r0);

 EGARCH(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.135179 0.0221338 -6.10736

 GARCH{1} 0.983864 0.00242682 405.413

 ARCH{1} 0.199966 0.0139933 14.2902

 Leverage{1} -0.0602428 0.00565582 -10.6515

Fit an EGARCH(2,1) model to the returns, and infer the loglikelihood objective function
value.

Mdl2 = egarch(2,1);

EstMdl2 = estimate(Mdl2,rn,'E0',r0);

[~,logL2] = infer(EstMdl2,rn,'E0',r0);

 EGARCH(2,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.145595 0.0284356 -5.12017

 infer

9-637

 GARCH{1} 0.853073 0.140183 6.08542

 GARCH{2} 0.129516 0.138377 0.93596

 ARCH{1} 0.219686 0.0294646 7.45596

 Leverage{1} -0.0679354 0.0108795 -6.24435

Conduct a likelihood ratio test, with the more parsimonious EGARCH(1,1) model as
the null model, and the EGARCH(2,1) model as the alternative. The degree of freedom
for the test is 1, because the EGARCH(2,1) model has one more parameter than the
EGARCH(1,1) model (an additional GARCH term).

[h,p] = lratiotest(logL2,logL1,1)

h =

 0

p =

 0.2256

The null hypothesis is not rejected (h = 0). At the 0.05 significance level, the
EGARCH(1,1) model is not rejected in favor of the EGARCH(2,1) model.

Conduct Likelihood Ratio Test for GARCH and GJR Fit Comparison

A GARCH(P, Q) model is nested within a GJR(P, Q) model. Therefore, you can perform a
likelihood ratio test to compare GARCH(P, Q) and GJR(P, Q) model fits.

Infer the loglikelihood objective function values for a GARCH(1,1) and GJR(1,1) model fit
to NASDAQ Composite Index returns. Conduct a likelihood ratio test to identify which
model is the more parsimonious, adequate fit.

Load the NASDAQ data included with the toolbox, and convert the index to returns. Set
aside the first two observations to use as presample data.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

r = price2ret(nasdaq);

r0 = r(1:2);

rn = r(3:end);

9 Functions — Alphabetical List

9-638

Fit a GARCH(1,1) model to the returns, and infer the loglikelihood objective function
value.

Mdl1 = garch(1,1);

EstMdl1 = estimate(Mdl1,rn,'E0',r0);

[~,logL1] = infer(EstMdl1,rn,'E0',r0);

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 2.00502e-06 5.42982e-07 3.69262

 GARCH{1} 0.883327 0.00845366 104.49

 ARCH{1} 0.109239 0.00766663 14.2486

Fit a GJR(1,1) model to the returns, and infer the loglikelihood objective function value.

Mdl2 = gjr(1,1);

EstMdl2 = estimate(Mdl2,rn,'E0',r0);

[~,logL2] = infer(EstMdl2,rn,'E0',r0);

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 2.47525e-06 5.69837e-07 4.34379

 GARCH{1} 0.881015 0.00951049 92.6361

 ARCH{1} 0.0640148 0.00918489 6.96958

 Leverage{1} 0.0892972 0.00992115 9.00069

Conduct a likelihood ratio test, with the more parsimonious GARCH(1,1) model as the
null model, and the GJR(1,1) model as the alternative. The degree of freedom for the test
is 1, because the GJR(1,1) model has one more parameter than the GARCH(1,1) model (a
leverage term).

[h,p] = lratiotest(logL2,logL1,1)

 infer

9-639

h =

 1

p =

 4.5816e-10

The null hypothesis is rejected (h = 1). At the 0.05 significance level, the GARCH(1,1)
model is rejected in favor of the GJR(1,1) model.

• “Infer Conditional Variances and Residuals” on page 6-77
• “Compare Conditional Variance Models Using Information Criteria” on page 6-87

Input Arguments

Mdl — Conditional variance model
garch model object | egarch model object | gjr model object

Conditional variance model without any unknown parameters, specified as a garch,
egarch, or gjr model object.

Mdl cannot contain any properties that have NaN value.

Y — Response data
numeric column vector | numeric matrix

Response data, specified as a numeric column vector or matrix.

As a column vector, Y represents a single path of the underlying series.

As a matrix, the rows of Y correspond to periods and the columns correspond to separate
paths. The observations across any row occur simultaneously.

infer infers the conditional variances of Y. Y usually represents an innovation series
with mean 0 and variances characterized by Mdl. It is the continuation of the presample
innovation series E0. Y can also represent a time series of innovations with mean 0 plus

9 Functions — Alphabetical List

9-640

an offset. If Mdl has a nonzero offset, then the software stores its value in the Offset
property (Mdl.Offset).

infer assumes that observations across any row occur simultaneously.

The last observation of any series is the latest observation.

Note: NaNs indicate missing values. infer removes missing values. infer uses list-
wise deletion to remove any NaNs. Removing NaNs in the data reduces the sample size.
Removing missing values, can also create irregular time series.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'E0',[1 1;0.5 0.5],'V0',[1 0.5;1 0.5] specifies two equivalent
presample paths of innovations and two, different presample paths of conditional
variances.

'E0' — Presample innovations
numeric column vector | numeric matrix

Presample innovations, specified as the comma-separated pair consisting of 'E0' and
a numeric column vector or matrix. The presample innovations provide initial values
for the innovations process of the conditional variance model Mdl, and derive from a
distribution with mean 0.

E0 must contain at least Mdl.Q elements or rows. If E0 contains extra rows, then infer
uses the latest Mdl.Q only.

The last element or row contains the latest presample innovation.

• If E0 is a column vector, it represents a single path of the underlying innovation
series. infer applies E0 to each inferred path.

• If E0 is a matrix, then each column represents a presample path of the underlying
innovation series. E0 must have at least as many columns as Y. If E0 has more
columns than necessary, infer uses the first size(Y,2) columns only.

 infer

9-641

The defaults are:

• For GARCH(P,Q) and GJR(P,Q) models, infer sets any necessary presample
innovations to the square root of the average squared value of the offset-adjusted
response series Y.

For EGARCH(P,Q) models, infer sets any necessary presample innovations to zero.

Example: 'E0',[1 1;0.5 0.5]

Data Types: double

'V0' — Presample conditional variances
numeric column vector with positive entries | numeric matrix with positive entries

Presample conditional variances, specified as the comma-separated pair consisting of
'V0' and a numeric column vector or matrix with positive entries. V0 provides initial
values for the conditional variances in the model.

• If V0 is a column vector, then infer applies it to each output path.
• If V0 is a matrix, then each column represents a presample path of conditional

variances. V0 must have at least as many columns as Y. If V0 has more columns than
required, infer uses the first size(Y,2) columns only.

• For GARCH(P,Q) and GJR(P,Q) models, V0 must have at least Mdl.P rows (or
elements) to initialize the variance equation.

• For EGARCH(P,Q) models, V0 must have at least max(Mdl.P,Mdl.Q) rows to
initialize the variance equation.

If the number of rows in V0 exceeds the necessary number, then infer uses the latest,
required number of observations only.

The last element row contains the latest observation.

By default, infer sets any necessary observations to the average squared value of the
offset-adjusted response series Y.

Example: 'V0',[1 0.5;1 0.5]

Data Types: double

Notes:

9 Functions — Alphabetical List

9-642

• NaNs indicate missing values. infer removes missing values. The software merges
the presample data (E0 and V0) separately from the input response data (Y), and then

uses list-wise deletion to remove any rows containing at least one NaN. Removing
NaNs in the data reduces the sample size. Removing missing values can also create
irregular time series.

• infer assumes that you synchronize presample data such that the latest observation
of each presample series occurs simultaneously.

• If you do not specify E0 and V0, then infer derives the necessary presample
observations from the unconditional, or long-run, variance of the offset-adjusted
response process.
• For all conditional variance models, V0 is the sample average of the squared

disturbances of the offset-adjusted response data Y.
• For GARCH(P,Q) and GJR(P,Q) models, E0 is the square root of the average

squared value of the offset-adjusted response series Y.
• For EGARCH(P,Q) models, E0 is 0.
These specifications minimize initial transient effects.

Output Arguments

V — Conditional variances
numeric column vector | numeric matrix

Conditional variances inferred from the response data Y, returned as a numeric column
vector or matrix.

The dimensions of V and Y are equivalent. If Y is a matrix, then the columns of V are the
inferred conditional variance paths corresponding to the columns of Y.

Rows of V are periods corresponding to the periodicity of Y.

logL — Loglikelihood objective function values
scalar | numeric vector

Loglikelihood objective function values associated with the model Mdl, returned as a
scalar or numeric vector.

 infer

9-643

If Y is a vector, then logL is a scalar. Otherwise, logL is vector of length size(Y,2),
and each element is the loglikelihood of the corresponding column (or path) in Y.

Data Types: double

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects

References

[1] Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal
of Econometrics. Vol. 31, 1986, pp. 307–327.

[2] Bollerslev, T. “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return.” The Review of Economics and Statistics. Vol. 69,
1987, pp. 542–547.

[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[4] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[5] Engle, R. F. “Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

[6] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The
Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.

[7] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
egarch | estimate | filter | forecast | garch | gjr | print | simulate

9 Functions — Alphabetical List

9-644

Introduced in R2012a

 impulse

9-645

impulse
Class: arima

Impulse response function

Syntax

impulse(Mdl)

impulse(Mdl,numObs)

Y = impulse(___)

Description

impulse(Mdl) plots a discrete stem plot of the impulse response function for the
univariate ARIMA model, Mdl, in the current figure window.

impulse(Mdl,numObs) plots the impulse response function for numObs periods.

Y = impulse(___) returns the impulse response in a column vector for any of the
previous input arguments.

Tips
• To improve performance of the filtering algorithm, specify the number of observations

to include in the impulse response, numObs. When you do not specify numObs,
impulse computes the impulse response by converting the input model to a
truncated, infinite-degree, moving average representation using the relatively slow
lag operator polynomial division algorithm. This results in an impulse response of
generally unknown length.

Input Arguments

Mdl

ARIMA model, as created by arima or estimate.

9 Functions — Alphabetical List

9-646

numObs

Positive integer indicating the number of observations to include in the impulse response
(the number of periods for which impulse computes the impulse response).

When you specify numObs, impulse computes the impulse response by filtering a unit
impulse followed by a vector of zeros of appropriate length. The filtering algorithm is very
fast and results in an impulse response of known length.

If you do not specify numObs, impulse determines the number of observation using the
polynomial division algorithm of the underlying lag operator polynomials, mldivide.

Output Arguments

Y

Column vector of impulse responses. If you specify numObs, then Y is numObs-by-1. If you
do not specify numObs, the underlying lag operator polynomial division algorithm returns
an impulse response of generally unknown length.

Definitions

Impulse Response Function

The impulse response function for a univariate ARIMA process is the dynamic response
of the system to a single impulse, or innovation shock, of unit size. The specific impulse
response calculated by impulse is the dynamic multiplier, defined as the partial
derivative of the output response with respect to an innovation shock at time zero.

For a univariate ARIMA process, yt, and innovation series εt, the impulse response at
time j, Ψj, is given by

y
e

j
jy

=
∂

∂
0

.

 impulse

9-647

Expressed as a function of time, the sequence of dynamic multipliers, Ψ1, Ψ2,...,
measures the sensitivity of the process to a purely transitory change in the innovation
process. impulse computes the impulse response function by shocking the system with a
unit impulse ε0 = 1, with all past observations of yt and all future shocks of εt set to zero.
Because the impulse response function is the partial derivative of the ARIMA process
with respect to an innovation shock at time 0, the presence of a constant in the model has
no effect on the output.

This impulse response is sometimes called the forecast error impulse response, because
the innovations, εt, can be interpreted as the one-step-ahead forecast errors.

Examples

Plot an Impulse Response Function

Specify the AR(2) model,

Mdl = arima('AR',{0.5,-0.7},'Constant',0)

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: 0

 AR: {0.5 -0.7} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: NaN

Plot the impulse response function without specifying the number of observations.

impulse(Mdl)

9 Functions — Alphabetical List

9-648

The model is stationary; the impulse response function decays in a sinusoidal pattern.

Store an Impulse Response Function

Specify the ARMA(1,1) model,

Mdl = arima('AR',0.7,'MA',0.2,'Constant',0)

Mdl =

 impulse

9-649

 ARIMA(1,0,1) Model:

 Distribution: Name = 'Gaussian'

 P: 1

 D: 0

 Q: 1

 Constant: 0

 AR: {0.7} at Lags [1]

 SAR: {}

 MA: {0.2} at Lags [1]

 SMA: {}

 Variance: NaN

Store the impulse response function for 15 periods.

Y = impulse(Mdl,15)

Y =

 1.0000

 0.9000

 0.6300

 0.4410

 0.3087

 0.2161

 0.1513

 0.1059

 0.0741

 0.0519

 0.0363

 0.0254

 0.0178

 0.0125

 0.0087

When you specify the number of observations, you know the length of the output impulse
response series.

• “Plot the Impulse Response Function” on page 5-88

9 Functions — Alphabetical List

9-650

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[3] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[4] Lütkepohl, H. New Introduction to Multiple Time Series Analayis. New York, NY:
Springer-Verlag, 2007.

See Also
arima | estimate | filter | forecast | infer | print | simulate

More About
• “Impulse Response Function” on page 5-86

 impulse

9-651

impulse
Class: regARIMA

Impulse response of regression model with ARIMA errors

Syntax
impulse(Mdl)

impulse(Mdl,numObs)

Y = impulse(___)

Description
impulse(Mdl) plots a discrete stem plot of the impulse response function for the
regression model with ARIMA time series errors, Mdl, in the current figure window.

impulse(Mdl,numObs) plots the impulse response function for numObs periods.

Y = impulse(___) returns the impulse response in a column vector for any of the
previous input arguments.

Tips
• To improve performance of the filtering algorithm, specify the number of observations,

numObs, to include in the impulse response.

Input Arguments
Mdl

Regression model with ARIMA errors, as created by regARIMA or estimate.

numObs

Number of observations to include in the impulse response, specified as a positive
integer. numObs is the number of periods for which impulse computes the impulse
response.

9 Functions — Alphabetical List

9-652

Default: impulse determines the number of observations using the polynomial division
algorithm of the underlying lag operator polynomials, mldivide.

Output Arguments

Y

Impulse responses of the model Mdl, specified as a column vector.

• If you specify numObs, then Y is numObs-by-1.
• If you do not specify numObs, the underlying lag operator polynomial division

algorithm returns an impulse response of generally unknown length.

Definitions

Impulse Response Function

The impulse response function for regression models with ARIMA errors is the dynamic
response of the system to a single impulse, or innovation shock, of unit size. The specific
impulse response calculated by impulse is the dynamic multiplier, defined as the partial
derivative of the output response with respect to an innovation shock at time 0.

For a regression model with ARIMA errors, yt, unconditional disturbances ut, and
innovation series εt, the impulse response at time j, Ψj, is given by

y
e e

j
j jy u

=
∂

∂
=

∂

∂
0 0

.

Expressed as a function of time, the sequence of dynamic multipliers, Ψ1, Ψ2,...,
measures the sensitivity of the process to a purely transitory change in the innovation
process. impulse computes the impulse response function by shocking the system with
a unit impulse ε0 = 1, with all past observations of yt and all future shocks of εt set to
0. The impulse response function is the partial derivative of the ARIMA process with
respect to an innovation shock at time 0. Because of this, the presence of an intercept
or a regression component corresponding to predictors in the model has no effect on the
output.

 impulse

9-653

This impulse response is sometimes called the forecast error impulse response, because
the innovations, εt, can be interpreted as the one-step-ahead forecast errors.

Examples

Plot an Impulse Response Function

Specify the following regression model with ARMA(2,1) errors:

where is Gaussian with variance 0.1.

Mdl = regARIMA('Intercept',0, 'AR', {0.5 -0.8}, ...

 'MA',-0.5,'Beta',[0.1 -0.2], 'Variance',0.1);

Time the calculation of and plot the impulse response function without specifying the
number of observations.

tic

impulse(Mdl)

toc

Elapsed time is 0.164070 seconds.

9 Functions — Alphabetical List

9-654

The model is stationary; the impulse response function decays in a sinusoidal pattern.

Time the calculation of and plot the impulse response function using 45 observations.

tic

impulse(Mdl,45)

toc

Elapsed time is 0.089573 seconds.

 impulse

9-655

There are more observations represented in this plot than the one generated in the
previous step. However, the impulse response function and the plot took less time to
generate in this step than the previous. This is because the software did not calculate the
impulse response function using an infinite-degree moving average as in the previous
step.

Store an Impulse Response Function

Specify the following regression model with ARMA(2,1) errors:

9 Functions — Alphabetical List

9-656

where is Gaussian with variance 0.1.

Mdl = regARIMA('Intercept',0, 'AR', {0.5 -0.8}, ...

 'MA',-0.5,'Beta',[0.1 -0.2], 'Variance',0.1);

Store the impulse response function for 15 periods.

Y = impulse(Mdl,15)

Y =

 1.0000

 0

 -0.8000

 -0.4000

 0.4400

 0.5400

 -0.0820

 -0.4730

 -0.1709

 0.2930

 0.2832

 -0.0928

 -0.2729

 -0.0623

 0.1872

The length of the output impulse response series is numObs.

• “Plot the Impulse Response of regARIMA Models” on page 4-77

Algorithms

• If you specify the number of observations, numObs, impulse computes the impulse
response by filtering a unit shock followed by an appropriate length vector of 0s. The
filtering algorithm is very fast and results in an impulse response of known (numObs)
length.

• If you do not specify numObs, then impulse converts the error model to a truncated,
infinite-degree moving average using the relatively slow lag operator polynomial
division algorithm. This produces an impulse response of generally unknown length.

 impulse

9-657

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[3] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[4] Lütkepohl, H. New Introduction to Multiple Time Series Analayis. New York, NY:
Springer-Verlag, 2007.

See Also
filter | regARIMA | simulate

More About
• “Impulse Response for Regression Models with ARIMA Errors” on page 4-75

9 Functions — Alphabetical List

9-658

infer
Class: arima

Infer ARIMA or ARIMAX model residuals or conditional variances

Syntax

[E,V] = infer(Mdl,Y)

[E,V,logL] = infer(Mdl,Y)

[E,V,logL] = infer(Mdl,Y,Name,Value)

Description

[E,V] = infer(Mdl,Y) infers residuals and conditional variances of a univariate
ARIMA model fit to data Y.

[E,V,logL] = infer(Mdl,Y) additionally returns the loglikelihood objective function
values.

[E,V,logL] = infer(Mdl,Y,Name,Value) infers the ARIMA or ARIMAX model
residuals and conditional variances, and returns the loglikelihood objective function
values, with additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — ARIMA or ARIMAX model
arima model

ARIMA or ARIMAX model, specified as an arima model returned by arima or estimate.

The properties of Mdl cannot contain NaNs.

Y — Response data
numeric column vector | numeric matrix

Response data, specified as a numeric column vector or numeric matrix. If Y is a matrix,
then it has numObs observations and numPaths rows.

 infer

9-659

infer infers the residuals and variances of Y. Y represents the time series characterized
by Mdl, and it is the continuation of the presample series Y0.

• If Y is a column vector, then it represents one path of the underlying series.
• If Y is a matrix, then it represents numObs observations of numPaths paths of an

underlying time series.

infer assumes that observations across any row occur simultaneously. The last
observation of any series is the latest.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'E0' — Presample innovations
0 (default) | numeric column vector | numeric matrix

Presample innovations that have mean 0 and provide initial values for the model,
specified as the comma-separated pair consisting of 'E0' and a numeric column vector or
numeric matrix.

E0 must contain at least numPaths columns and enough rows to initialize the ARIMA
model and any conditional variance model. That is, E0 must contain at least Mdl.Q
innovations, but can be greater if you use a conditional variance model. If the number of
rows in E0 exceeds the number necessary, then infer only uses the latest observations.
The last row contains the latest observation.

If the number of columns exceeds numPaths, then infer only uses the first numPaths
columns. If E0 is a column vector, then infer applies it to each inferred path.

Data Types: double

'V0' — Presample conditional variances
numeric column vector | numeric matrix

Presample conditional variances providing initial values for any conditional variance
model, specified as the comma-separated pair consisting of 'V0' and a numeric column
vector or matrix with positive entries.

9 Functions — Alphabetical List

9-660

V0 must contain at least numPaths columns and enough rows to initialize the variance
model. If the number of rows in V0 exceeds the number necessary, then infer only uses
the latest observations. The last row contains the latest observation.

If the number of columns exceeds numPaths, then infer only uses the first numPaths
columns. If V0 is a column vector, then infer applies it to each inferred path.

By default, infer sets the necessary observations to the unconditional variance of the
conditional variance process.
Data Types: double

'X' — Exogenous predictors
numeric matrix

Exogenous predictors in the regression model, specified as the comma-separated pair
consisting of 'X' and a matrix.

The columns of X are separate, synchronized time series, with the last row containing the
latest observations.

If you do not specify Y0, then the number of rows of X must be at least size(Y,2) +
Mdl.P. Otherwise, the number of rows of X should be at least numel(Y,2). In either
case, if the number of rows of X exceeds the number necessary, then infer only uses the
latest observations.

By default, the conditional mean model does not have a regression coefficient.
Data Types: double

'Y0' — Presample response data
numeric column vector | numeric matrix

Presample response data that provides initial values for the model, specified as the
comma-separated pair consisting of 'Y' and a numeric column vector or numeric matrix.
Y0 must contain at least Mdl.P rows and numPaths columns. If the number of rows in
Y0 exceeds Mdl.P, then infer only uses the latest Mdl.P observations. The last row
contains the latest observation. If the number of columns exceeds numPaths, then infer
only uses the first numPaths columns. If Y0 is a column vector, then infer applies it to
each inferred path.

By default, infer backcasts to obtain the necessary observations.

 infer

9-661

Data Types: double

Notes

• NaNs indicate missing values and infer removes them. The software merges the
presample data and main data sets separately, then uses list-wise deletion to remove

any NaNs. That is, infer sets PreSample = [Y0 E0 V0] and Data = [Y X], then it
removes any row in PreSample or Data that contains at least one NaN.

• The removal of NaNs in the main data reduces the effective sample size. Such removal
can also create irregular time series.

• infer assumes that you synchronize the response and predictor series such that the
latest observation of each occurs simultaneously. The software also assumes that you
synchronize the presample series similarly.

• The software applies all exogenous series in X to each response series in Y.

Output Arguments

E — Inferred residuals
numeric matrix

Inferred residuals, returned as a numeric matrix. E has numObs rows and numPaths
columns.

V — Inferred conditional variances
numeric matrix

Inferred conditional variances, returned as a numeric matrix. V has numObs rows and
numPaths columns.

logL — Loglikelihood objective function values
numeric vector

Loglikelihood objective function values associated with the model Mdl, returned as a
numeric vector. logL has numPaths elements associated with the corresponding path in
Y.

Data Types: double

9 Functions — Alphabetical List

9-662

Examples

Infer Residuals

Infer residuals from an AR model.

Specify an AR(2) model using known parameters.

Mdl = arima('AR',{0.5,-0.8},'Constant',0.002,...

 'Variance',0.8);

Simulate response data with 102 observations.

rng 'default';

Y = simulate(Mdl,102);

Use the first two responses as presample data, and infer residuals for the remaining 100
observations.

E = infer(Mdl,Y(3:end),'Y0',Y(1:2));

figure;

plot(E);

title 'Inferred Residuals';

 infer

9-663

Infer Conditional Variances

Infer the conditional variances from an AR(1) and GARCH(1,1) composite model.

Specify an AR(1) model using known parameters. Set the variance equal to a garch
model.

Mdl = arima('AR',{0.8,-0.3},'Constant',0);

MdlVar = garch('Constant',0.0002,'GARCH',0.6,...

 'ARCH',0.2);

Mdl.Variance = MdlVar;

Simulate response data with 102 observations.

rng 'default';

9 Functions — Alphabetical List

9-664

Y = simulate(Mdl,102);

Infer conditional variances for the last 100 observations without using presample data.

[Ew,Vw] = infer(Mdl,Y(3:end));

Infer conditional variances for the last 100 observations using the first two observations
as presample data.

[E,V] = infer(Mdl,Y(3:end),'Y0',Y(1:2));

Plot the two sets of conditional variances for comparison. Examine the first few
observations to see the slight difference between the series at the beginning.

figure;

subplot(2,1,1);

plot(Vw,'r','LineWidth',2);

hold on;

plot(V);

legend('Without Presample','With Presample');

title 'Inferred Conditional Variances';

hold off

subplot(2,1,2);

plot(Vw(1:5),'r','LineWidth',2);

hold on;

plot(V(1:5));

legend('Without Presample','With Presample');

title 'Beginning of Series';

hold off

 infer

9-665

Infer Residuals Using Predictor Data

Infer residuals from an ARMAX model.

Specify an ARMA(1,2) model using known parameters for the response (MdlY) and an
AR(1) model for the predictor data (MdlX).

MdlY = arima('AR',0.2,'MA',{-0.1,0.6},'Constant',...

 1,'Variance',2,'Beta',3);

MdlX = arima('AR',0.3,'Constant',0,'Variance',1);

Simulate response and predictor data with 102 observations.

rng 'default'; % random number seed to duplicate data

9 Functions — Alphabetical List

9-666

X = simulate(MdlX,102);

Y = simulate(MdlY,102,'X',X);

Use the first two responses as presample data, and infer residuals for the remaining 100
observations.

E = infer(MdlY,Y(3:end),'Y0',Y(1:2),'X',X);

figure;

plot(E);

title 'Inferred Residuals';

• “Infer Residuals for Diagnostic Checking” on page 5-140

 infer

9-667

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[3] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | estimate | filter | forecast | impulse | print | simulate

More About
• “Residual Diagnostics” on page 3-90

9 Functions — Alphabetical List

9-668

infer

Class: regARIMA

Infer innovations of regression models with ARIMA errors

Syntax

E = infer(Mdl,Y)

[E,U,V,logL] = infer(Mdl,Y)

[E,U,V,logL] = infer(Mdl,Y,Name,Value)

Description

E = infer(Mdl,Y) infers residuals of a univariate regression model with ARIMA time
series errors fit to response data Y.

[E,U,V,logL] = infer(Mdl,Y) additionally returns the unconditional disturbances
U, the innovation variances V, and the loglikelihood objective function values logL.

[E,U,V,logL] = infer(Mdl,Y,Name,Value) returns the output arguments using
additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — Regression model with ARIMA errors
regARIMA model

Regression model with ARIMA errors, specified as a regARIMA model returned by
regARIMA or estimate.

The properties of Mdl cannot contain NaNs.

Y — Response data
numeric column vector | numeric matrix

 infer

9-669

Response data, specified as a numeric column vector or numeric matrix. If Y is a matrix,
then it has numObs observations and numPaths rows.

infer infers the residuals (estimated innovations) and unconditional disturbances of
Y. Y represents the time series characterized by Mdl, and it is the continuation of the
presample series Y0.

• If Y is a column vector, then it represents one path of the underlying series.
• If Y is a matrix, then it represents numObs observations of numPaths paths of an

underlying time series.

infer assumes that observations across any row occur simultaneously. The last
observation of any series is the latest.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'E0' — Presample innovations
numeric column vector | numeric matrix

Presample innovations that have mean 0 and provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'E0' and a numeric column
vector or numeric matrix.

• If E0 is a column vector, then it is applied to each inferred path.
• If E0 is a matrix, then it requires at least numPaths columns. If E0 contains more

columns than required, then infer uses the first numPaths columns.
• E0 must contain at least Mdl.Q rows. If E0 contains extra rows, then infer uses the

latest presample innovations. The last row contains the latest presample innovation.

By default, infer sets the necessary observations to 0.

Data Types: double

'U0' — Presample unconditional disturbances
numeric column vector | numeric matrix

9 Functions — Alphabetical List

9-670

Presample unconditional disturbances that provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'U0' and a numeric column
vector or numeric matrix.

• If U0 is a column vector, then it is applied to each inferred path.
• If U0 is a matrix, then it requires at least numPaths columns. If U0 contains more

columns than required, then infer uses the first numPaths columns.
• U0 must contain at least Mdl.P rows. If U0 contains extra rows, then infer uses

the latest presample unconditional disturbances. The last row contains the latest
presample unconditional disturbance.

By default, infer backcasts for the necessary presample unconditional disturbances.

Data Types: double

'X' — Predictor data
numeric matrix

Predictor data in the regression model, specified as the comma-separated pair consisting
of 'X' and a numeric matrix.

The columns of X are separate, synchronized time series, with the last row containing
the latest observations. The number of rows of X should be at least the length of Y.
If the number of rows of X exceeds the number required, then infer uses the latest
observations.

By default, infer does not include a regression component in the model regardless of the
presence of regression coefficients in Mdl.

Data Types: double

Notes

• NaNs in Y, X, E0, and U0 indicate missing values and infer removes them. The
software merges the presample data sets (E0 and U0), then uses list-wise deletion
to remove any NaNs. infer similarly removes NaNs from the effective sample data
(X and Y). Removing NaNs in the data reduces the sample size, and can also create
irregular time series.

• infer assumes that you synchronize presample data such that the latest observation
of each presample series occurs simultaneously.

 infer

9-671

• All predictors (that is, columns in X) are associated with each response path in Y.

• V is equal to the variance in Mdl.

Output Arguments

E — Inferred residuals
numeric matrix

Inferred residuals (estimated innovations of the unconditional disturbances), returned as
a numeric matrix. E has numObs rows and numPaths columns.

Data Types: double

U — Inferred unconditional disturbances
numeric matrix

Inferred unconditional disturbances, returned as a numeric matrix. U has numObs rows
and numPaths columns.

Data Types: double

V — Inferred variances
numeric matrix

Inferred variances, returned as a numeric matrix. V has numObs rows and numPaths
columns.
Data Types: double

logL — Loglikelihood objective function values
numeric vector

Loglikelihood objective function values associated with the model Mdl, returned as a
numeric vector. logL has numPaths elements associated with the corresponding path in
Y.

Data Types: double

9 Functions — Alphabetical List

9-672

Examples

Infer Residuals from a Regression Model with ARIMA Errors

Forecast responses from the following regression model with ARMA(2,1) errors over a 30-
period horizon:

where is Gaussian with variance 0.1.

Specify the regression model with ARIMA errors. Simulate responses from the model and
two predictor series.

Mdl = regARIMA('Intercept', 0, 'AR', {0.5 -0.8}, ...

 'MA',-0.5,'Beta',[0.1 -0.2], 'Variance',0.1);

rng(1); % For reproducibility

X = randn(100,2);

y = simulate(Mdl,100,'X',X);

Infer, and then plot residuals. By default, infer backcasts for the necessary presample
unconditional disturbances.

e = infer(Mdl,y,'X',X);

figure

plot(e)

title('Inferred Residuals')

 infer

9-673

Regress the GDP onto the CPI and Examine Residuals

Regress the log GDP onto the CPI using a regression model with ARMA(1,1) errors, and
then examine the residuals.

Load the U.S. Macroeconomic data set and preprocess the data.

load Data_USEconModel;

logGDP = log(DataTable.GDP);

dlogGDP = diff(logGDP); % For stationarity

dCPI = diff(DataTable.CPIAUCSL); % For stationarity

T = length(dlogGDP); % Effective sample size

Fit a regression model with ARMA(1,1) errors.

9 Functions — Alphabetical List

9-674

ToEstMdl = regARIMA(1,0,1);

EstMdl = estimate(ToEstMdl,dlogGDP,'X',dCPI);

 Regression with ARIMA(1,0,1) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.014776 0.00146271 10.1018

 AR{1} 0.605274 0.0892902 6.77872

 MA{1} -0.161651 0.10956 -1.47546

 Beta1 0.00204403 0.000706163 2.89456

 Variance 9.35782e-05 6.03135e-06 15.5153

Infer the residuals over all observations. By default, infer backcasts for the necessary
unconditional disturbances.

e = infer(EstMdl,dlogGDP,'X',dCPI);

Plot the inferred residuals.

figure

plot(1:T,e,[1 T],[0 0],'r')

title('{\bf Inferred Residuals}')

 infer

9-675

The residuals are centered around 0, but show signs of heteroscedasticity.

• “Infer Residuals for Diagnostic Checking” on page 5-140
• “Forecast a Regression Model with Multiplicative Seasonal ARIMA Errors” on page

4-206

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

9 Functions — Alphabetical List

9-676

[2] Davidson, R., and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[3] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc.,
1995.

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[5] Pankratz, A. Forecasting with Dynamic Regression Models. John Wiley & Sons, Inc.,
1991.

[6] Tsay, R. S. Analysis of Financial Time Series. 2nd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2005.

See Also
regARIMA | estimate | forecast | simulate

More About
• “Residual Diagnostics” on page 3-90
• “Select a Regression Model with ARIMA Errors” on page 4-123
• “Intercept Identifiability Illustration” on page 4-132

 isEqLagOp

9-677

isEqLagOp
Class: LagOp

Determine if two LagOp objects are same mathematical polynomial

Syntax

indicator = isEqLagOp(A,B)

indicator = isEqLagOp(A,B,Name,Value)

Description

indicator = isEqLagOp(A,B) determines if two lag operator polynomials A and B are
the same. indicator is a boolean indicator for the equality test. TRUE indicates the two
polynomials are identical to within tolerance; FALSE indicates the two polynomials are
not identical to within tolerance.

indicator = isEqLagOp(A,B,Name,Value) determines if two lag operator
polynomials are the same with additional options specified by one or more Name,Value
pair arguments.

If at least one of A or B is a lag operator polynomial object, the other can be a cell array of
matrices (initial lag operator coefficients), or a single matrix (zero-degree lag operator).

Input Arguments

A

Lag operator polynomial object, as created by LagOp, against which the equality of B is
tested.

B

Lag operator polynomial object, as created by LagOp, against which the equality of A is
tested.

9 Functions — Alphabetical List

9-678

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Tolerance'

Nonnegative scalar tolerance used for testing equality. The default is 1e-12. Specifying
a tolerance greater than the default relaxes the comparison criterion. Two polynomials
are deemed sufficiently close to indicate equality if the differences in magnitude of all
elements of all coefficient matrices at all lags are less than or equal to the specified
tolerance.

Default: 1e-12

Output Arguments

indicator

Boolean indicator for the equality test. true indicates the two polynomials are identical
to within tolerance; false indicates the two polynomials are not identical to within
tolerance.

Examples

Determine the Equivalence of Two Lag Polynomials

Create a lag operator polynomial and convert it to a cell array:

A = LagOp({1 0.8 0.3 0.2});

B = toCellArray(A);

isEqLagOp(A,B)

ans =

 1

 isEqLagOp

9-679

The converted cell array is equivalent to the LagOp polynomial object.

See Also
toCellArray

How To
• “Specify Lag Operator Polynomials” on page 2-11

9 Functions — Alphabetical List

9-680

isNonZero
Class: LagOp

Find lags associated with nonzero coefficients of LagOp objects

Syntax

indicator = isNonZero(A,testLags)

Description

Given a vector of candidate lags to test, indicator = isNonZero(A,testLags),
determines which lags are associated with nonzero coefficients of a lag operator
polynomial A(L).

Examples

Determine Which Lag Has a Nonzero Coefficient

Create a Lag Operator polynomial object and add a term with the Coefficients
property:

A = LagOp({1 0.8 0.3 0.2});

A.Coefficients(7)={0.5};

isNonZero(A,7)

ans =

 1

 isStable

9-681

isStable

Class: LagOp

Determine stability of lag operator polynomial

Syntax

[indicator,eigenvalues] = isStable(A)

Description

[indicator,eigenvalues] = isStable(A) takes a lag operator polynomial object A
and checks if it is stable. The stability condition requires that the magnitudes of all roots
of the characteristic polynomial are less than 1 to within a small numerical tolerance.

Tips

• Zero-degree polynomials are always stable.
• For polynomials of degree greater than zero, the presence of NaN-valued coefficients

returns a false stability indicator and vector of NaNs in eigenvalues.
• When testing for stability, the comparison incorporates a small numerical tolerance.

The indicator is true when the magnitudes of all eigenvalues are less than
1-10*eps, where eps is machine precision. Users who wish to incorporate their own
tolerance (including 0) may simply ignore indicator and determine stability as
follows:

[~,eigenvalues] = isStable(A);

indicator = all(abs(eigenvalues) < (1-tol));

for some small, nonnegative tolerance tol.

9 Functions — Alphabetical List

9-682

Input Arguments

A

Lag operator polynomial object, as produced by LagOp.

Output Arguments

indicator

Boolean value for the stability test. true indicates that A(L) is stable and that the
magnitude of all eigenvalues of its characteristic polynomial are less than one; false
indicates that A(L) is unstable and that the magnitude of at least one of the eigenvalues
of its characteristic polynomial is greater than or equal to one.

eigenvalues

Eigenvalues of the characteristic polynomial associated with A(L). The length of
eigenvalues is the product of the degree and dimension of A(L).

Examples

Check a Lag Operator Polynomial for Stability

Divide two Lag Operator polynomial objects and check if the resulting polynomial is
stable:

A = LagOp({1 -0.6 0.08});

B = LagOp({1 -0.5});

[indicator,eigenvalues]=isStable(A\B)

indicator =

 1

eigenvalues =

 0.3531 + 0.0000i

 isStable

9-683

 -0.0723 + 0.3003i

 -0.0723 - 0.3003i

 -0.3086 + 0.0000i

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
mldivide | mrdivide

How To
• “Specify Lag Operator Polynomials” on page 2-11
• “Plot the Impulse Response Function” on page 5-88

9 Functions — Alphabetical List

9-684

jcitest
Johansen cointegration test

Syntax
[h,pValue,stat,cValue,mles] = jcitest(Y)

[h,pValue,stat,cValue,mles] = jcitest(Y,Name,Value)

Description
Johansen tests assess the null hypothesis H(r) of cointegration rank less than or equal
to r among the numDims-dimensional time series in Y against alternatives H(numDims)
(trace test) or H(r+1) (maxeig test). The tests also produce maximum likelihood
estimates of the parameters in a vector error-correction (VEC) model of the cointegrated
series.

[h,pValue,stat,cValue,mles] = jcitest(Y) performs the Johansen cointegration
test on a data matrix Y.

[h,pValue,stat,cValue,mles] = jcitest(Y,Name,Value) performs the
Johansen cointegration test on a data matrix Y with additional options specified by one or
more Name,Value pair arguments.

Input Arguments

Y

numObs-by-numDims matrix representing numObs observations of a numDims-
dimensional time series yt, with the last observation the most recent. Y cannot have more
than 12 columns. Observations containing NaN values are removed. Initial values for
lagged variables in VEC model estimation are taken from the beginning of the data.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 jcitest

9-685

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'model'

String or cell vector of strings specifying the form of the deterministic components of the
VEC(q) model of yt:

D D Dy y y yt t t q t q tC B B DX= + + º+ + +- - -1 1 1 e

If r < numDims is the cointegration rank, then C = AB′, where A is a numDims-by-r matrix
of error-correction speeds and B is a numDims-by-r matrix of basis vectors for the space
of cointegrating relations. X contains any exogenous terms representing deterministic
trends in the data. For maximum likelihood estimation, it is assumed that εt ~ NID(0,Q),
where Q is the innovations covariance matrix.

Values of model are those considered by Johansen [2].

Value Form of Cyt-1 + DX

H2 AB´yt−1. There are no intercepts or trends in the cointegrating
relations and there are no trends in the data. This model is
only appropriate if all series have zero mean.

H1* A(B´yt−1+c0). There are intercepts in the cointegrating
relations and there are no trends in the data. This model is
appropriate for nontrending data with nonzero mean.

H1 A(B´yt−1+c0)+c1. There are intercepts in the cointegrating
relations and there are linear trends in the data. This is a
model of deterministic cointegration, where the relations
eliminate both stochastic and deterministic trends in the
data. This is the default value.

H* A(B´yt−1+c0+d0t)+c1. There are intercepts and linear trends in
the cointegrating relations and there are linear trends in the
data. This is a model of stochastic cointegration, where the
relations eliminate stochastic but not deterministic trends in
the data.

H A(B´yt−1+c0+d0t)+c1+d1t. There are intercepts and linear
trends in the cointegrating relations and there are quadratic
trends in the data. Unless quadratic trends are actually

9 Functions — Alphabetical List

9-686

Value Form of Cyt-1 + DX

present in the data, this model might produce good in-sample
fits but poor out-of-sample forecasts.

Deterministic terms outside of the cointegrating relations, c1 and d1, are identified by
projecting constant and linear regression coefficients, respectively, onto the orthogonal
complement of A.

'lags'

Scalar or vector of nonnegative integers indicating the number q of lagged differences in
the VEC(q) model of yt.

Lagging and differencing a time series reduce the sample size. Absent any presample
values, if yt is defined for t = 1:N, then the lagged series yt−k is defined for t = k + 1:N.
Differencing reduces the time base to k+2:N. With q lagged differences, the common time
base is q+2:N and the effective sample size is T = N−(q+1).

Default: 0

'test'

String or cell vector of strings indicating the type of test to be performed. Values are
'trace' or 'maxeig'. The default value is 'trace'. Both tests assess the null
hypothesis H(r) of cointegration rank less than or equal to r. Statistics are computed
using the effective sample size T and ordered estimates of the eigenvalues of C = AB′, λ1
> ... > λd, where d = numDims.

• When the value is 'trace', the alternative hypothesis is H(numDims). Statistics are:

- - + + -[]+T
r numDims

log() log()1 11l l…

• When the value is 'maxeig', the alternative hypothesis is H(r+1). Statistics are:

- - +T
r

log()1 1l

'alpha'

Scalar or vector of nominal significance levels for the tests. Values must be between
0.001 and 0.999.

Default: 0.05

 jcitest

9-687

'display'

String or cell vector of strings indicating whether or not to display a summary of test
results and parameter estimates in the Command Window.

Value Display

off No display to the command window. This is the default if
jcitest is called with only one output argument (h).

summary Display a summary of test results. Null ranks r = 0:numDims
− 1 are displayed in the first column of each summary.
Multiple tests are displayed in separate summaries. This is
the default if jcitest is called with more than one output
argument (that is, if pValue is computed), and is unavailable
if jcitest is called with only one output argument (h).

params Display maximum likelihood estimates of the parameter
values associated with the reduced-rank VEC(q) model of yt.
This display is only available if jcitest is called with five
output arguments (that is, if mles is computed). Displayed
parameter values are returned in mles.rn(m).paramVals for
null rank r = n and test m.

full Display both summary and params.

Scalar or single string values are expanded to the length of any vector value (the number
of tests). Vector values must have equal length.

Output Arguments

h

numTests-by-numDims tabular array of Boolean decisions for the tests.

Rows of h correspond to tests specified by the input arguments, and the software labels
the rows t1,t2,...,tu, where u = numTests. Variables of h correspond to different,
maintained cointegration ranks r = 0,...,numDims – 1, and the software labels the
variables r0,r1,...,rR, where R = numDims – 1. To access results stored in h, for example,
the result for test m of null rank n, use h.rn(m).

Values of h equal to 1 (true) indicate rejection of the null of cointegration rank r in favor
of the alternative. Values of h equal to 0 (false) indicate a failure to reject the null.

9 Functions — Alphabetical List

9-688

pValue

numTests-by-numDims tabular array of right-tail probabilities of the test statistics.

Rows of pValue correspond to tests specified by the input arguments, and the software
labels the rows t1,t2,...,tu, where u = numTests. Variables of pValue correspond to
different, maintained cointegration ranks r = 0,...,numDims – 1, and the software labels
the variables r0,r1,...,rR, where R = numDims – 1. To access results stored in pValue, for
example, the result for test m of null rank n, use pValue.rn(m).

stat

numTests-by-numDims tabular array of test statistics, determined by the test name-
value pair argument.

Rows of stat correspond to tests specified by the input arguments, and the software
labels the rows t1,t2,...,tu, where u = numTests. Variables of stat correspond to
different, maintained cointegration ranks r = 0,...,numDims – 1, and the software labels
the variables r0,r1,...,rR, where R = numDims – 1. To access results stored in stat, for
example, the result for test m of null rank n, use stat.rn(m).

cValue

numTests-by-numDims tabular array of critical values for right-tail probabilities,
determined by the alpha name-value pair argument. jcitest loads tables of critical
values from the file Data_JCITest.mat, then linearly interpolates test-critical values
from the tables. Tabulated values were computed using methods described in [3].

Rows of cValue correspond to tests specified by the input arguments, and the software
labels the rows t1,t2,...,tu, where u = numTests. Variables of cValue correspond to
different, maintained cointegration ranks r = 0,...,numDims – 1, and the software labels
the variables r0,r1,...,rR, where R = numDims – 1. To access results stored in cValue, for
example, the result for test m of null rank n, use cValue.rn(m).

mles

numTests-by-numDims tabular array of structures of maximum likelihood estimates
associated with the VEC(q) model of yt. Each structure contains these fields.

Field Description

paramNames Cell vector of parameter names, of the form:

 jcitest

9-689

Field Description
{A, B, B1,...,Bq, c0, d0, c1, d1}

Elements depend on the values of lags and model.
paramVals Structure of parameter estimates with field names

corresponding to the parameter names in paramNames.
res T-by-numDims matrix of residuals, where T is the

effective sample size, obtained by fitting the VEC(q)
model of yt to the input data.

EstCov Estimated covariance Q of the innovations process εt.
eigVal Eigenvalue associated with H(r).
eigVec Eigenvector associated with the eigenvalue in eigVal.

Eigenvectors v are normalized so that v′S11v = 1, where
S11 is defined as in [2].

rLL Restricted loglikelihood of Y under the null.
uLL Unrestricted loglikelihood of Y under the alternative.

Rows of mles correspond to tests specified by the input arguments, and the software
labels the rows t1,t2,...,tu, where u = numTests. Variables of mles correspond to
different, maintained cointegration ranks r = 0,...,numDims – 1, and the software labels
the variables r0,r1,...,rR, where R = numDims – 1. To access results stored in mles, for
example, the result for test m of null rank n, use mles.rn(m). You can further access the
fields of the structure using dot notation, for example, enter mles.rn(m).paramNames
for the parameter names.

Examples

Test Multiple Series for Cointegration Using jcitest

Load data on term structure of interest rates in Canada:

load Data_Canada

Y = Data(:,3:end);

names = series(3:end);

plot(dates,Y)

legend(names,'location','NW')

grid on

9 Functions — Alphabetical List

9-690

Test for cointegration:

[h,pValue,stat,cValue,mles] = jcitest(Y,'model','H1');

h,pValue

Results Summary (Test 1)

Data: Y

Effective sample size: 40

Model: H1

Lags: 0

Statistic: trace

 jcitest

9-691

Significance level: 0.05

r h stat cValue pValue eigVal

--

0 1 37.6886 29.7976 0.0050 0.4101

1 1 16.5770 15.4948 0.0343 0.2842

2 0 3.2003 3.8415 0.0737 0.0769

h =

 r0 r1 r2

 _____ _____ _____

 t1 true true false

pValue =

 r0 r1 r2

 _________ ________ ________

 t1 0.0050497 0.034294 0.073661

Plot estimated cointegrating relations :

YLag = Y(2:end,:);

T = size(YLag,1);

B = mles.r2.paramVals.B;

c0 = mles.r2.paramVals.c0;

plot(dates(2:end),YLag*B+repmat(c0',T,1))

grid on

9 Functions — Alphabetical List

9-692

More About

Algorithms

Time series in Y might be stationary in levels or first differences (i.e., I(0) or I(1)). Rather
than pretesting series for unit roots (using, e.g., adftest, pptest, kpsstest, or
lmctest), the Johansen procedure formulates the question within the model. An I(0)
series is associated with a standard unit vector in the space of cointegrating relations,
and its presence can be tested using jcontest.

If jcitest fails to reject the null of cointegration rank r = 0, the inference is that the
error-correction coefficient C is zero, and the VEC(q) model reduces to a standard VAR(q)

 jcitest

9-693

model in first differences. If jcitest rejects all cointegration ranks r less than numDims,
the inference is that C has full rank, and yt is stationary in levels.

The parameters A and B in the reduced-rank VEC(q) model are not uniquely identified,
though their product C = AB′ is. jcitest constructs B = V(:,1:r) using the orthonormal
eigenvectors V returned by eig, then renormalizes so that V'*S11*V = I, as in [2].

To test linear constraints on the error-correction speeds A and the space of cointegrating
relations spanned by B, use jcontest.

To convert VEC(q) model parameters in the mles output to VAR(q+1) model parameters,
use vec2var.
• “Cointegration and Error Correction Analysis” on page 7-108

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive
Models. Oxford: Oxford University Press, 1995.

[3] MacKinnon, J. G., A. A. Haug, and L. Michelis. “Numerical Distribution Functions of
Likelihood Ratio Tests for Cointegration.” Journal of Applied Econometrics. v. 14,
1999, pp. 563–577.

[4] Turner, P. M. “Testing for Cointegration Using the Johansen Approach: Are We Using
the Correct Critical Values?” Journal of Applied Econometrics. v. 24, 2009, pp.
825–831.

See Also
egcitest | jcontest | vec2var

Introduced in R2011a

9 Functions — Alphabetical List

9-694

jcontest
Johansen constraint test

Syntax

[h,pValue,stat,cValue,mles] = jcontest(Y,r,test,Cons)

[h,pValue,stat,cValue,mles] = jcontest(Y,r,test,Cons,Name,Value)

Description

jcontest tests linear constraints on either the error-correction speeds A or the
cointegration space spanned by B in the reduced-rank VEC(q) model of yt:

D = ¢ + D +º+ D + +- - -y y y yt t t q t q tAB B B DX1 1 1 e .

Null hypotheses specifying constraints on A or B are tested against the alternative H(r)
of cointegration rank less than or equal to r, without the constraints. The tests also
produce maximum likelihood estimates of the parameters in the VEC(q) model, subject to
the constraints.

[h,pValue,stat,cValue,mles] = jcontest(Y,r,test,Cons) performs the
Johansen constraint test on a data matrix Y.

[h,pValue,stat,cValue,mles] = jcontest(Y,r,test,Cons,Name,Value)

performs the Johansen constraint test on a data matrix Y with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

Y

numObs-by-numDims matrix representing numObs observations of a numDims-
dimensional time series yt, with the last observation the most recent. Observations
containing NaN values are removed. Initial values for lagged variables in VEC model
estimation are taken from the beginning of the data.

 jcontest

9-695

r

Scalar or vector of integers between 1 and numDims−1, inclusive, specifying the common
rank of A and B, as inferred by jcitest.

test

String or cell vector of strings specifying the type of tests to be performed. Values are:

ACon Test linear constraints on A.
AVec Test specific vectors in A.
BCon Test linear constraints on B.
BVec Test specific vectors in B.

Cons

Matrix or cell vector of matrices specifying test constraints. For constraints on B, the
number of rows in each matrix, numDims1, is the number of dimensions in the data,
numDims, unless model is H*or H1*, in which case numDims1 = numDims + 1 and
constraints include the restricted deterministic term in the model.

Test Cons
ACon numDims-by-numCons matrix R specifying numCons constraints

on A given by R'*A = 0. numCons must not exceed numDims −
r.

AVec numDims-by-numCons matrix specifying numCons of the error-
correction speed vectors in A. numCons must not exceed r.

BCon numDims1-by-numCons matrix R specifying numCons
constraints on B given by R'*B = 0. numCons must not exceed
numDims − r.

BVec numDims1-by-numCons matrix specifying numCons of the
cointegrating vectors in B. numCons must not exceed r.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

9 Functions — Alphabetical List

9-696

'model'

String or cell vector of strings specifying the form of the deterministic components of the
VEC(q) model of yt. Values of model are those considered by Johansen [3]:

Value Form of AB′yt−1 + DX
H2 AB′yt−1. There are no intercepts or trends in the cointegrating relations

and there are no trends in the data. This model is only appropriate if
all series have zero mean.

H1* A(B′yt−1 + c0). There are intercepts in the cointegrating relations
and there are no trends in the data. This model is appropriate for
nontrending data with nonzero mean.

H1 A(B′yt−1 + c0) + c1. There are intercepts in the cointegrating relations
and there are linear trends in the data. This is a model of deterministic
cointegration, where the relations eliminate both stochastic and
deterministic trends in the data. This is the default value.

H* A(B′yt−1 + c0 + d0t) + c1. There are intercepts and linear trends in the
cointegrating relations and there are linear trends in the data. This
is a model of stochastic cointegration, where the relations eliminate
stochastic but not deterministic trends in the data.

H A(B′yt−1 + c0 + d0t) + c1 + d1t. There are intercepts and linear trends in
the cointegrating relations and there are quadratic trends in the data.
Unless quadratic trends are actually present in the data, this model
may produce good in-sample fits but poor out-of-sample forecasts.

Deterministic terms outside of the cointegrating relations, c1 and d1, are identified by
projecting constant and linear regression coefficients, respectively, onto the orthogonal
complement of A.

'lags'

Scalar or vector of nonnegative integers indicating the number q of lagged differences in
the VEC(q) model of yt.

Lagging and differencing a time series reduce the sample size. Absent any presample
values, if yt is defined for t = 1:N, then the lagged series yt−k is defined for t = k+1:N.
Differencing reduces the time base to k+2:N. With q lagged differences, the common time
base is q+2:N and the effective sample size is T = N − (q+1).

 jcontest

9-697

Default: 0

'alpha'

Scalar or vector of nominal significance levels for the tests. Values must be greater than
zero and less than one. The default value is 0.05.

Single-element values for inputs are expanded to the length of any vector value (the
number of tests). Vector values must have equal length. If any value is a row vector, all
outputs are row vectors.

Output Arguments

h

Vector of Boolean decisions for the tests, with length equal to the number of tests. Values
of h equal to 1 (true) indicate rejection of the null that the constraints hold in favor of
the alternative that they do not. Values of h equal to 0 (false) indicate a failure to reject
the null.

pValue

Vector of right-tail probabilities of the test statistics, with length equal to the number of
tests.

stat

Vector of test statistics, with length equal to the number of tests. Statistics are likelihood
ratios determined by the test.

cValue

Critical values for right-tail probabilities, with length equal to the number of tests. The
asymptotic distributions of the test statistics are chi-square, with the degree-of-freedom
parameter determined by the test.

mles

Structure of maximum likelihood estimates associated with the VEC(q) model of yt,
subject to the constraints. Each structure has the following fields:

9 Functions — Alphabetical List

9-698

paramNames Cell vector of parameter names, of the form:

{A, B, B1,...,Bq, c0, d0, c1, d1}

Elements depend on the values of lags and model.
paramVals Structure of parameter estimates with field names corresponding to

the parameter names in paramNames.
res T-by-numDims matrix of residuals, where T is the effective sample

size, obtained by fitting the VEC(q) model of y(t) to the input data.
EstCov Estimated covariance Q of the innovations process εt.
rLL Restricted loglikelihood of Y under the null.
uLL Unrestricted loglikelihood of Y under the alternative.
dof Degrees of freedom of the asymptotic chi-square distribution of the

test statistic.

Examples

Test Purchasing Power Parity Using jcontest

Load data on Australian and U.S. prices:

load Data_JAustralian

p1 = DataTable.PAU; % Log Australian Consumer Price Index

p2 = DataTable.PUS; % Log U.S. Consumer Price Index

s12 = DataTable.EXCH; % Log AUD/USD Exchange Rate

Y = [p1 p2 s12];

plot(dates,Y)

datetick('x','yyyy')

legend(series(1:3),'Location','Best')

grid on

 jcontest

9-699

Pretest the individual series for stationarity:

[h0,pValue0] = jcontest(Y,1,'BVec',{[1 0 0]',[0 1 0]',[0 0 1]'})

h0 =

 1 1 0

pValue0 =

 0.0000 0.0000 0.0657

9 Functions — Alphabetical List

9-700

Test for cointegration:

[h1,pValue1] = jcitest(Y)

Warning: Test statistic #1 above tabulated critical values:

minimum p-value = 0.001 reported.

Results Summary (Test 1)

Data: Y

Effective sample size: 76

Model: H1

Lags: 0

Statistic: trace

Significance level: 0.05

r h stat cValue pValue eigVal

--

0 1 60.3393 29.7976 0.0010 0.4687

1 0 12.2749 15.4948 0.1446 0.1157

2 0 2.9315 3.8415 0.0869 0.0378

h1 =

 r0 r1 r2

 _____ _____ _____

 t1 true false false

pValue1 =

 r0 r1 r2

 _____ _______ ________

 t1 0.001 0.14455 0.086906

Test for purchasing power parity ():

[h2,pValue2] = jcontest(Y,1,'BCon',[1 -1 -1]')

 jcontest

9-701

h2 =

 0

pValue2 =

 0.0540

More About

Algorithms

• The parameters A and B in the reduced-rank VEC(q) model are not uniquely
identified. jcontest identifies B using the methods in [3], depending on the test.

• When constructing constraints, interpret the rows and columns of the numDims-by-r
matrices A and B as follows:

• Row i of A contains the adjustment speeds of variable yi to disequilibrium in each
of the r cointegrating relations.

• Column j of A contains the adjustment speeds of each of the numDims variables to
disequilibrium in the jth cointegrating relation.

• Row i of B contains the coefficients of variable yi in each of the r cointegrating
relations.

• Column j of B contains the coefficients of each numDims variable in the jth
cointegrating relation.

• Tests on B answer questions about the space of cointegrating relations. Tests on
A answer questions about common driving forces in the system. For example, an
all-zero row in A indicates a variable that is weakly exogenous with respect to the
coefficients in B. Such a variable might affect other variables, but it does not adjust to
disequilibrium in the cointegrating relations. Similarly, a standard unit vector column
in A indicates a variable that is exclusively adjusting to disequilibrium in a particular
cointegrating relation.

• Constraints matrices R satisfying R′A = 0 or R′B = 0 are equivalent to A = Hφ or B =
 Hφ, where H is the orthogonal complement of R (null(R')) and φ is a vector of free
parameters.

9 Functions — Alphabetical List

9-702

• jcontest compares finite-sample statistics to asymptotic critical values, and tests
can show significant size distortions for small samples. See [2]. Larger samples lead to
more reliable inferences.

• To convert VEC(q) model parameters in the mles output to vector autoregressive
(VAR) model parameters, use the utility vec2var.

• “Cointegration and Error Correction Analysis” on page 7-108

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Haug, A. “Testing Linear Restrictions on Cointegrating Vectors: Sizes and Powers of
Wald Tests in Finite Samples.” Econometric Theory. v. 18, 2002, pp. 505–524.

[3] Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive
Models. Oxford: Oxford University Press, 1995.

[4] Juselius, K. The Cointegrated VAR Model. Oxford: Oxford University Press, 2006.

[5] Morin, N. “Likelihood Ratio Tests on Cointegrating Vectors, Disequilibrium
Adjustment Vectors, and their Orthogonal Complements.” European Journal of
Pure and Applied Mathematics. v. 3, 2010, pp. 541–571.

See Also
jcitest | vec2var

Introduced in R2011a

 kpsstest

9-703

kpsstest
KPSS test for stationarity

Syntax
h = kpsstest(y)

h = kpsstest(y,Name,Value)

[h,pValue] = kpsstest(___)

[h,pValue,stat,cValue,reg] = kpsstest(___)

Description
h = kpsstest(y) returns the logical value (h) with the rejection decision from
conducting the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test for a unit root in
the univariate time series y.

h = kpsstest(y,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

• If any Name,Value pair argument is a vector, then all Name,Value pair arguments
specified must be vectors of equal length or length one. kpsstest(y,Name,Value)
treats each element of a vector input as a separate test, and returns a vector of
rejection decisions.

• If any Name,Value pair argument is a row vector, then kpsstest(y,Name,Value)
returns a row vector.

[h,pValue] = kpsstest(___) returns the rejection decision and p-value for the
hypothesis test, using any of the input arguments in the previous syntaxes.

[h,pValue,stat,cValue,reg] = kpsstest(___) additionally returns the test
statistic, critical value, and a structure of regression statistics for the hypothesis test.

Examples
Assess Trend Stationarity of a Series

Reproduce the first row of the second half of Table 5 in Kwiatkowski et al., 1992.

9 Functions — Alphabetical List

9-704

Load the Nelson-Plosser Macroeconomic series data set.

load Data_NelsonPlosser

Linearize the real gross national product series (RGNP).

logGNPR = log(DataTable.GNPR);

Assess the null hypothesis that the series is trend stationary over a range of lags.

lags = (0:8)';

[~,pValue,stats] = kpsstest(logGNPR,'Lags',lags,'Trend',true);

results = [lags pValue stats]

Warning: Test statistic #1 above tabulated critical values:

minimum p-value = 0.010 reported.

Warning: Test statistic #2 above tabulated critical values:

minimum p-value = 0.010 reported.

Warning: Test statistic #3 above tabulated critical values:

minimum p-value = 0.010 reported.

results =

 0 0.0100 0.6299

 1.0000 0.0100 0.3367

 2.0000 0.0100 0.2421

 3.0000 0.0169 0.1976

 4.0000 0.0276 0.1729

 5.0000 0.0401 0.1578

 6.0000 0.0484 0.1479

 7.0000 0.0589 0.1412

 8.0000 0.0668 0.1370

Warnings appear because the tests using 0 lags 2 produce p-values that are less
than 0.01. For lags 7, the tests indicate sufficient evidence to suggest that log rGNP is
unit root nonstationary (i.e., not trend stationary) at the default 5% level.

Test Trend Stationarity by Specifying Lags

Test whether the wage series in the manufacturing sector (1900-1970) has a unit root.

Load the Nelson-Plosser Macroeconomic data set.

load Data_NelsonPlosser

 kpsstest

9-705

wages = DataTable.WN;

T = sum(isfinite(wages)); % Sample size without NaNs

sqrtT = sqrt(T) % See Kwiatkowski et al., 1992

sqrtT =

 8.4261

Plot the wages series.

plot(dates,wages)

title('Wages')

axis tight

9 Functions — Alphabetical List

9-706

The plot suggests that the wages series grows exponentially.

Linearize the wages series.

logWages = log(wages);

plot(dates,logWages)

title('Log Wages')

axis tight

The plot suggests that the log wages series has a linear trend.

Test the hypothesis that the log wages series is a unit root process with a trend (i.e.,
difference stationary), against the alternative that there is no unit root (i.e., trend

 kpsstest

9-707

stationary). Conduct the test by setting a range of lags around , as suggested in
Kwiatkowski et al., 1992.

[h,pValue] = kpsstest(logWages,'lags',[7:10])

Warning: Test statistic #1 below tabulated critical values:

maximum p-value = 0.100 reported.

Warning: Test statistic #2 below tabulated critical values:

maximum p-value = 0.100 reported.

Warning: Test statistic #3 below tabulated critical values:

maximum p-value = 0.100 reported.

Warning: Test statistic #4 below tabulated critical values:

maximum p-value = 0.100 reported.

h =

 0 0 0 0

pValue =

 0.1000 0.1000 0.1000 0.1000

All tests fail to reject the null hypothesis that the log wages series is trend stationary.

The warning messages do not indicate a problem. Rather, they indicate that the p-
values are larger than 0.1. The software compares the test statistic to critical values and
computes p-values that it interpolates from tables in Kwiatkowski et al., 1992.

• “Unit Root Nonstationarity” on page 3-34

Input Arguments

y — Univariate time series
vector

Univariate time series, specified as a vector. The last element is the most recent
observation.

NaNs indicate missing observations, and kpsstest removes them from y. Removing
NaNs decreases the effective sample size and can cause an irregular time series.

9 Functions — Alphabetical List

9-708

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'alpha',0.1,'lags',0:2 specifies three tests that include 0, 1, and
2 autocovariance lags in the Newey-West estimator of the long-run variance, each
conducted at 0.1 level of significance.

'lags' — Number of autocovariance lags
0 (default) | nonnegative integer | vector of nonnegative integers

Number of autocovariance lags to include in the Newey-West estimator of the long-run
variance, specified as the comma-separated pair consisting of 'lags' and a nonnegative
integer or vector of nonnegative integers. Use a vector to conduct multiple tests.
Example: 'lags',0:2

Data Types: double

'trend' — Indicate whether to include deterministic trend
true (default) | false | vector of logical values

Indicate whether to include the deterministic trend term δt in the model, specified as the
comma-separated pair consisting of 'trend' and a logical value or a vector of logical
values. Use a vector to conduct multiple tests.
Example: 'trend',false

Data Types: logical

'alpha' — Significance levels
0.05 (default) | scalar | vector

Significance levels for the hypothesis tests, specified as the comma-separated pair
consisting of 'alpha' and a scalar or vector. All values of alpha must be between 0.01
and 0.10. Use a vector to conduct multiple tests.
Example: 'alpha',0.01

Data Types: double

 kpsstest

9-709

Output Arguments

h — Test rejection decisions
logical | vector of logical values

Test rejection decisions, returned as a logical value or vector of logical values with a
length equal to the number of tests that the software conducts.

• h = 1 indicates rejection of the trend-stationary null in favor of the unit root
alternative.

• h = 0 indicates failure to reject the trend-stationary null.

pValue — Test statistic p-values
scalar | vector

Test statistic p-values, returned as a scalar or vector with a length equal to the number
of tests that the software conducts. The p-values are right-tail probabilities.

stat — Test statistics
scalar | vector

Test statistics, returned as a scalar or vector with a length equal to the number of tests
that the software conducts.

kpsstest computes test statistics using an ordinary least squares (OLS) regression.

• If you set 'trend',false, then the software regresses y on an intercept.
• Otherwise, the software regresses y on an intercept and trend term.

cValue — Critical values
scalar | vector

Critical values, returned as a scalar or vector with a length equal to the number of tests
that the software conducts. Critical values are for right-tail probabilities.

reg — Regression statistics
data structure | data structure array

Regression statistics for ordinary least squares (OLS) estimation of coefficients in the
alternative model, returned as a data structure or data structure array with a length
equal to the number of tests that the software conducts.

9 Functions — Alphabetical List

9-710

Each data structure has the following fields.

Field Description

num Length of input series with NaNs removed
size Effective sample size, adjusted for lags
names Regression coefficient names
coeff Estimated coefficient values
se Estimated coefficient standard errors
Cov Estimated coefficient covariance matrix
tStats t statistics of coefficients and p-values
FStat F statistic and p-value
yMu Mean of the lag-adjusted input series
ySigma Standard deviation of the lag-adjusted input series
yHat Fitted values of the lag-adjusted input series
res Regression residuals
DWStat Durbin-Watson statistic
SSR Regression sum of squares
SSE Error sum of squares
SST Total sum of squares
MSE Mean square error
RMSE Standard error of the regression
RSq R2 statistic
aRSq Adjusted R2 statistic
LL Loglikelihood of data under Gaussian innovations
AIC Akaike information criterion
BIC Bayesian (Schwarz) information criterion
HQC Hannan-Quinn information criterion

 kpsstest

9-711

More About

Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test

Assesses the null hypothesis that a univariate time series is trend stationary against the
alternative that it is a nonstationary unit root process.

The test uses the structural model:

y

c

c t u

c u

t t t

t t t

= + +

= +-

d 1

1 2 ,

where

• δ is the trend coefficient.
• u1t is a stationary process.
• u2t is an independent and identically distributed process with mean 0 and variance σ2.

The null hypothesis is that σ2 = 0, which implies that the random walk term (ct) is
constant and acts as the model intercept. The alternative hypothesis is that σ2 > 0, which
introduces the unit root in the random walk.

The test statistic is

t

T

tS

s T

=

Â
1

2

2 2
,

where

• T is the sample size.
• s2 is the Newey-West estimate of the long-run variance.
• S e et t= + +

1 2
…+e .

Tips

• In order to draw valid inferences from the KPSS test, you should determine a suitable
value for 'lags'. These two methods determine a suitable number of lags:

9 Functions — Alphabetical List

9-712

• Begin with a small number of lags and then evaluate the sensitivity of the results
by adding more lags.

• Kwiatkowski et al. [2] suggest that a number of lags on the order of T , where T
is the sample size, is often satisfactory under both the null and the alternative.

For consistency of the Newey-West estimator, the number of lags must approach
infinity as the sample size increases.

• You should determine the value of 'trend' by the growth characteristics of the time
series. Determine its value with a specific testing strategy in mind.

• If a series is growing, then include a trend term to provide a reasonable
comparison of a trend stationary null and a unit root process with drift. kpsstest
sets 'trend',true by default.

• If a series does not exhibit long-term growth characteristics, then don’t include a
trend term (i.e., set 'trend',false).

Algorithms

• kpsstest performs a regression to find the ordinary least squares (OLS) fit between
the data and the null model.

• Test statistics follow nonstandard distributions under the null, even asymptotically.
Kwiatkowski et al. [2] use Monte Carlo simulations, for models with and without a
trend, to tabulate asymptotic critical values for a standard set of significance levels
between 0.01 and 0.1. kpsstest interpolates critical values and p-values from these
tables.

• “Unit Root Nonstationarity” on page 3-34

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin. “Testing the Null
Hypothesis of Stationarity against the Alternative of a Unit Root.” Journal of
Econometrics. Vol. 54, 1992, pp. 159–178.

 kpsstest

9-713

[3] Newey, W. K., and K. D. West. “A Simple, Positive Semidefinite, Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix.” Econometrica. Vol. 55, 1987,
pp. 703–708.

See Also
adftest | lmctest | pptest | vratiotest

Introduced in R2009b

9 Functions — Alphabetical List

9-714

lagmatrix
Create matrix of lagged time series

Syntax
XLAG = lagmatrix(X,Lags)

Description
XLAG = lagmatrix(X,Lags) creates a lagged (shifted) version of a time series matrix.
The lagmatrix function is useful for creating a regression matrix of explanatory
variables for fitting the conditional mean of a return series.

Input Arguments

X Time series of explanatory data. X can be a column vector or a matrix. As
a column vector, X represents a univariate time series whose first element
contains the oldest observation and whose last element contains the most
recent observation. As a matrix, X represents a multivariate time series
whose rows correspond to time indices. The first row contains the oldest
observations and the last row contains the most recent observations.
lagmatrix assumes that observations across any given row occur at the
same time. Each column is an individual time series.

Lags Vector of integer lags. lagmatrix applies the first lag to every series in
X, then applies the second lag to every series in X, and so forth. To include
a time series as is, include a 0 lag. Positive lags correspond to delays, and
shift a series back in time. Negative lags correspond to leads, and shift a
series forward in time.

Output Arguments

XLAG Lagged transform of the time series X. To create XLAG, lagmatrix shifts
each time series in X by the first lag, then shifts each time series in X
by the second lag, and so forth. Since XLAG represents an explanatory

 lagmatrix

9-715

regression matrix, each column is an individual time series. XLAG has the
same number of rows as there are observations in X. Its column dimension
is equal to the product of the number of columns in X and the length of
Lags. lagmatrix uses a NaN (Not-a-Number) to indicate an undefined
observation.

Examples
Create a Lag Matrix

Create a bivariate time series matrix X with five observations each:

X = [1 -1; 2 -2 ;3 -3 ;4 -4 ;5 -5] % Create a simple

 % bivariate series.

X =

 1 -1

 2 -2

 3 -3

 4 -4

 5 -5

Create a lagged matrix XLAG, composed of X and the first two lags of X:

XLAG = lagmatrix(X,[0 1 2]) % Create the lagged matrix.

XLAG =

 1 -1 NaN NaN NaN NaN

 2 -2 1 -1 NaN NaN

 3 -3 2 -2 1 -1

 4 -4 3 -3 2 -2

 5 -5 4 -4 3 -3

The result, XLAG, is a 5-by-6 matrix.

See Also
filter | isnan | nan

9 Functions — Alphabetical List

9-716

Introduced before R2006a

 LagOp class

9-717

LagOp class

Create lag operator polynomial (LagOp) object

Description

Create a lag operator polynomial A(L), by specifying the coefficients and, optionally, the
corresponding lags.

Construction

A = LagOp(coefficients)

A = LagOp(coefficients,Name,Value) creates a lag operator polynomial with
additional options specified by one or more Name,Value pair arguments. Name can also
be a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

coefficients

The coefficients of the lag operator polynomial. Generally, coefficients is a cell array
of square matrices. For convenience, coefficients may also be specified in other ways:

• As a vector, representing a univariate time series polynomial with multiple lags.
• As a matrix, representing a multivariate time series polynomial with a single lag.
• As an existing LagOp object, to be updated according to the optional inputs.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

9 Functions — Alphabetical List

9-718

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Lags'

Vector of integer lags associated with the polynomial coefficients. If specified, the number
of lags must be the same as the number of coefficients.

Default: Coefficients are associated with lags 0, 1,..., numCoefficients–1.

'Tolerance'

Nonnegative scalar tolerance used to determine which lags are included in the object.
Specifying a tolerance greater than the default (1e–12) excludes lags with near-zero
coefficients. A lag is excluded if the magnitudes of all elements of the coefficient matrix
are less than or equal to the specified tolerance.

Default: 1e–12

Output Arguments

A

Lag operator polynomial (LagOp) object.

Properties

Coefficients

Lag indexed cell array of nonzero polynomial coefficients

Degree

Polynomial degree (the highest lag associated with a nonzero coefficient)

Dimension

Polynomial dimension (the number of time series to which it may be applied)

 LagOp class

9-719

Lags

Polynomial lags associated with nonzero coefficient

Methods

filter Apply lag operator polynomial to filter time
series

isEqLagOp Determine if two LagOp objects are same
mathematical polynomial

isNonZero Find lags associated with nonzero
coefficients of LagOp objects

isStable Determine stability of lag operator
polynomial

minus Lag operator polynomial subtraction
mldivide Lag operator polynomial left division
mrdivide Lag operator polynomial right division
mtimes Lag operator polynomial multiplication
plus Lag operator polynomial addition
reflect Reflect lag operator polynomial coefficients

around lag zero
toCellArray Convert lag operator polynomial object to

cell array

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Indexing

The coefficients of lag operator polynomials are accessible by lag-based indexing; that is,
by specifying nonnegative integer lags associated with the coefficients of interest.

9 Functions — Alphabetical List

9-720

Examples

Specify a Lag Operator Polynomial

Create a LagOp polynomial object:

A = LagOp({1 -0.6 0.08});

Return the coefficient at lag L = 2:

a2 = A.Coefficients{2};

Assign a nonzero coefficient to the 3rd lag:

A.Coefficients{3} = 0.5;

• “Specify Lag Operator Polynomials” on page 2-11

More About
• Class Attributes
• Property Attributes

 lbqtest

9-721

lbqtest
Ljung-Box Q-test for residual autocorrelation

Syntax
h = lbqtest(res)

h = lbqtest(res,Name,Value)

[h,pValue] = lbqtest(___)

[h,pValue,stat,cValue] = lbqtest(___)

Description
h = lbqtest(res) returns a logical value (h) with the rejection decision from
conducting a “Ljung-Box Q-Test” on page 9-730 for autocorrelation in the residual
series res.

h = lbqtest(res,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

• If any Name,Value pair argument is a vector, then all Name,Value pair arguments
specified must be vectors of equal length or length one. lbqtest(res,Name,Value)
treats each element of a vector input as a separate test, and returns a vector of
rejection decisions.

• If any Name,Value pair argument is a row vector, then lbqtest(res,Name,Value)
returns a row vector.

[h,pValue] = lbqtest(___) returns the rejection decision and p-value for the
hypothesis test, using any of the input arguments in the previous syntaxes.

[h,pValue,stat,cValue] = lbqtest(___) additionally returns the test statistic
(stat) and critical value (cValue) for the hypothesis test.

Examples
Test a Time Series for Autocorrelation and ARCH Effects

Load the Deutschmark/British pound foreign-exchange rate data set.

9 Functions — Alphabetical List

9-722

load Data_MarkPound

Convert the prices to returns.

returns = price2ret(Data);

Compute the deviations of the return series.

res = returns - mean(returns);

Test the hypothesis that the residual series is not autocorrelated, using the default
number of lags.

h1 = lbqtest(res)

h1 =

 0

h1 = 0 indicates that there is not enough evidence to reject the null hypothesis that the
residuals of the returns are not autocorrelated.

Test the hypothesis that there are significant ARCH effects, using the default number of
lags [3].

h2 = lbqtest(res.^2)

h2 =

 1

h2 = 1 indicates that there are signifcant ARCH effects in the residuals of the returns.

Test for residual heteroscedasticity using archtest and the default number of lags.

h3 = archtest(res)

h3 =

 lbqtest

9-723

 1

h3 = 1 indicates that the null hypothesis of no residual heteroscedasticity should be
rejected in favor of an ARCH(1) model. This result is consistent with h2.

Conduct Ljung-Box Q-Test over Various Lags

Conduct multiple Ljung-Box Q-tests for autocorrelation by including various lags in the
test statistic. The data set is a time series of 57 consecutive days of overshorts from an
underground gasoline tank in Colorado [2]. That is, the current overshort () represents
the accuracy in measuring the amount of fuel:

• In the tank at the end of day
• In the tank at the end of day
• Delivered to the tank on day
• Sold on day .

Load the data set.

load(fullfile(matlabroot,'examples','econ','Data_Overshort'))

y = Data;

T = length(y); % Sample size

figure

plot(y)

title('Overshorts for 57 Consecutive Days')

9 Functions — Alphabetical List

9-724

lbqtest is appropriate for a series with a constant mean. Since the series appears to
fluctuate around a constant mean, you do not need to transform the data.

Compute the residuals.

res = y - mean(y);

Assess whether the residuals are autocorrelated. Include 5, 10, and 15 lags in the test
statistic computation.

[h,pValue] = lbqtest(res,'lags',[5,10,15])

h =

 lbqtest

9-725

 1 1 1

pValue =

 0.0016 0.0007 0.0013

h and pValue are vectors containing three elements corresponding to tests at each of the
three lags. The first element of each output corresponds to the test at lag 5, the second
element corresponds to the test at lag 10, and the third element corresponds to the test at
lag 15.

h = 1 indicates the rejection of the null hypothesis that the residuals are not
autocorrelated. pValue indicates the strength at which the test rejects the null
hypothesis. Since all three are less than 0.01, there is strong evidence to reject
the null hypothesis that the residuals are not autocorrelated.

Assess Autocorrelation in Inferred Residuals

Infer residuals from an estimated ARIMA model, and assess whether the residuals
exhibit autocorrelation using lbqtest.

Load the Australian Consumer Price Index (CPI) data set. The time series (cpi) is the
log quarterly CPI from 1972 to 1991. Remove the trend in the series by taking the first
difference.

load Data_JAustralian

cpi = DataTable.PAU;

T = length(cpi);

dCPI = diff(cpi);

figure

plot(dates(2:T),dCPI)

title('Differenced Australian CPI')

xlabel('Year')

ylabel('CPI growth rate')

datetick

axis tight

9 Functions — Alphabetical List

9-726

The differenced series appears stationary.

Fit an AR(1) model to the series, and then infer residuals from the estimated model.

Mdl = arima(1,0,0);

EstMdl = estimate(Mdl,dCPI);

res = infer(EstMdl,dCPI);

stdRes = res/sqrt(EstMdl.Variance); % Standardized residuals

 ARIMA(1,0,0) Model:

 Conditional Probability Distribution: Gaussian

 lbqtest

9-727

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0155643 0.00287662 5.41062

 AR{1} 0.296464 0.11048 2.68341

 Variance 0.000103804 1.19323e-05 8.69941

Assess whether the residuals are autocorrelated by conducting a Ljung-Box Q-test.
The standardized residuals originate from the estimated model (EstMdl) containing
parameters. When using such residuals, it is best practice to do the following:

• Adjust the degrees of freedom (dof) of the test statistic distribution to account for the
estimated parameters.

• Set the number of lags to include in the test statistic.
• When you count the estimated parameters, skip the constant and variance

parameters.

lags = 10;

dof = lags - 1; % One autoregressive parameter

[h,pValue] = lbqtest(stdRes,'Lags',lags,'DOF',dof)

h =

 1

pValue =

 0.0119

pValue = 0.0130 suggests that there is significant autocorrelation in the residuals at
the 5% level.

• “Time Series Regression VI: Residual Diagnostics”
• “Detect Autocorrelation” on page 3-18
• “Check Fit of Multiplicative ARIMA Model” on page 3-81
• “Specify Conditional Mean and Variance Models” on page 5-79

9 Functions — Alphabetical List

9-728

Input Arguments

res — Residual series
vector

Residual series for which the software computes the test statistic, specified as a vector.
The last element corresponds to the latest observation.

Typically, you fit a model to an observed time series, and res contains the standardized
residuals from the fitted model.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'lags',1:4,'alpha',0.1 specifies four tests with 1, 2, 3, and 4 lagged
terms conducted at the 0.1 significance level.

'lags' — Number of lagged terms
min(20,T-1) (default) | positive integer | vector of positive integers

Number of lagged terms to include in the test statistic calculation, specified as the
comma-separated pair consisting of 'lags' and a positive integer or vector of positive
integers.

Use a vector to conduct multiple tests.

Each element of lags must be less than length(res) – 1.

Example: 'lags',1:4

Data Types: double

'alpha' — Significance levels
0.05 (default) | scalar | vector

Significance levels for the hypothesis tests, specified as the comma-separated pair
consisting of 'alpha' and a scalar or vector.

 lbqtest

9-729

Use a vector to conduct multiple tests.

Each element of alpha must be greater than 0 and less than 1.

Example: 'alpha',0.01

Data Types: double

'dof' — Degrees of freedom
lags (default) | positive integer | vector of positive integers

Degrees of freedom for the asymptotic, chi-square distribution of the test statistics,
specified as the comma-separated pair consisting of 'dof' and a positive integer or
vector of positive integers.

Use a vector to conduct multiple tests.

If dof is an integer, then it must be less than lags. Otherwise, each element of dof
must be less than the corresponding element of lags.

Example: 'dof',15

Data Types: double

Output Arguments

h — Test rejection decisions
logical | vector of logicals

Test rejection decisions, returned as a logical value or vector of logical values with a
length equal to the number of tests that the software conducts.

• h = 1 indicates rejection of the no residual autocorrelation null hypothesis in favor of
the alternative.

• h = 0 indicates failure to reject the no residual autocorrelation null hypothesis.

pValue — Test statistic p-values
scalar | vector

Test statistic p-values, returned as a scalar or vector with a length equal to the number
of tests that the software conducts.

9 Functions — Alphabetical List

9-730

stat — Test statistics
scalar | vector

Test statistics, returned as a scalar or vector with a length equal to the number of tests
that the software conducts.

cValue — Critical values
scalar | vector

Critical values determined by alpha, returned as a scalar or vector with a length equal
to the number of tests that the software conducts.

More About

Ljung-Box Q-Test

The Ljung-Box Q-test is a “portmanteau” test that assesses the null hypothesis that a
series of residuals exhibits no autocorrelation for a fixed number of lags L, against the
alternative that some autocorrelation coefficient ρ(k), k = 1, ..., L, is nonzero.

The test statistic is

Q T T
k

T k
k

L

= +
-

Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â()

()

()
,2

2

1

r

where T is the sample size, L is the number of autocorrelation lags, and ρ(k) is the
sample autocorrelation at lag k. Under the null hypothesis, the asymptotic distribution of
Q is chi-square with L degrees of freedom.

Tips

If you obtain res by fitting a model to data, then you should reduce the degrees
of freedom (the argument dof) by the number of estimated coefficients, excluding
constants. For example, if you obtain res by fitting an ARMA(p,q) model, set dof to
L−p−q, where L is lags.

Algorithms

• The lags argument affects the power of the test.

 lbqtest

9-731

• If L is too small, then the test does not detect high-order autocorrelations.
• If L is too large, then the test loses power when a significant correlation at one lag

is washed out by insignificant correlations at other lags.
• Box, Jenkins, and Reinsel suggest setting min[20,T-1] as the default value for

lags [1].
• Tsay cites simulation evidence that setting lags to a value approximating log(T)

provides better power performance [5].
• lbqtest does not directly test for serial dependencies other than autocorrelation.

However, you can use it to identify conditional heteroscedasticity (ARCH effects) by
testing squared residuals [4].

Engle's test assesses the significance of ARCH effects directly. For details, see
archtest.

• “Ljung-Box Q-Test” on page 3-16

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Brockwell, P. J. and R. A. Davis. Introduction to Time Series and Forecasting. 2nd ed.
New York, NY: Springer, 2002.

[3] Gourieroux, C. ARCH Models and Financial Applications. New York: Springer-
Verlag, 1997.

[4] McLeod, A. I. and W. K. Li. "Diagnostic Checking ARMA Time Series Models Using
Squared-Residual Autocorrelations." Journal of Time Series Analysis. Vol. 4,
1983, pp. 269–273.

[5] Tsay, R. S. Analysis of Financial Time Series. 2nd Ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2005.

See Also
archtest | autocorr

Introduced before R2006a

9 Functions — Alphabetical List

9-732

lmctest

Leybourne-McCabe stationarity test

Syntax

h = lmctest(y)

h = lmctest(y,'ParameterName',ParameterValue)

[h,pValue] = lmctest(...)

[h,pValue,stat] = lmctest(...)

[h,pValue,stat,cValue] = lmctest(...)

[h,pValue,stat,cValue,reg1] = lmctest(...)

[h,pValue,stat,cValue,reg1,reg2] = lmctest(...)

Description

h = lmctest(y) assesses the null hypothesis that a univariate time series y is a trend
stationary AR(p) process, against the alternative that it is a nonstationary ARIMA(p,1,1)
process.

h = lmctest(y,'ParameterName',ParameterValue) accepts one or more comma-
separated parameter name/value pairs. Specify ParameterName inside single quotes.
Perform multiple tests by passing a vector value for any parameter. Multiple tests yield
vector results.

[h,pValue] = lmctest(...) returns p-values of the test statistics.

[h,pValue,stat] = lmctest(...) returns the test statistics.

[h,pValue,stat,cValue] = lmctest(...) returns critical values for the tests.

[h,pValue,stat,cValue,reg1] = lmctest(...) returns a structure of regression
statistics from the maximum likelihood estimation of the reduced-form model.

[h,pValue,stat,cValue,reg1,reg2] = lmctest(...) returns a structure of
regression statistics from the OLS estimation of the filtered data on a linear trend.

 lmctest

9-733

Input Arguments

y

Vector of time-series data. The last element is the most recent observation. The test
ignores NaN values, which indicate missing entries.

Parameter Name/Value Pairs

'alpha'

Scalar or vector of nominal significance levels for the tests. Set values between 0.01 and
0.1.

Default: 0.05

'Lags'

Scalar or vector of nonnegative integers indicating the number p of lagged values of y
to include in the structural model (equal to the number p of lagged changes of y in the
reduced-form model).

For best results, give a suitable value for 'lags'. For information on selecting 'lags',
see “Determine Appropriate Lags” on page 3-41.

Default: 0

'trend'

Scalar or vector of Boolean values indicating whether or not to include the deterministic
trend term d*t in the structural model (equivalent to including the drift term d in the
reduced-form model).

Determine the value of trend by the growth characteristics of the time series y. Choose
trend with a specific testing strategy in mind. If y is growing, set trend to true to
provide a reasonable comparison of a trend-stationary null and a unit-root process with
drift. If y does not exhibit long-term growth characteristics, set trend to false.

Default: true

9 Functions — Alphabetical List

9-734

'test'

String or cell vector of strings indicating which estimate of the variance s1

2 to use in
computing the test statistic. Values are 'var1' or 'var2'.

Default: 'var2'

Output Arguments

h

Vector of Boolean decisions for the tests, with length equal to the number of tests.
Values of h equal to 1 indicate rejection of the AR(p) null in favor of the ARIMA(p,1,1)
alternative. Values of h equal to 0 indicate a failure to reject the AR(p) null.

pValue

Vector of p-values of the test statistics, with length equal to the number of tests. Values
are right-tail probabilities.

stat

Vector of test statistics, with length equal to the number of tests. For details, see “Test
Statistics” on page 9-737.

cValue

Vector of critical values for the tests, with length equal to the number of tests. Values are
for right-tail probabilities.

reg1

Structure of regression statistics from the maximum likelihood estimation of the reduced-
form model. The structure is described in “Regression Statistics Structure” on page
9-738.

reg2

Structure of regression statistics The structure is described in “Regression Statistics
Structure” on page 9-738.

 lmctest

9-735

Examples

Assess Whether a Series Is Trend Stationary and AR(p)

Test the growth of the U.S. unemployment rate using the data in Schwert, 1987.

Load Schwert's macroeconomic data set.

load Data_SchwertMacro

Focus on the unemployment rate growth over the dates condsidered in Leybourne and
McCabe, 1999.

UN = DataTableMth.UN;

t1 = find(datesMth == datenum([1948 01 01]));

t2 = find(datesMth == datenum([1985 12 01]));

dUN = diff(UN(t1:t2)); % Unemployment rate growth

Assess the null hypothesis that the unemployment rate growth is a trend stationary,
AR(1) process using the estimated variance from OLS regression.

[h1,~,stat1,cValue] = lmctest(dUN,'lags',1,'test','var1')

Warning: Test statistic #1 below tabulated critical values:

maximum p-value = 0.100 reported.

h1 =

 0

stat1 =

 0.0992

cValue =

 0.1460

The warning indicates that the pvalue is below 0.1. h1 = 0 indicates that there is not
enough evidence to reject that the unemployment rate growth is a trend stationary,
AR(1) process.

9 Functions — Alphabetical List

9-736

Assess the null hypothesis that the unemployment rate growth is a trend stationary,
AR(1) process using the estimated variance from the maximum liklihood of the reduced-
form regression model.

[h2,~,stat2,cValue] = lmctest(dUN,'lags',1,'test','var2')

h2 =

 1

stat2 =

 0.1874

cValue =

 0.1460

h2 = 1 indicates that the there is enough evidence to asuggest that the unemployment
rate growth is nonstationary.

Leybourne and McCabe, 1999 report that the original LMC statistic fails to reject
stationarity, while the modified LMC statistic does reject it.

More About
Model Equations

lmctest uses the structural model

y t c t t b y t b y t p u t

c t c t u t

p() = () + + -() + + -() + ()

() = -() + ()

d 1 1

2

1

1

L

,

where

u t

u t

1 1
2

2 2
2

0

0

() ~ ,

() ~ , ,

i.i.d.

i.i.d.

s

s

()

()

 lmctest

9-737

and u1 and u2 are independent of each other.

The model is second-order equivalent in moments to the reduced-form ARIMA(p,1,1)
model
(1 – L)y(t) = δ + b1(1 – L)y(t – 1) + ... + bp(1 – L)y(t – p) + (1 – aL)v(t),

where L is the lag operator Ly(t) = y(t–1), and v(t) ~ i.i.d(0,σ2).

The null hypothesis is that σ2 = 0 in the structural model, which is equivalent to a = 1
in the reduced-form model. The alternative is that σ2 > 0 or a < 1. Under the null, the
structural model is AR(p) with intercept c(0) and trend δt; the reduced-form model is an
over-differenced ARIMA(p,1,1) representation of the same process.

Test Statistics

lmctest computes test statistics using a two-stage method that first finds maximum
likelihood estimates (MLEs) of coefficients in the reduced-form model. It then regresses
the filtered data
z(t) = y(t) – b1y(t–1) – ... – bpy(t–p)

on an intercept and, if 'trend' is true, on a trend. It forms the stat test statistic using
the residuals e from the first regression as follows:

stat =

e Ve

s T

T

2 2
,

where V(i,j) = min(i,j), s2 is an estimate of s1

2 that depends on the value of test
(estimate of the variance), and T is the effective sample size.

Test Choices

You can choose between test values of 'var1' and 'var2'. These distinguish between
the algorithm for estimating the variance s1

2 .

• 'var1' — The estimate is (e'*e)/T, where e is the residual vector from the OLS
regression reg2 and T is the effective sample size. This is the original Leybourne-
McCabe test described in [3], with a rate of consistency O(T).

9 Functions — Alphabetical List

9-738

• 'var1' — The estimate is a*σ2, where a and σ2 are MLEs from the estimation reg1
of the reduced-form model. This is the modified Leybourne-McCabe test described in
[4], with a rate of consistency O(T2).

Regression Statistics Structure

Lagging and differencing a time series reduces the sample size. Absent any presample
values, if y(t) is defined for t = 1:N, then the lagged series y(t–k) is defined for t = k+1:N.
Differencing reduces the time base to k+2:N. With p lagged differences, the common time
base is p+2:N and the effective sample size is N – (p+1).

The maximum likelihood estimation of reg1 regresses Y = (1–L)y(t), with num = N–1, on
p lagged changes of y, so that size = N – (p+1).

The OLS estimation of reg2 regresses Y = z(t), with num = N–p, on an intercept and, if
trend is true, a trend, so that size = num.

The regression statistics structures have the following form:

num Length of input series with NaNs removed
size Effective sample size, adjusted for lags and difference
names Regression coefficient names
coeff Estimated coefficient values
se Estimated coefficient standard errors
Cov Estimated coefficient covariance matrix
tStats t statistics of coefficients and p-values
FStat F statistic and p-value
yMu Mean of the lag-adjusted input series
ySigma Standard deviation of the lag-adjusted input series
yHat Fitted values of the lag-adjusted input series
res Regression residuals
DWStat Durbin-Watson statistic
SSR Regression sum of squares
SSE Error sum of squares
SST Total sum of squares

 lmctest

9-739

MSE Mean square error
RMSE Standard error of the regression
RSq R2 statistic
aRSq Adjusted R2 statistic
LL Loglikelihood of data under Gaussian innovations
AIC Akaike information criterion
BIC Bayesian (Schwarz) information criterion
HQC Hannan-Quinn information criterion

Algorithms

Test statistics follow nonstandard distributions under the null, even asymptotically.
Asymptotic critical values for a standard set of significance levels between 0.01 and
0.1, for models with and without a trend, have been tabulated in [2] using Monte Carlo
simulations. Critical values and p-values reported by lmctest are interpolated from the
tables. Tables are identical to those for kpsstest.

[1] shows that bootstrapped critical values, used by tests with a unit root null (such as
adftest and pptest), are not possible for lmctest. As a result, size distortions for
small samples may be significant, especially for highly persistent processes.

[3] shows that the test is robust when p takes values greater than the value in the
data-generating process. [3] also notes simulation evidence that, under the null, the
marginal distribution of the MLE of bp is asymptotically normal, and so may be subject
to a standard t-test for significance. Estimated standard errors, however, are unreliable
in cases where the MA(1) coefficient a is near 1. As a result, [4] proposes another test for
model order, valid under both the null and the alternative, that relies only on the MLEs
of bp and a, and not on their standard errors.
• “Unit Root Nonstationarity” on page 3-34

References

[1] Caner, M., and L. Kilian. “Size Distortions of Tests of the Null Hypothesis of
Stationarity: Evidence and Implications for the PPP Debate.“ Journal of
International Money and Finance. Vol. 20, 2001, pp. 639–657.

9 Functions — Alphabetical List

9-740

[2] Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin. “Testing the Null
Hypothesis of Stationarity against the Alternative of a Unit Root.” Journal of
Econometrics. Vol. 54, 1992, pp. 159–178.

[3] Leybourne, S. J., and B. P. M. McCabe. “A Consistent Test for a Unit Root.” Journal of
Business and Economic Statistics. Vol. 12, 1994, pp. 157–166.

[4] Leybourne, S. J., and B. P. M. McCabe. “Modified Stationarity Tests with Data-
Dependent Model-Selection Rules.” Journal of Business and Economic Statistics.
Vol. 17, 1999, pp. 264–270.

[5] Schwert, G. W. “Effects of Model Specification on Tests for Unit Roots in
Macroeconomic Data.” Journal of Monetary Economics. Vol. 20, 1987, pp. 73–103.

See Also
pptest | adftest | vratiotest | kpsstest

Introduced in R2010a

 lmtest

9-741

lmtest
Lagrange multiplier test of model specification

Syntax

h = lmtest(score,ParamCov,dof)

h = lmtest(score,ParamCov,dof,alpha)

[h,pValue] = lmtest(___)

[h,pValue,stat,cValue] = lmtest(___)

Description

h = lmtest(score,ParamCov,dof) returns a logical value (h) with the rejection
decision from conducting a Lagrange multiplier test of model specification at the 5%
significance level. lmtest constructs the test statistic using the score function (score),
the estimated parameter covariance (ParamCov), and the degrees of freedom (dof).

h = lmtest(score,ParamCov,dof,alpha) returns the rejection decision of the
Lagrange multipler test conducted at significance level alpha.

• If score and ParamCov are length k cell arrays, then all other arguments must be
length k vectors or scalars. lmtest treats each cell as a separate test, and returns a
vector of rejection decisions.

• If score is a row cell array, then lmtest returns a row vector.

[h,pValue] = lmtest(___) returns the rejection decision and p-value (pValue) for
the hypothesis test, using any of the input arguments in the previous syntaxes.

[h,pValue,stat,cValue] = lmtest(___) additionally returns the test statistic
(stat) and critical value (cValue) for the hypothesis test.

Examples

Choose the Best AR Model Specification

Compare AR model specifications for a simulated response series using lmtest.

9 Functions — Alphabetical List

9-742

Consider the AR(3) model:

where is Gaussian with mean 0 and variance 1. Specify this model using arima.

Mdl = arima('Constant',1,'Variance',1,'AR',{0.9,-0.5,0.4});

Mdl is a fully specified, AR(3) model.

Simulate presample and effective sample responses from Mdl.

T = 100;

rng(1); % For reproducibility

n = max(Mdl.P,Mdl.Q); % Number of presample observations

y = simulate(Mdl,T + n);

y is a a random path from Mdl that includes presample observations.

Specify the restricted model:

where is Gaussian with mean 0 and variance .

Mdl0 = arima(3,0,0);

Mdl0.AR{3} = 0;

The structure of Mdl0 is the same as Mdl. However, every parameter is unknown, except
that . This is an equality constraint during estimation.

Estimate the restricted model using the simulated data (y).

[EstMdl0,EstParamCov] = estimate(Mdl0,y((n+1):end),...

 'Y0',y(1:n),'display','off');

phi10 = EstMdl0.AR{1};

phi20 = EstMdl0.AR{2};

phi30 = 0;

c0 = EstMdl0.Constant;

phi0 = [c0;phi10;phi20;phi30];

v0 = EstMdl0.Variance;

EstMdl0 contains the parameter estimates of the restricted model.

 lmtest

9-743

lmtest requires the unrestricted model score evaluated at the restricted model
estimates. The unrestricted model gradient is

MatY = lagmatrix(y,1:3);

LagY = MatY(all(~isnan(MatY),2),:);

cGrad = (y((n+1):end)-[ones(T,1),LagY]*phi0)/v0;

phi1Grad = ((y((n+1):end)-[ones(T,1),LagY]*phi0).*LagY(:,1))/v0;

phi2Grad = ((y((n+1):end)-[ones(T,1),LagY]*phi0).*LagY(:,2))/v0;

phi3Grad = ((y((n+1):end)-[ones(T,1),LagY]*phi0).*LagY(:,3))/v0;

vGrad = -1/(2*v0)+((y((n+1):end)-[ones(T,1),LagY]*phi0).^2)/(2*v0^2);

Grad = [cGrad,phi1Grad,phi2Grad,phi3Grad,vGrad]; % Gradient matrix

score = sum(Grad)'; % Score under the restricted model

Evaluate the unrestricted parameter covariance estimator using the restricted MLEs and
the outer product of gradients (OPG) method.

EstParamCov0 = inv(Grad'*Grad);

dof = 1; % Number of model restrictions

Test the null hypothesis that at a 1% significance level using lmtest.

[h,pValue] = lmtest(score,EstParamCov0,dof,0.1)

h =

 1

pValue =

9 Functions — Alphabetical List

9-744

 2.2524e-09

pValue is close to 0, which suggests that there is strong evidence to reject the restricted,
AR(2) model in favor of the unrestriced, AR(3) model.

Assess Model Specifications Using the Lagrange Multiplier Test

Compare two model specifications for simulated education and income data. The
unrestricted model has the following loglikelihood:

where

•

• is the number of grades that person k completed.
• is the income (in thousands of USD) of person k.

That is, the income of person k given the number of grades that person k completed is
Gamma distributed with shape and rate . The restricted model sets , which
implies that the income of person k given the number of grades person k completed is
exponentially distributed with mean .

The restricted model is . In order to compare this model to the unrestricted
model, you require:

• The gradient vector of the unrestricted model
• The maximum likelihood estimate (MLE) under the restriced model
• The parameter covariance estimator evaluated under the MLEs of the restricted

model

Load the data.

load Data_Income1

x = DataTable.EDU;

y = DataTable.INC;

 lmtest

9-745

Estimate the restricted model parameters by maximizing with respect to subject
to the restriction . The gradient of is

where is the digamma function.

rho0 = 1; % Restricted rho

dof = 1; % Number of restrictions

dLBeta = @(beta) sum(y./((beta + x).^2) - rho0./(beta + x));...

 % Anonymous gradient function

[betaHat0,fVal,exitFlag] = fzero(dLBeta,0)

beta = [0:0.1:50];

plot(beta,arrayfun(dLBeta,beta))

hold on

plot([beta(1);beta(end)],zeros(2,1),'k:')

plot(betaHat0,fVal,'ro','MarkerSize',10)

xlabel('{\beta}')

ylabel('Loglikelihood Gradient')

title('{\bf Loglikelihood Gradient with Respect to \beta}')

hold off

betaHat0 =

 15.6027

fVal =

 2.7756e-17

exitFlag =

9 Functions — Alphabetical List

9-746

 1

The gradient with respect to (dLBeta) is decreasing, which suggests that there is a
local maximum at its root. Therefore, betaHat0 is the MLE for the restricted model.
fVal indicates that the value of the gradient is very close to 0 at betaHat0. The exit
flag (exitFlag) is 1, which indicates that fzero found a root of the gradient without a
problem.

Estimate the parameter covariance under the restricted model using the outer product of
gradients (OPG).

rGradient = [-rho0./(betaHat0+x)+y.*(betaHat0+x).^(-2),...

 lmtest

9-747

 log(y./(betaHat0+x))-psi(rho0)]; % Gradient per unit

rScore = sum(rGradient)'; % Score function

rEstParamCov = inv(rGradient'*rGradient); % Parameter covariance estimate

Test the unrestricted model against the restricted model using the Lagrange multipler
test.

[h,pValue] = lmtest(rScore,rEstParamCov,dof)

h =

 1

pValue =

 7.4744e-05

pValue is close to 0, which indicates that there is strong evidence to suggest that the
unrestricted model fits the data better than the restricted model.

Assess Conditional Heteroscedasticity Using the Lagrange Multiplier Test

Test whether there are significant ARCH effects in a simulated response series using
lmtest. The parameter values in this example are arbitrary.

Specify the AR(1) model with an ARCH(1) variance:

where

•

•

• is Gaussian with mean 0 and variance 1.

VarMdl = garch('ARCH',0.5,'Constant',1);

Mdl = arima('Constant',0,'Variance',VarMdl,'AR',0.9);

Mdl is a fully specified, AR(1) model with an ARCH(1) variance.

9 Functions — Alphabetical List

9-748

Simulate presample and effective sample responses from Mdl.

T = 100;

rng(1); % For reproducibility

n = 2; % Number of presample observations required for the gradient

[y,ep,v] = simulate(Mdl,T + n);

ep is the random path of innovations from VarMdl. The software filters ep through Mdl
to yield the random response path y.

Specify the restricted model and assume that the AR model constant is 0:

where .

VarMdl0 = garch(0,1);

VarMdl0.ARCH{1} = 0;

Mdl0 = arima('ARLags',1,'Constant',0,'Variance',VarMdl0);

The structure of Mdl0 is the same as Mdl. However, every parameter is unknown, except
for the restriction . These are equality constraints during estimation. You can
interpret Mdl0 as an AR(1) model with the Gaussian innovations that have mean 0 and
constant variance.

Estimate the restricted model using the simulated data (y).

psI = 1:n; % Presample indeces

esI = (n + 1):(T + n); % Estimation sample indeces

[EstMdl0,EstParamCov] = estimate(Mdl0,y(esI),...

 'Y0',y(psI),'E0',ep(psI),'V0',v(psI),'display','off');

phi10 = EstMdl0.AR{1};

alpha00 = EstMdl0.Variance.Constant;

EstMdl0 contains the parameter estimates of the restricted model.

lmtest requires the unrestricted model score evaluated at the restricted model
estimates. The unrestricted model loglikelihood function is

 lmtest

9-749

where . The unrestricted gradient is

where and . The information matrix is

Under the null, restricted model, for all t, where is the estimate from the
restricted model analysis.

Evaluate the gradient and information matrix under the restricted model. Estimate the
parameter covariance by inverting the information matrix.

e = y - phi10*lagmatrix(y,1);

eLag1Sq = lagmatrix(e,1).^2;

h0 = alpha00;

ft = (e(esI).^2/h0 - 1);

zt = [ones(T,1),eLag1Sq(esI)]';

score0 = 1/(2*h0)*zt*ft; % Score function

InfoMat0 = (1/(2*h0^2))*(zt*zt');

EstParamCov0 = inv(InfoMat0); % Estimated parameter covariance

dof = 1; % Number of model restrictions

Test the null hypothesis that at the 5% significance level using lmtest.

[h,pValue] = lmtest(score0,EstParamCov0,dof)

h =

 1

pValue =

9 Functions — Alphabetical List

9-750

 4.0443e-06

pValue is close to 0, which suggests that there is evidence to reject the restricted AR(1)
model in favor of the unrestriced AR(1) model with an ARCH(1) variance.

• “Classical Model Misspecification Tests”
• “Conduct a Lagrange Multiplier Test” on page 3-70

Input Arguments

score — Unrestricted model loglikelihood gradients
vector | cell array of vectors

Unrestricted model loglikelihood gradients evaluated at the restricted model parameter
estimates, specified as a vector or cell vector.

• For a single test, score can be a p-vector or a singleton cell array containing a p-by-1
vector. p is the number of parameters in the unrestricted model.

• For conducting k > 1 tests, score must be a length k cell array. Cell j must contain
one pj-by-1 vector that corresponds to one independent test. pj is the number of
parameters in the unrestricted model of test j.

Data Types: double | cell

ParamCov — Parameter covariance estimate
matrix | cell array of matrices

Parameter covariance estimate, specified as a symmetric matrix of cell array of
symmetric matrices. ParamCov is the unrestricted model parameter covariance estimator
evaluated at the restricted model parameter estimates.

• For a single test, ParamCov can be a p-by-p matrix or singleton cell array containing a
p-by-p matrix. p is the number of parameters in the unrestricted model.

• For conducting k > 1 tests, ParamCov must be a length k cell array. Cell j must
contain one pj-by-pj matrix that corresponds to one independent test. pj is the number
of parameters in the unrestricted model of test j.

Data Types: double | cell

 lmtest

9-751

dof — Degrees of freedom
positive integer | vector of positive integers

Degrees of freedom for the asymptotic, chi-square distribution of the test statistics,
specified as a positive integer or vector of positive integers.

For each corresponding test, the elements of dof:

• Are the number of model restrictions
• Should be less than the number of parameters in the unrestricted model

When conducting k > 1 tests,

• If dof is a scalar, then the software expands it to a k-by-1 vector.
• If dof is a vector, then it must have length k.

alpha — Nominal significance levels
0.05 (default) | scalar | vector

Nominal significance levels for the hypothesis tests, specified as a scalar or vector.

Each element of alpha must be greater than 0 and less than 1.

When conducting k > 1 tests,

• If alpha is a scalar, then the software expands it to a k-by-1 vector.
• If alpha is a vector, then it must have length k.

Data Types: double

Output Arguments

h — Test rejection decisions
logical | vector of logicals

Test rejection decisions, returned as a logical value or vector of logical values with a
length equal to the number of tests that the software conducts.

• h = 1 indicates rejection of the null, restricted model in favor of the alternative,
unrestricted model.

9 Functions — Alphabetical List

9-752

• h = 0 indicates failure to reject the null, restricted model.

pValue — Test statistic p-values
scalar | vector

Test statistic p-values, returned as a scalar or vector with a length equal to the number
of tests that the software conducts.

stat — Test statistics
scalar | vector

Test statistics, returned as a scalar or vector with a length equal to the number of tests
that the software conducts.

cValue — Critical values
scalar | vector

Critical values determined by alpha, returned as a scalar or vector with a length equal
to the number of tests that the software conducts.

More About

Lagrange Multiplier Test

This test compares specifications of nested models by assessing the significance of
restrictions to an extended model with unrestricted parameters. The test statistic (LM) is

LM S VS= ¢ ,

where

• S is the gradient of the unrestricted loglikelihood function, evaluated at the restricted
parameter estimates (score), i.e.,

S
l

MLE

=
∂

∂ =

()
.

�
,

q

q q q0

• V is the covariance estimator for the unrestricted model parameters, evaluated at the
restricted parameter estimates.

 lmtest

9-753

If LM exceeds a critical value in its asymptotic distribution, then the test rejects the null,
restricted (nested) model in favor of the alternative, unrestricted model.

The asymptotic distribution of LM is chi-square. Its degrees of freedom (dof) is the
number of restrictions in the corresponding model comparison. The nominal significance
level of the test (alpha) determines the critical value (cValue).

Tips

• lmtest requires the unrestricted model score and parameter covariance estimator
evaluated at parameter estimates for the restricted model. For example, to compare
competing, nested arima models:

1 Analytically compute the score and parameter covariance estimator based on the
innovation distribution.

2 Use estimate to estimate the restricted model parameters.
3 Evaluate the score and covariance estimator at the restricted model estimates.
4 Pass the evaluated score, restricted covariance estimate, and the number of

restrictions (i.e., the degrees of freedom) into lmtest.
• If you find estimating parameters in the unrestricted model difficult, then use

lmtest. By comparison:

• waldtest only requires unrestricted parameter estimates.
• lratiotest requires both unrestricted and restricted parameter estimates.

Algorithms

• lmtest performs multiple, independent tests when inputs are cell arrays.

• If the gradients and covariance estimates are the same for all tests, but the
restricted parameter estimates vary, then lmtest “tests down” against multiple
restricted models.

• If the gradients and covariance estimates vary, but the restricted parameter
estimates do not, then lmtest “tests up” against multiple unrestricted models.

• Otherwise, lmtest compares model specifications pair-wise.
• alpha is nominal in that it specifies a rejection probability in the asymptotic

distribution. The actual rejection probability can differ from the nominal significance.
Lagrange multiplier tests tend to under-reject for small values of alpha, and over-
reject for large values of alpha.

9 Functions — Alphabetical List

9-754

Lagrange multiplier tests typically yield lower rejection errors than likelihood ratio
and Wald tests.

• “Model Comparison Tests” on page 3-65

References

[1] Davidson, R. and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[2] Godfrey, L. G. Misspecification Tests in Econometrics. Cambridge, UK: Cambridge
University Press, 1997.

[3] Greene, W. H. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Pearson
Prentice Hall, 2008.

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | estimate | lratiotest | vgxvarx | waldtest

Introduced in R2009a

 lratiotest

9-755

lratiotest

Likelihood ratio test of model specification

Syntax

h = lratiotest(uLogL,rLogL,dof)

h = lratiotest(uLogL,rLogL,dof,alpha)

[h,pValue] = lratiotest(___)

[h,pValue,stat,cValue] = lratiotest(___)

Description

h = lratiotest(uLogL,rLogL,dof) returns a logical value (h) with the rejection
decision from conducting a likelihood ratio test of model specification.

lratiotest constructs the test statistic using the loglikelihood objective function
evaluated at the unrestricted model parameter estimates (uLogL) and the restricted
model parameter estimates (rLogL). The test statistic distribution has dof degrees of
freedom.

• If uLogL or rLogL is a vector, then the other must be a scalar or vector of equal
length. lratiotest(uLogL,rLogL,dof) treats each element of a vector input as a
separate test, and returns a vector of rejection decisions.

• If uLogL or rLogL is a row vector, then lratiotest(uLogL,rLogL,dof) returns a
row vector.

h = lratiotest(uLogL,rLogL,dof,alpha) returns the rejection decision of the
likelihood ratio test conducted at significance level alpha.

[h,pValue] = lratiotest(___) returns the rejection decision and p-value (pValue)
for the hypothesis test, using any of the input arguments in the previous syntaxes.

[h,pValue,stat,cValue] = lratiotest(___) additionally returns the test
statistic (stat) and critical value (cValue) for the hypothesis test.

9 Functions — Alphabetical List

9-756

Examples

Assess Model Specifications Using the Likelihood Ratio Test

Compare two model specifications for simulated education and income data. The
unrestricted model has the following loglikelihood:

where

•

• is the number of grades that person k completed.
• is the income (in thousands of USD) of person k.

That is, the income of person k given the number of grades that person k completed is
Gamma distributed with shape and rate . The restricted model sets , which
implies that the income of person k given the number of grades person k completed is
exponentially distributed with mean .

The restricted model is . Comparing this model to the unrestricted model using
lratiotest requires the following:

• The loglikelihood function
• The maximum likelihood estimate (MLE) under the unrestricted model
• The MLE under the restricted model

Load the data.

load Data_Income1

x = DataTable.EDU;

y = DataTable.INC;

To estimate the unrestricted model parameters, maximize with respect to and .
The gradient of is

 lratiotest

9-757

where is the digamma function.

nLogLGradFun = @(theta) deal(-sum(-gammaln(theta(1)) - ...

 theta(1)*log(theta(2) + x) + (theta(1)-1)*log(y) - ...

 y./(theta(2)+x)),...

 -[sum(-psi(theta(1))+log(y./(theta(2)+x)));...

 sum(1./(theta(2)+x).*(y./(theta(2)+x)-theta(1)))]);

nLogLGradFun is an anonymous function that returns the negative loglikelihood and the
gradient given the input theta, which holds the parametes and , respectively.

Numerically optimize the negative loglikelihood function using fmincon, which
minimizes an objective function subject to constraints.

theta0 = randn(2,1); % Initial value for optimization

uLB = [0 -min(x)]; % Unrestricted model lower bound

uUB = [Inf Inf]; % Unrestricted model upper bound

options = optimoptions('fmincon','Algorithm','interior-point',...

 'TolFun',1e-10,'Display','off','GradObj','on');...

 % Optimization options

[uMLE,uLogL] = fmincon(nLogLGradFun,theta0,[],[],[],[],uLB,uUB,[],options);

uLogL = -uLogL;

uMLE is the unrestricted maximum likelihood estimate, and uLogL is the loglikelihood
maximum.

Impose the restriction to the loglikelihood by setting the corresponding lower and upper
bound constraints of to 1. Minimize the negative, restricted loglikelihood.

dof = 1; % Number of restrictions

rLB = [1 -min(x)]; % Restricted model lower bound

rUB = [1 Inf]; % Restricted model upper bound

[rMLE,rLogL] = fmincon(nLogLGradFun,theta0,[],[],[],[],rLB,rUB,[],options);

9 Functions — Alphabetical List

9-758

rLogL = -rLogL;

rMLE is the unrestricted maximum likelihood estimate, and rLogL is the loglikelihood
maximum.

Use the likelihood ratio test to assess whether the data provide enough evidence to favor
the unrestricted model over the restricted model.

[h,pValue,stat] = lratiotest(uLogL,rLogL,dof)

h =

 1

pValue =

 8.9146e-04

stat =

 11.0404

pValue is close to 0, which indicates that there is strong evidence suggesting that the
unrestricted model fits the data better than the restricted model.

Test Among Multiple Nested Model Specifications

Assess model specifications by testing down among multiple restricted models using
simulated data. The true model is the ARMA(2,1)

where is Gaussian with mean 0 and variance 1.

Specify the true ARMA(2,1) model, and simulate 100 response values.

TrueMdl = arima('AR',{0.9,-0.5},'MA',0.7,...

 'Constant',3,'Variance',1);

T = 100;

 lratiotest

9-759

rng(1); % For reproducibility

y = simulate(TrueMdl,T);

Specify the unrestriced model and the candidate models for testing down.

Mdl = {arima(2,0,2),arima(2,0,1),arima(2,0,0),arima(1,0,2),arima(1,0,1),...

 arima(1,0,0),arima(0,0,2),arima(0,0,1)};

rMdlNames = {'ARMA(2,1)','AR(2)','ARMA(1,2)','ARMA(1,1)',...

 'AR(1)','MA(2)','MA(1)'};

Mdl is a 1-by-7 cell array. Mdl{1} is the unrestricted model, and all other cells contain a
candidate model.

Fit the candidate models to the simulated data.

logL = zeros(size(Mdl,1),1); % Preallocate loglikelihoods

dof = logL; % Preallocate degress of freedom

for k = 1:size(Mdl,2)

 [EstMdl,~,logL(k)] = estimate(Mdl{k},y,'Display','off');

 dof(k) = 4 - (EstMdl.P + EstMdl.Q); % Number of restricted parameters

end

uLogL = logL(1);

rLogL = logL(2:end);

dof = dof(2:end);

uLogL and rLogL are the values of the unrestricted loglikelihood evaluated at the
unrestricted and restricted model parameter estimates, respectively.

Apply the likelihood ratio test at a 1% significance level to find the appropriate,
restricted model specification(s).

alpha = .01;

h = lratiotest(uLogL,rLogL,dof,alpha);

RestrictedModels = rMdlNames(~h)

RestrictedModels =

 'ARMA(2,1)' 'ARMA(1,2)' 'ARMA(1,1)' 'MA(2)'

The most appropriate restricted models are ARMA(2,1), ARMA(1,2), ARMA(1,1), or
MA(2).

9 Functions — Alphabetical List

9-760

You can test down again, but use ARMA(2,1) as the unrestricted model. In this case, you
must remove MA(2) from the possible restricted models.

Assess Conditional Heteroscedasticity Using the Likelihood Ratio Test

Test whether there are significant ARCH effects in a simulated response series using
lratiotest. The parameter values in this example are arbitrary.

Specify the AR(1) model with an ARCH(1) variance:

where

•

•

• is Gaussian with mean 0 and variance 1.

VarMdl = garch('ARCH',0.5,'Constant',1);

Mdl = arima('Constant',0,'Variance',VarMdl,'AR',0.9);

Mdl is a fully specified AR(1) model with an ARCH(1) variance.

Simulate presample and effective sample responses from Mdl.

T = 100;

rng(1); % For reproducibility

n = 2; % Number of presample observations required for the gradient

[y,epsilon,condVariance] = simulate(Mdl,T + n);

psI = 1:n; % Presample indices

esI = (n + 1):(T + n); % Estimation sample indices

epsilon is the random path of innovations from VarMdl. The software filters epsilon
through Mdl to yield the random response path y.

Specify the unrestricted model assuming that the conditional mean model constant is 0:

where . Fit the simulated data (y) to the unrestricted model using the
presample observations.

 lratiotest

9-761

UVarMdl = garch(0,1);

UMdl = arima('ARLags',1,'Constant',0,'Variance',UVarMdl);

[~,~,uLogL] = estimate(UMdl,y(esI),'Y0',y(psI),'E0',epsilon(psI),...

 'V0',condVariance(psI),'Display','off');

uLogL is the maximimum value of the unrestricted loglikelihood function.

Specify the restricted model assuming that the conditional mean model constant is 0:

where . Fit the simulated data (y) to the restricted model using the presample
observations.

RVarMdl = garch(0,1);

RVarMdl.ARCH{1} = 0;

RMdl = arima('ARLags',1,'Constant',0,'Variance',RVarMdl);

[~,~,rLogL] = estimate(RMdl,y(esI),'Y0',y(psI),'E0',epsilon(psI),...

 'V0',condVariance(psI),'Display','off');

The structure of RMdl is the same as UMdl. However, every parameter is unknown,
except for the restriction. These are equality constraints during estimation. You can
interpret RMdl as an AR(1) model with the Gaussian innovations that have mean 0 and
constant variance.

Test the null hypothesis that at the default 5% significance level using
lratoitest.

dof = (UMdl.P + UMdl.Q + UVarMdl.P + UVarMdl.Q) ...

 - (RMdl.P + RMdl.Q + RVarMdl.P + RVarMdl.Q);

[h,pValue,stat,cValue] = lratiotest(uLogL,rLogL,dof)

h =

 1

pValue =

 6.7505e-04

stat =

9 Functions — Alphabetical List

9-762

 11.5567

cValue =

 3.8415

h = 1 indicates that the null, restricted model should be rejected in favor of the
alternative, unrestricted model. pValue is close to 0, suggesting that there is strong
evidence for the rejection. stat is the value of the chi-square test statistic, and cValue
is the critical value for the test.

• “Compare GARCH Models Using Likelihood Ratio Test” on page 3-77
• “Classical Model Misspecification Tests”

Input Arguments

uLogL — Unrestricted model loglikelihood maxima
scalar | vector

Unrestricted model loglikelihood maxima, specified as a scalar or vector. If uLogL is a
scalar, then the software expands it to the same length as rLogL.

Data Types: double

rLogL — Restricted model loglikelihood maxima
scalar | vector

Restricted model loglikelihood maxima, specified as a scalar or vector. If rLogL is a
scalar, then the software expands it to the same length as uLogL. Elements of rLogL
should not exceed the corresponding elements of uLogL.

Data Types: double

dof — Degrees of freedom
positive integer | vector of positive integers

Degrees of freedom for the asymptotic, chi-square distribution of the test statistics,
specified as a positive integer or vector of positive integers.

 lratiotest

9-763

For each corresponding test, the elements of dof:

• Are the number of model restrictions
• Should be less than the number of parameters in the unrestricted model.

When conducting k > 1 tests,

• If dof is a scalar, then the software expands it to a k-by-1 vector.
• If dof is a vector, then it must have length k.

Data Types: double

alpha — Nominal significance levels
0.05 (default) | scalar | vector

Nominal significance levels for the hypothesis tests, specified as a scalar or vector.

Each element of alpha must be greater than 0 and less than 1.

When conducting k > 1 tests,

• If alpha is a scalar, then the software expands it to a k-by-1 vector.
• If alpha is a vector, then it must have length k.

Data Types: double

Output Arguments

h — Test rejection decisions
logical | vector of logicals

Test rejection decisions, returned as a logical value or vector of logical values with a
length equal to the number of tests that the software conducts.

• h = 1 indicates rejection of the null, restricted model in favor of the alternative,
unrestricted model.

• h = 0 indicates failure to reject the null, restricted model.

pValue — Test statistic p-values
scalar | vector

9 Functions — Alphabetical List

9-764

Test statistic p-values, returned as a scalar or vector with a length equal to the number
of tests that the software conducts.

stat — Test statistics
scalar | vector

Test statistics, returned as a scalar or vector with a length equal to the number of tests
that the software conducts.

cValue — Critical values
scalar | vector

Critical values determined by alpha, returned as a scalar or vector with a length equal
to the number of tests that the software conducts.

More About

Likelihood Ratio Test

The likelihood ratio test compares specifications of nested models by assessing the
significance of restrictions to an extended model with unrestricted parameters.

The test uses the following algorithm:

1 Maximize the loglikelihood function [l(θ)] under the restricted and unrestricted

model assumptions. Denote the MLEs for the restricted and unrestricted models q̂0

and q̂ , respectively.
2 Evaluate the loglikelihood objective function at the restricted and unrestricted

MLEs, i.e.,
ˆ ˆl l
0 0

= ()q and
ˆ ˆl l= ()q .

3
Compute the likelihood ratio test statistic, LR l l= -()2

0
ˆ ˆ

.

4 If LR exceeds a critical value (Cα) relative to its asymptotic distribution, then reject
the null, restricted model in favor of the alternative, unrestricted model.

• Under the null hypothesis, LR is χd
2 distributed with d degrees of freedom.

• The degrees of freedom for the test (d) is the number of restricted parameters.
• The significance level of the test (α) determines the critical value (Cα).

 lratiotest

9-765

Tips

• Estimate unrestricted and restricted univariate linear time series models, such as
arima or garch, or time series regression models (regARIMA) using estimate.
Estimate unrestricted and restricted multivariate linear time series models using
vgxvarx.

estimate and vgxvarx return loglikelihood maxima, which you can use as inputs to
lratiotest.

• If you can easily compute both restricted and unrestricted parameter estimates, then
use lratiotest. By comparison:

• waldtest only requires unrestricted parameter estimates.
• lmtest requires restricted parameter estimates.

Algorithms

• lratiotest performs multiple, independent tests when the unrestricted or restricted
model loglikelihood maxima (uLogL and rLogL, respectively) is a vector.

• If rLogL is a vector and uLogL is a scalar, then lratiotest “tests down” against
multiple restricted models.

• If uLogL is a vector and rLogL is a scalar, then lratiotest “tests up” against
multiple unrestricted models.

• Otherwise, lratiotest compares model specifications pair-wise.
• alpha is nominal in that it specifies a rejection probability in the asymptotic

distribution. The actual rejection probability is generally greater than the nominal
significance.

• Using garch Objects
• “Model Comparison Tests” on page 3-65

References

[1] Davidson, R. and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[2] Godfrey, L. G. Misspecification Tests in Econometrics. Cambridge, UK: Cambridge
University Press, 1997.

9 Functions — Alphabetical List

9-766

[3] Greene, W. H. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Pearson
Prentice Hall, 2008.

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | estimate | estimate | estimate | garch | lmtest | regARIMA | vgxvarx |
waldtest

Introduced before R2006a

 minus

9-767

minus
Class: LagOp

Lag operator polynomial subtraction

Syntax

C = minus(A, B, 'Tolerance', tolerance)

C = A -B

Description

Given two lag operator polynomials A(L) and B(L), C = minus(A, B, 'Tolerance',
tolerance) performs a polynomial subtraction C(L) = A(L) – B(L) with tolerance
tolerance. 'Tolerance' is the nonnegative scalar tolerance used to determine which
coefficients are included in the result. The default tolerance is 1e–12. Specifying a
tolerance greater than 0 allows the user to exclude polynomial lags with near-zero
coefficients. A coefficient matrix of a given lag is excluded only if the magnitudes of all
elements of the matrix are less than or equal to the specified tolerance.

C = A -B performs a polynomial subtraction.

If at least one of A or B is a lag operator polynomial object, the other can be a cell array of
matrices (initial lag operator coefficients), or a single matrix (zero-degree lag operator).

Examples

Subtract Two Lag Operator Polynomials

Create two LagOp polynomials and subtract one from the other:

A = LagOp({1 -0.6 0.08});

B = LagOp({1 -0.5});

A-B

9 Functions — Alphabetical List

9-768

ans =

 1-D Lag Operator Polynomial:

 Coefficients: [-0.1 0.08]

 Lags: [1 2]

 Degree: 2

 Dimension: 1

Algorithms

The subtraction operator (–) invokes minus, but the optional coefficient tolerance is
available only by calling minus directly.

See Also
plus

 mldivide

9-769

mldivide
Class: LagOp

Lag operator polynomial left division

Syntax
B = A\C

B = mldivide(A, C'PropertyName',PropertyValue)

Description
Given two lag operator polynomials, A(L) and C(L)B = A\C perform a left division so
that C(L) = A(L)*B(L), or B(L) = A(L)\C(L). Left division requires invertibility of the
coefficient matrix associated with lag 0 of the denominator polynomial A(L).

B = mldivide(A, C'PropertyName',PropertyValue) accepts one or more comma-
separated property name/value pairs.

Tips
The right division operator (\) invokes mldivide, but the optional inputs are available
only by calling mldivide directly.

To right-invert a stable B(L), set C(L) = eye(B.Dimension).

Input Arguments
A

Denominator (divisor) lag operator polynomial object, as produced by LagOp, in the
quotient A(L)\C(L).

C

Numerator (dividend) lag operator polynomial object, as produced by LagOp, in the
quotient A(L)\C(L)).

9 Functions — Alphabetical List

9-770

If at least one of A or C is a lag operator polynomial object, the other can be a cell array of
matrices (initial lag operator coefficients), or a single matrix (zero-degree lag operator).

'AbsTol'

Nonnegative scalar absolute tolerance used as part of the termination criterion of the
calculation of the quotient coefficients and, subsequently, to determine which coefficients
to include in the quotient. Specifying an absolute tolerance allows for customization
of the termination criterion. Once the algorithm has terminated, 'AbsTol' is used to
exclude polynomial lags with near-zero coefficients. A coefficient matrix for a given lag
is excluded if the magnitudes of all elements of the matrix are less than or equal to the
absolute tolerance.

Default: 1e-12

'RelTol'

Nonnegative scalar relative tolerance used as part of the termination criterion of the
calculation of the quotient coefficients. At each lag, a coefficient matrix is calculated and
its 2-norm compared to the largest coefficient 2-norm. If the ratio of the current norm
to the largest norm is less than or equal to 'RelTol', then the relative termination
criterion is satisfied.

Default: 0.01

'Window'

Positive integer indicating the size of the window used to check termination tolerances.
Window represents the number of consecutive lags for which coefficients must satisfy a
tolerance-based termination criterion in order to terminate the calculation of the quotient
coefficients. If coefficients remain below tolerance for the length of the specified tolerance
window, they are assumed to have died out sufficiently to terminate the algorithm (see
notes below).

Default: 20

'Degree'

Nonnegative integer indicating the maximum degree of the quotient polynomial. For
stable denominators, the default is the power to which the magnitude of the largest
eigenvalue of the denominator must be raised to equal the relative termination tolerance
'RelTol'; for unstable denominators, the default is the power to which the magnitude of

 mldivide

9-771

the largest eigenvalue must be raised to equal the largest positive floating point number
(see realmax). The default is 1000, regardless of the stability of the denominator.

Default: 1000

Output Arguments

B

Quotient lag operator polynomial object, such that B(L) = A(L)\C(L).

Examples

Divide Lag Operator Polynomials

Create two LagOp polynomial objects:

A = LagOp({1 -0.6 0.08});

B = LagOp({1 -0.5});

The ratios A/B and B\A are equal:

isEqLagOp(A/B,B\A)

ans =

 1

Algorithms

Lag operator polynomial division generally results in infinite-degree polynomials.
mldivide imposes a termination criterion to truncate the degree of the quotient
polynomial.

If 'Degree' is unspecified, the maximum degree of the quotient is determined by the
stability of the denominator. Stable denominator polynomials usually result in quotients
whose coefficients exhibit geometric decay in absolute value. (When coefficients change

9 Functions — Alphabetical List

9-772

sign, it is the coefficient envelope which decays geometrically.) Unstable denominators
usually result in quotients whose coefficients exhibit geometric growth in absolute value.
In either case, maximum degree will not exceed the value of 'Degree'.

To control truncation error by terminating the coefficient sequence too early, the
termination criterion involves three steps:

1 At each lag in the quotient polynomial, a coefficient matrix is calculated and tested
against both a relative and an absolute tolerance (see 'RelTol' and 'AbsTol'
inputs).

2 If the current coefficient matrix is below either tolerance, then a tolerance window
is opened to ensure that all subsequent coefficients remain below tolerance for a
number of lags determined by 'Window'.

3 If any subsequent coefficient matrix within the window is above both tolerances,
then the tolerance window is closed and additional coefficients are calculated,
repeating steps (1) and (2) until a subsequent coefficient matrix is again below either
tolerance, and a new window is opened.

Steps (1)-(3) are repeated until a coefficient is below tolerance and subsequent
coefficients remains below tolerance for 'Window' lags, or until the maximum 'Degree'
is encountered, or until a coefficient becomes numerically unstable (NaN or +/-Inf).

References

[1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Hayashi, F. Econometrics. Princeton, NJ: Princeton University Press, 2000.

[3] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
mrdivide

How To
• “Specify Lag Operator Polynomials” on page 2-11

 mldivide

9-773

• “Plot the Impulse Response Function” on page 5-88

9 Functions — Alphabetical List

9-774

mrdivide
Class: LagOp

Lag operator polynomial right division

Syntax

A = C/B

A = mrdivide(C, B,'PropertyName', PropertyValue)

Description

A = C/B returns the quotient lag operator polynomial (A), which is the result of
C(L)/B(L).

A = mrdivide(C, B,'PropertyName', PropertyValue) accepts one or more
optional comma-separated property name/value pairs.

Tips

The right division operator (/) invokes mrdivide, but the optional inputs are available
only by calling mrdivide directly.

To right-invert a stable B(L), set C(L) = eye(B.Dimension).

Input Arguments

C

Numerator (dividend) lag operator polynomial object, as produced by LagOp, in the
quotient C(L)/B(L).

B

Denominator (divisor) lag operator polynomial object, as produced by LagOp, in the
quotient C(L)/B(L).

 mrdivide

9-775

If at least one of C or B is a lag operator polynomial object, the other can be a cell array of
matrices (initial lag operator coefficients), or a single matrix (zero-degree lag operator).

'AbsTol'

Nonnegative scalar absolute tolerance used as part of the termination criterion of the
calculation of the quotient coefficients and, subsequently, to determine which coefficients
to include in the quotient. Specifying an absolute tolerance allows for customization
of the termination criterion. Once the algorithm has terminated, 'AbsTol' is used to
exclude polynomial lags with near-zero coefficients. A coefficient matrix for a given lag
is excluded if the magnitudes of all elements of the matrix are less than or equal to the
absolute tolerance.

Default: 1e-12

'RelTol'

Nonnegative scalar relative tolerance used as part of the termination criterion of the
calculation of the quotient coefficients. At each lag, a coefficient matrix is calculated and
its 2-norm compared to the largest coefficient 2-norm. If the ratio of the current norm
to the largest norm is less than or equal to 'RelTol', then the relative termination
criterion is satisfied.

Default: 0.01

'Window'

Positive integer indicating the size of the window used to check termination tolerances.
Window represents the number of consecutive lags for which coefficients must satisfy a
tolerance-based termination criterion in order to terminate the calculation of the quotient
coefficients. If coefficients remain below tolerance for the length of the specified tolerance
window, they are assumed to have died out sufficiently to terminate the algorithm (see
notes below).

Default: 20

'Degree'

Nonnegative integer indicating the maximum degree of the quotient polynomial. For
stable denominators, the default is the power to which the magnitude of the largest
eigenvalue of the denominator must be raised to equal the relative termination tolerance
'RelTol'; for unstable denominators, the default is the power to which the magnitude of

9 Functions — Alphabetical List

9-776

the largest eigenvalue must be raised to equal the largest positive floating point number
(see realmax). The default is 1000, regardless of the stability of the denominator.

Default: 1000

Output Arguments

A

Quotient lag operator polynomial object, with A(L) = C(L)/B(L).

Examples

Invert a Lag Operator Polynomial

Create a LagOp polynomial object with a sequence of scalar coefficients specified as a cell
array:

A = LagOp({1 -0.5});

Invert the polynomial by using the short-hand slash ("/") operator:

a = 1 / A

a =

 1-D Lag Operator Polynomial:

 Coefficients: [1 0.5 0.25 0.125 0.0625 0.03125 0.015625]

 Lags: [0 1 2 3 4 5 6]

 Degree: 6

 Dimension: 1

Algorithms

Lag operator polynomial division generally results in infinite-degree polynomials.
mrdivide imposes a termination criterion to truncate the degree of the quotient
polynomial.

 mrdivide

9-777

If 'Degree' is unspecified, the maximum degree of the quotient is determined by the
stability of the denominator. Stable denominator polynomials usually result in quotients
whose coefficients exhibit geometric decay in absolute value. (When coefficients change
sign, it is the coefficient envelope which decays geometrically.) Unstable denominators
usually result in quotients whose coefficients exhibit geometric growth in absolute value.
In either case, maximum degree will not exceed the value of 'Degree'.

To control truncation error by terminating the coefficient sequence too early, the
termination criterion involves three steps:

1 At each lag in the quotient polynomial, a coefficient matrix is calculated and tested
against both a relative and an absolute tolerance (see 'RelTol' and 'AbsTol'
inputs).

2 If the current coefficient matrix is below either tolerance, then a tolerance window
is opened to ensure that all subsequent coefficients remain below tolerance for a
number of lags determined by 'Window'.

3 If any subsequent coefficient matrix within the window is above both tolerances,
then the tolerance window is closed and additional coefficients are calculated,
repeating steps (1) and (2) until a subsequent coefficient matrix is again below either
tolerance, and a new window is opened.

The algorithm repeats steps 1–3 until a coefficient is below tolerance and subsequent
coefficients remains below tolerance for 'Window' lags, or until the maximum 'Degree'
is encountered, or until a coefficient becomes numerically unstable (NaN or +/-Inf).

References

[1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Hayashi, F. Econometrics. Princeton, NJ: Princeton University Press, 2000.

[3] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
mldivide

9 Functions — Alphabetical List

9-778

mtimes
Class: LagOp

Lag operator polynomial multiplication

Syntax

C = mtimes(A, B, 'Tolerance',tolerance)

C = A * B

Description

Given two lag operator polynomials A(L) and B(L),C = mtimes(A, B,
'Tolerance',tolerance) performs a polynomial multiplication C(L) = A(L) * B(L).
If at least one of A or B is a lag operator polynomial object, the other can be a cell array of
matrices (initial lag operator coefficients), or a single matrix (zero-degree lag operator).
'Tolerance' is the nonnegative scalar tolerance used to determine which coefficients
are included in the result. The default tolerance is 1e-12. Specifying a tolerance
greater than 0 allows the user to exclude polynomial lags with near-zero coefficients. A
coefficient matrix of a given lag is excluded only if the magnitudes of all elements of the
matrix are less than or equal to the specified tolerance.

C = A * B performs a polynomial multiplication C(L) = A(L) * B(L).

Tips

The multiplication operator (*) invokes mtimes, but the optional coefficient tolerance is
available only by calling mtimes directly.

Examples

Multiply Two Lag Operator Polynomials

Create two LagOp polynomials and multiply them together:

 mtimes

9-779

A = LagOp({1 -0.6 0.08});

B = LagOp({1 -0.5});

mtimes(A,B)

ans =

 1-D Lag Operator Polynomial:

 Coefficients: [1 -1.1 0.38 -0.04]

 Lags: [0 1 2 3]

 Degree: 3

 Dimension: 1

See Also
mrdivide | mldivide

9 Functions — Alphabetical List

9-780

parcorr
Sample partial autocorrelation

Syntax

parcorr(y)

parcorr(y,numLags)

parcorr(y,numLags,numAR,numSTD)

pacf = parcorr(y)

pacf = parcorr(y,numLags)

pacf = parcorr(y,numLags,numAR,numSTD)

[pacf,lags,bounds] = parcorr(___)

Description

parcorr(y) plots the sample partial autocorrelation function (PACF) of the univariate,
stochastic time series y with confidence bounds.

parcorr(y,numLags) plots the PACF, where numLags indicates the number of lags in
the sample PACF.

parcorr(y,numLags,numAR,numSTD) plots the PACF, where numAR specifies the
number of lags beyond which the theoretical PACF is effectively 0, and numSTD specifies
the number of standard deviations of the sample PACF estimation error.

pacf = parcorr(y) returns the sample partial autocorrelation function (PACF) of the
univariate, stochastic time series y.

pacf = parcorr(y,numLags) returns the PACF, where numLags specifies the number
of lags in the sample PACF.

pacf = parcorr(y,numLags,numAR,numSTD) returns the PACF, where numAR
specifies the number of lags beyond which the theoretical PACF is effectively 0, and
numSTD specifies the number of standard deviations of the sample PACF estimation
error.

 parcorr

9-781

[pacf,lags,bounds] = parcorr(___) additionally returns the lags (lags)
corresponding to the PACF and the approximate upper and lower confidence bounds
(bounds), using any of the input arguments in the previous syntaxes.

Examples

Plot the Partial Autocorrelation Function of a Time Series

Specify the AR(2) model:

where is Gaussian with mean 0 and variance 1.

rng(1); % For reproducibility

Mdl = arima('AR',{0.6 -0.5},'Constant',0,'Variance',1)

Mdl =

 ARIMA(2,0,0) Model:

 Distribution: Name = 'Gaussian'

 P: 2

 D: 0

 Q: 0

 Constant: 0

 AR: {0.6 -0.5} at Lags [1 2]

 SAR: {}

 MA: {}

 SMA: {}

 Variance: 1

Simulate 1000 observarions from Mdl.

y = simulate(Mdl,1000);

Compute the PACF.

[partialACF,lags,bounds] = parcorr(y,[],2);

9 Functions — Alphabetical List

9-782

bounds

bounds =

 0.0633

 -0.0633

bounds displays (-0.0633, 0.0633), which are the upper and lower confidence bounds.

Plot the PACF.

parcorr(y)

 parcorr

9-783

The PACF cuts off after the second lag. This behavior indicates an AR(2) process.

Specify More Lags for the PACF Plot

Specify the multiplicative seasonal ARMA model:

where is Gaussian with mean 0 and variance 1.

Mdl = arima('AR',{0.75,0.15},'SAR',{0.9,-0.75,0.5},...

 'SARLags',[12,24,36],'MA',-0.5,'Constant',2,...

 'Variance',1);

Simulate data from Mdl.

rng(1);

y = simulate(Mdl,1000);

Plot the default partial autocorrelation function (PACF).

figure

parcorr(y)

9 Functions — Alphabetical List

9-784

The default correlogram does not display the dependence structure for higher lags.

Plot the PACF for 40 lags.

figure

parcorr(y,40)

 parcorr

9-785

The correlogram shows the larger correlations at lags 12, 24, and 36.

• “Box-Jenkins Model Selection” on page 3-4
• “Detect Autocorrelation” on page 3-18

Input Arguments

y — Observed univariate time series
vector

Observed univariate time series for which the software computes or plots the PACF,
specified as a vector. The last element of y contains the most recent observation.

9 Functions — Alphabetical List

9-786

Data Types: double

numLags — Number of lags
min(20,length(y)-1) (default) | positive integer

Number of lags of the PACF that the software returns or plots, specified as a positive
integer.

For example, parcorr(y,10) plots the PACF for lags 0 through 10.

Data Types: double

numAR — AR order
0 (default) | nonnegative integer

AR order that specifies the number of lags beyond which the theoretical PACF is
effectively 0, specified as a nonnegative integer.

• numAR must be less than numLags.
• Specify numAR to assess whether the PACF is effectively 0 beyond lag numAR.

Specifically, if y is an AR(numAR) process, then:

• The PACF coefficient estimates at lags greater than numAR are approximately
mean 0, independently distributed Gaussian variates.

• The standard errors of the estimated PACF coefficients for lags greater than
numAR of a length T series are 1 / T [1].

Example: [~,~,bounds] = parcorr(y,[],5)

Data Types: double

numSTD — Number of standard deviations
2 (default) | positive scalar

Number of standard deviations for the sample PACF estimation error assuming that y
is an AR(numAR), specified as a positive scalar. For example, parcorr(y,[],[],1.5)
plots the PACF with estimation error bounds 1.5 standard deviations away from 0.

If the software estimates the PACF coefficient at of lag numAR using T observations, then
the confidence bounds are:

±
numSTD

T
.

 parcorr

9-787

The default (numSTD = 2) corresponds to approximate 95% confidence bounds.

Data Types: double

Output Arguments

pacf — Sample PACF
vector

Sample PACF of the univariate time series y, returned as a vector of length numLags +
1.

The elements of pacf correspond to lags 0, 1, 2,... numLags.

The first element, which corresponds to lag 0, is unity (i.e., pacf(1) = 1). This
corresponds to the coefficient of y regressed onto itself.

lags — Sample PACF lags
vector

Sample PACF lags, returned as a vector. Specifically, lags = 0:numLags.

bounds — Approximate confidence bounds
vector

Approximate confidence bounds of the PACF assuming y is an AR(numAR) process,
returned as a two-element vector. bounds is approximate for lags > numAR.

More About

Partial Autocorrelation Function

Measures the correlation between yt and yt + k after adjusting for the linear effects of yt +

1,...,yt + k – 1.

The estimation of the PACF involves solving the Yule-Walker equations with respect to
the autocorrelations. However, the software estimates the PACF by fitting successive
autoregressive models of orders 1, 2,... using ordinary least squares. For details, see [1],
Chapter 3.

9 Functions — Alphabetical List

9-788

Tips

To plot the ACF without confidence bounds, set numSTD to 0.
• “Box-Jenkins Methodology” on page 3-2
• “Autocorrelation and Partial Autocorrelation” on page 3-13

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | crosscorr | filter

Introduced before R2006a

 plus

9-789

plus
Class: LagOp

Lag operator polynomial addition

Syntax

C = plus(A, B, 'Tolerance', tolerance)

C = A + B

Description

Given two lag operator polynomials A(L) and B(L), C = plus(A, B, 'Tolerance',
tolerance) performs a polynomial addition C(L) = A(L) + B(L)with tolerance
tolerance. 'Tolerance' is the nonnegative scalar tolerance used to determine which
coefficients are included in the result. The default tolerance is 1e-12. Specifying a
tolerance greater than 0 allows the user to exclude polynomial lags with near-zero
coefficients. A coefficient matrix of a given lag is excluded only if the magnitudes of all
elements of the matrix are less than or equal to the specified tolerance.

C = A + B performs a polynomial addition.

If at least one of A or B is a lag operator polynomial object, the other can be a cell array of
matrices (initial lag operator coefficients), or a single matrix (zero-degree lag operator).

Algorithms

The addition operator (+) invokes plus, but the optional coefficient tolerance is
available only by calling plus directly.

Examples

Add Two Lag Operator Polynomials

Create two LagOp polynomials and add them:

9 Functions — Alphabetical List

9-790

A = LagOp({1 -0.6 0.08});

B = LagOp({1 -0.5});

plus(A,B)

ans =

 1-D Lag Operator Polynomial:

 Coefficients: [2 -1.1 0.08]

 Lags: [0 1 2]

 Degree: 2

 Dimension: 1

See Also
minus

 pptest

9-791

pptest

Phillips-Perron test for one unit root

Syntax

[h,pValue,stat,cValue,reg] = pptest(y)

[h,pValue,stat,cValue,reg] = pptest(y,'ParameterName',ParameterValue,...)

Description

Phillips-Perron tests assess the null hypothesis of a unit root in a univariate time series
y. All tests use the model:
yt = c + δt + a yt – 1 + e(t).

The null hypothesis restricts a = 1. Variants of the test, appropriate for series with
different growth characteristics, restrict the drift and deterministic trend coefficients, c
and δ, respectively, to be 0. The tests use modified Dickey-Fuller statistics (see adftest)
to account for serial correlations in the innovations process e(t).

Input Arguments

y

Vector of time-series data. The last element is the most recent observation. NaNs
indicating missing values are removed.

Name-Value Pair Arguments

'lags'

Scalar or vector of nonnegative integers indicating the number of autocovariance lags to
include in the Newey-West estimator of the long-run variance.

9 Functions — Alphabetical List

9-792

For best results, give a suitable value for lags. For information on selecting lags, see
“Determining an Appropriate Number of Lags” on page 7-19.

Default: 0

'model'

String or cell vector of strings indicating the model variant. Values are:

• 'AR' (autoregressive)

pptest tests the null model
yt = yt – 1 + e(t).

against the alternative model
yt = a yt – 1 + e(t).

with AR(1) coefficient a < 1.
• 'ARD' (autoregressive with drift)

pptest tests the 'AR' null model against the alternative model
yt = c + a yt – 1 + e(t).

with drift coefficient c and AR(1) coefficient a < 1.
• 'TS' (trend stationary)

pptest tests the null model
yt = c + yt – 1 + e(t).

against the alternative model
yt = c + δ t + a yt – 1 + e(t).

with drift coefficient c, deterministic trend coefficient δ, and AR(1) coefficient a < 1.

Default: 'AR'

'test'

String or cell vector of strings indicating the test statistic. Values are:

• 't1'

 pptest

9-793

pptest computes a modification of the standard t statistic
t1 = (a – l)/se

from OLS estimates of the AR(1) coefficient and its standard error (se) in the
alternative model. The test assesses the significance of the restriction a – 1 = 0.

• 't2'

pptest computes a modification of the “unstudentized” t statistic
t2 = T (a – 1)

from an OLS estimate of the AR(1) coefficient a and the stationary coefficients in the
alternative model. T is the effective sample size, adjusted for lag and missing values.
The test assesses the significance of the restriction a – 1 = 0.

Default: 't1'

'alpha'

Scalar or vector of nominal significance levels for the tests. Set values between 0.001
and 0.999.

Default: 0.05

Output Arguments

h

Vector of Boolean decisions for the tests, with length equal to the number of tests. Values
of h equal to 1 indicate rejection of the unit-root null in favor of the alternative model.
Values of h equal to 0 indicate a failure to reject the unit-root null.

pValue

Vector of p-values of the test statistics, with length equal to the number of tests. p-values
are left-tail probabilities.

stat

Vector of test statistics, with length equal to the number of tests. Statistics are computed
using OLS estimates of the coefficients in the alternative model.

9 Functions — Alphabetical List

9-794

cValue

Vector of critical values for the tests, with length equal to the number of tests. Values are
for left-tail probabilities.

reg

Structure of regression statistics for the OLS estimation of coefficients in the alternative
model. The number of records equals the number of tests. Each record has the following
fields:

num Length of input series with NaNs removed
size Effective sample size, adjusted for lags
names Regression coefficient names
coeff Estimated coefficient values
se Estimated coefficient standard errors
Cov Estimated coefficient covariance matrix
tStats t statistics of coefficients and p-values
FStat F statistic and p-value
yMu Mean of the lag-adjusted input series
ySigma Standard deviation of the lag-adjusted input series
yHat Fitted values of the lag-adjusted input series
res Regression residuals
autoCov Estimated residual autocovariances
NWEst Newey-West estimator
DWStat Durbin-Watson statistic
SSR Regression sum of squares
SSE Error sum of squares
SST Total sum of squares
MSE Mean square error
RMSE Standard error of the regression
RSq R2 statistic
aRSq Adjusted R2 statistic

 pptest

9-795

LL Loglikelihood of data under Gaussian innovations
AIC Akaike information criterion
BIC Bayesian (Schwarz) information criterion
HQC Hannan-Quinn information criterion

Definitions

The Phillips-Perron model is
yt = c + δt + a yt – 1 + e(t).

where e(t) is the innovations process.

The test assesses the null hypothesis under the model variant appropriate for series with
different growth characteristics (c = 0 or δ = 0).

Examples

Assess Stationarity Using the Phillips-Perron Test

Test GDP data for a unit root using a trend-stationary alternative with 0, 1, and 2 lags
for the Newey-West estimator.

Load the GDP data set.

load Data_GDP

logGDP = log(Data);

Perform the Phillips-Perron test including 0, 1, and 2 autocovariance lags in the Newey-
West robust covariance estimator.

h = pptest(logGDP,'model','TS','lags',0:2)

h =

 0 0 0

9 Functions — Alphabetical List

9-796

Each test returns h = 0, which means the test fails to reject the unit-root null hypothesis
for each set of lags. Therefore, there is not enough evidence to suggest that log GDP is
trend stationary.

More About

Algorithms

pptest performs a least-squares regression to estimate coefficients in the null model.

The tests use modified Dickey-Fuller statistics (see adftest) to account for serial
correlations in the innovations process e(t). Phillips-Perron statistics follow nonstandard
distributions under the null, even asymptotically. Critical values for a range of sample
sizes and significance levels have been tabulated using Monte Carlo simulations of the
null model with Gaussian innovations and five million replications per sample size.
pptest interpolates critical values and p-values from the tables. Tables for tests of type
't1' and 't2' are identical to those for adftest.
• “Unit Root Nonstationarity” on page 3-34

References

[1] Davidson, R., and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[2] Elder, J., and P. E. Kennedy. “Testing for Unit Roots: What Should Students Be
Taught?” Journal of Economic Education. Vol. 32, 2001, pp. 137–146.

[3] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[4] Newey, W. K., and K. D. West. “A Simple Positive Semidefinite, Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix.” Econometrica. Vol. 55, 1987,
pp. 703–708.

[5] Perron, P. “Trends and Random Walks in Macroeconomic Time Series: Further
Evidence from a New Approach.” Journal of Economic Dynamics and Control.
Vol. 12, 1988, pp. 297–332.

 pptest

9-797

[6] Phillips, P. “Time Series Regression with a Unit Root.” Econometrica. Vol. 55, 1987,
pp. 277–301.

[7] Phillips, P., and P. Perron. “Testing for a Unit Root in Time Series Regression."
Biometrika. Vol. 75, 1988, pp. 335–346.

[8] Schwert, W. “Tests for Unit Roots: A Monte Carlo Investigation.” Journal of Business
and Economic Statistics. Vol. 7, 1989, pp. 147–159.

[9] White, H., and I. Domowitz. “Nonlinear Regression with Dependent Observations.”
Econometrica. Vol. 52, 1984, pp. 143–162.

See Also
adftest | kpsstest | vratiotest | lmctest

Introduced in R2009b

9 Functions — Alphabetical List

9-798

price2ret
Convert prices to returns

Syntax
[RetSeries,RetIntervals] = ...

price2ret(TickSeries,TickTimes,Method)

Description
[RetSeries,RetIntervals] = ...

price2ret(TickSeries,TickTimes,Method) computes asset returns for NUMOBS
price observations of NUMASSETS assets.

Input Arguments

TickSeries Time series of price data. TickSeries can be a column vector or a
matrix:

• As a vector, TickSeries represents a univariate price series.
The length of the vector is the number of observations (NUMOBS).
The first element contains the oldest observation, and the last
element the most recent.

• As a matrix, TickSeries represents a NUMOBS-by-number of
assets (NUMASSETS) matrix of asset prices. Rows correspond
to time indices. The first row contains the oldest observations
and the last row the most recent. price2ret assumes that the
observations across a given row occur at the same time for all
columns, where each column is a price series of an individual
asset.

TickTimes A NUMOBS element vector of monotonically increasing observation
times. Times are numeric and taken either as serial date numbers
(day units), or as decimal numbers in arbitrary units (for example,
yearly). If TickTimes is [] or unspecified, then price2ret
assumes sequential observation times from 1, 2, ..., NUMOBS.

 price2ret

9-799

Method Character string indicating the compounding method to compute
asset returns. If Method is 'Continuous', [], or unspecified,
then price2ret computes continuously compounded returns. If
Method = 'Periodic', then price2ret assumes simple periodic
returns. Method is case insensitive.

Output Arguments

RetSeries Array of asset returns:

• When TickSeries is a NUMOBS element column vector,
RetSeries is a NUMOBS-1 column vector.

• When TickSeries is a NUMOBS-by-NUMASSETS matrix,
RetSeries is a (NUMOBS-1)-by-NUMASSETS matrix.
price2ret quotes the ith return of an asset for the period
TickTimes(i) to TickTimes(i+1). It then normalizes it
by the time interval between successive price observations.

Assuming that

RetIntervals(i) = TickTimes(i+1) – TickTimes(i)

then if Method is 'Continuous', [], or is unspecified,
price2ret computes the continuously compounded returns
as

RetSeries(i) = log
[TickSeries(i+1)/TickSeries(i)]/RetIntervals(i)

If Method is 'Periodic', then price2ret computes the
simple returns as

RetSeries(i) = [TickSeries(i+1)/TickSeries(i)] –
1 /RetIntervals(i)

RetIntervals NUMOBS-1 element vector of times between observations. If
TickTimes is [] or is unspecified, price2ret assumes that
all intervals are 1.

9 Functions — Alphabetical List

9-800

Examples

Convert a Stock Price Series to a Return Series

Create a stock price process continuously compounded at 10 percent:

S = 100*exp(0.10 * [0:19]');

 % Create the stock price series

Convert the price series to a 10 percent return series:

R = price2ret(S); % Convert the price series to a

 % 10 percent return series

[S [R;NaN]] % Pad the return series so vectors are of

 % same length. price2ret computes the ith return from

 % the ith and i+1th prices.

ans =

 100.0000 0.1000

 110.5171 0.1000

 122.1403 0.1000

 134.9859 0.1000

 149.1825 0.1000

 164.8721 0.1000

 182.2119 0.1000

 201.3753 0.1000

 222.5541 0.1000

 245.9603 0.1000

 271.8282 0.1000

 300.4166 0.1000

 332.0117 0.1000

 366.9297 0.1000

 405.5200 0.1000

 448.1689 0.1000

 495.3032 0.1000

 547.3947 0.1000

 604.9647 0.1000

 668.5894 NaN

See Also
ret2price | tick2ret

 price2ret

9-801

Introduced before R2006a

9 Functions — Alphabetical List

9-802

print
Display parameter estimation results for conditional variance models

Syntax

print(Mdl,EstParamCov)

Description

print(Mdl,EstParamCov) displays parameter estimates, standard errors, and t
statistics for the fitted conditional variance model Mdl, with estimated parameter
variance-covariance matrix EstParamCov. Mdl can be a garch, egarch, or gjr model.

Examples

Print GARCH Estimation Results

Print the results from estimating a GARCH model using simulated data.

Simulate data from an GARCH(1,1) model with known parameter values.

modSim = garch('Constant',0.01,'GARCH',0.8,'ARCH',0.14)

rng 'default';

[V,Y] = simulate(modSim,100);

modSim =

 GARCH(1,1) Conditional Variance Model:

 Distribution: Name = 'Gaussian'

 P: 1

 Q: 1

 Constant: 0.01

 GARCH: {0.8} at Lags [1]

 ARCH: {0.14} at Lags [1]

Fit a GARCH(1,1) model to the simulated data, turning off the print display.

 print

9-803

model = garch(1,1);

[fit,VarCov] = estimate(model,Y,'print',false);

Print the estimation results.

print(fit,VarCov)

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0167004 0.0165077 1.01167

 GARCH{1} 0.77263 0.0776905 9.94498

 ARCH{1} 0.191686 0.0750675 2.55351

Print EGARCH Estimation Results

Print the results from estimating an EGARCH model using simulated data.

Simulate data from an EGARCH(1,1) model with known parameter values.

modSim = egarch('Constant',0.01,'GARCH',0.8,'ARCH',0.14,...

 'Leverage',-0.1);

rng 'default';

[V,Y] = simulate(modSim,100);

Fit an EGARCH(1,1) model to the simulated data, turning off the print display.

model = egarch(1,1);

[fit,VarCov] = estimate(model,Y,'print',false);

Print the estimation results.

print(fit,VarCov)

 EGARCH(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

9 Functions — Alphabetical List

9-804

 ----------- ----------- ------------ -----------

 Constant 0.0654887 0.0746315 0.877494

 GARCH{1} 0.85807 0.154361 5.55886

 ARCH{1} 0.27702 0.171036 1.61966

 Leverage{1} -0.179034 0.125057 -1.43162

Print GJR Estimation Results

Print the results from estimating a GJR model using simulated data.

Simulate data from a GJR(1,1) model with known parameter values.

modSim = gjr('Constant',0.01,'GARCH',0.8,'ARCH',0.14,...

 'Leverage',0.1);

rng 'default';

[V,Y] = simulate(modSim,100);

Fit a GJR(1,1) model to the simulated data, turning off the print display.

model = gjr(1,1);

[fit,VarCov] = estimate(model,Y,'print',false);

Print the estimation results.

print(fit,VarCov)

 GJR(1,1) Conditional Variance Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.194785 0.254199 0.766271

 GARCH{1} 0.69954 0.11266 6.20928

 ARCH{1} 0.192966 0.0931335 2.07192

 Leverage{1} 0.214988 0.223923 0.960099

Input Arguments

Mdl — Conditional variance model
garch model object | egarch model object | gjr model object

 print

9-805

Conditional variance model without any unknown parameters, specified as a garch,
egarch, or gjr model object.

Mdl is usually the estimated conditional variance model returned by estimate.

EstParamCov — Estimated parameter variance-covariance matrix
numeric matrix

Estimated parameter variance-covariance matrix, returned as a numeric matrix.

EstParamCov is usually the estimated conditional variance model returned by
estimate.

The rows and columns associated with any parameters contain the covariances. The
standard errors of the parameter estimates are the square root of the entries along the
main diagonal.

The rows and columns associated with any parameters held fixed as equality constraints
during estimation contain 0s.

The order of the parameters in EstParamCov must be:

• Constant
• Nonzero GARCH coefficients at positive lags
• Nonzero ARCH coefficients at positive lags
• For EGARCH and GJR models, nonzero leverage coefficients at positive lags
• Degrees of freedom (t innovation distribution only)
• Offset (models with nonzero offset only)

Data Types: double

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects

See Also
egarch | estimate | filter | forecast | garch | gjr | infer | simulate

9 Functions — Alphabetical List

9-806

Introduced in R2012a

 print

9-807

print
Class: arima

Display parameter estimation results for ARIMA or ARIMAX models

Syntax

print(EstMdl,EstParamCov)

Description

print(EstMdl,EstParamCov) displays parameter estimates, standard errors, and t
statistics for a fitted ARIMA or ARIMAX model.

Input Arguments

EstMdl

arima model estimated using estimate.

EstParamCov

Estimation error variance-covariance matrix, as output by estimate. EstParamCov
is a square matrix with a row and column for each parameter known to the optimizer
when Mdl was fit by estimate. Known parameters include all parameters estimate
estimated. If you specified a parameter as fixed during estimation, then it is also a
known parameter and the rows and columns associated with it contain 0s.

The parameters in EstParamCov are ordered as follows:

• Constant
• Nonzero AR coefficients at positive lags
• Nonzero SAR coefficients at positive lags
• Nonzero MA coefficients at positive lags
• Nonzero SMA coefficients at positive lags

9 Functions — Alphabetical List

9-808

• Regression coefficients (when EstMdl contains them)
• Variance parameters (scalar for constant-variance models, or a vector of parameters

for a conditional variance model)
• Degrees of freedom (t innovation distribution only)

Examples

Print ARIMA Estimation Results

Print the results from estimating an ARIMA model using simulated data.

Simulate data from an ARMA(1,1) model using known parameter values.

MdlSim = arima('Constant',0.01,'AR',0.8,'MA',0.14,...

 'Variance',0.1);

rng 'default';

Y = simulate(MdlSim,100);

Fit an ARMA(1,1) model to the simulated data, turning off the print display.

Mdl = arima(1,0,1);

[EstMdl,EstParamCov] = estimate(Mdl,Y,'print',false);

Print the estimation results.

print(EstMdl,EstParamCov)

 ARIMA(1,0,1) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.0445373 0.0460376 0.967412

 AR{1} 0.822892 0.0711631 11.5635

 MA{1} 0.12032 0.101817 1.18173

 Variance 0.133727 0.0178793 7.4794

Print ARIMAX Estimation Results

Print the results of estimating an ARIMAX model.

 print

9-809

Load the Credit Defaults data set, assign the response IGD to Y and the predictors AGE,
CPF, and SPR to the matrix X, and obtain the sample size T. To avoid distraction from
the purpose of this example, assume that all predictor series are stationary.

load Data_CreditDefaults

X = Data(:,[1 3:4]);

T = size(X,1);

y = Data(:,5);

Separate the initial values from the main response and predictor series.

y0 = y(1);

yEst = y(2:T);

XEst = X(2:end,:);

Set the ARIMAX(1,0,0) model to MdlY to fit to the data.

MdlY = arima(1,0,0);

Fit the model to the data and specify the initial values.

[EstMdl,EstParamCov] = estimate(MdlY,yEst,'X',XEst,...

'Y0',y0,'print',false);

Print the estimation results.

 print(EstMdl,EstParamCov)

 ARIMAX(1,0,0) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant -0.204768 0.266078 -0.769578

 AR{1} -0.017309 0.565618 -0.030602

 Beta1 0.0239329 0.0218417 1.09574

 Beta2 -0.0124602 0.00749917 -1.66154

 Beta3 0.0680871 0.0745041 0.91387

 Variance 0.00539463 0.00224393 2.4041

See Also
arima | estimate | filter | forecast | impulse | infer | simulate

9 Functions — Alphabetical List

9-810

print
Class: regARIMA

Display estimation results for regression models with ARIMA errors

Syntax

print(Mdl,ParamCov)

Description

print(Mdl,ParamCov) displays parameter estimates, standard errors, and t statistics
for the fitted regression model with ARIMA time series errors Mdl.

Input Arguments

Mdl — Regression model with ARIMA errors
regARIMA model

Regression model with ARIMA errors, specified as a regARIMA model returned by
regARIMA or estimate.

ParamCov — Estimation error variance-covariance
numeric matrix

Estimation error variance-covariance, specified as a numeric matrix.

ParamCov is a square matrix with a row and column for each parameter known to the
optimizer that estimate uses to fit Mdl. Known parameters include all parameters
estimate estimates. If you specify a parameter as fixed during estimation, then it is also
a known parameter and the rows and columns associated with it contain 0s.

print omits coefficients of lag operator polynomials at lags excluded from Mdl.

print orders the parameters in ParamCov as follows:

 print

9-811

• Intercept
• Nonzero AR coefficients at positive lags
• Nonzero SAR coefficients at positive lags
• Nonzero MA coefficients at positive lags
• Nonzero SMA coefficients at positive lags
• Regression coefficients (when Mdl contains them)
• Variance
• Degrees of freedom for the t-distribution

Data Types: double

Examples

Print Estimation Results of a Regression Model with ARIMA Errors Fit

Regress GDP onto CPI using a regression model with ARMA(1,1) errors, and print the
results.

Load the US Macroeconomic data set and preprocess the data.

load Data_USEconModel;

logGDP = log(DataTable.GDP);

dlogGDP = diff(logGDP);

dCPI = diff(DataTable.CPIAUCSL);

Fit the model to the data.

ToEstMdl = regARIMA('ARLags',1,'MALags',1);

[EstMdl,EstParamCov] = estimate(ToEstMdl,dlogGDP,'X',...

 dCPI,'Display','off');

Print the estimates.

print(EstMdl,EstParamCov)

 Regression with ARIMA(1,0,1) Error Model:

 --

 Conditional Probability Distribution: Gaussian

9 Functions — Alphabetical List

9-812

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.014776 0.00146271 10.1018

 AR{1} 0.605274 0.0892902 6.77872

 MA{1} -0.161651 0.10956 -1.47546

 Beta1 0.00204403 0.000706163 2.89456

 Variance 9.35782e-05 6.03135e-06 15.5153

See Also
regARIMA | estimate

 recessionplot

9-813

recessionplot

Overlay recession bands on a time series plot

Syntax

recessionplot

recessionplot(Name,Value)

hBands = recessionplot(___)

Description

recessionplot overlays shaded recession bands on a time series plot.

recessionplot(Name,Value) uses additional options specified by one or more
Name,Value pairs.

hBands = recessionplot(___) returns a vector of handles to the recession bands,
using any of the previous input arguments.

Examples

Overlay Recession Bands

Overlay recession bands on a plot of multiple time series.

Load data on credit defaults, and extract the predictor variables in the first four columns.

load Data_CreditDefaults

X0 = Data(:,1:4);

T0 = size(X0,1);

Convert the dates to serial date numbers, as required by recessionplot.

dates = datenum([dates,ones(T0,2)]);

9 Functions — Alphabetical List

9-814

Create a time series plot of the four credit default predictors.

figure;

plot(dates,X0,'LineWidth',2);

h = gca;

h.XTick = dates(1:2:end);

datetick('x','yyyy','keepticks')

xlabel 'Year';

ylabel 'Level';

axis tight;

Overlay recession bands corresponding to U.S. recessions reported by the National
Bureau of Economic Research.

recessionplot

 recessionplot

9-815

The plots shows that two recessions occurred within the range of the time series.

Change Color and Transparency of Recession Bands

Overlay recession bands on a plot of multiple time series. Return the handles of the
recession bands so you can change their color and transparency.

Load data on credit defaults, and extract the predictor variables in the first four columns.

load Data_CreditDefaults

X0 = Data(:,1:4);

T0 = size(X0,1);

Convert dates to serial date numbers, and then plot the four time series.

9 Functions — Alphabetical List

9-816

dates = datenum([dates,ones(T0,2)]);

figure;

plot(dates,X0,'LineWidth',2);

h = gca;

h.XTick = dates(1:2:end);

datetick('x','yyyy','keepticks')

xlabel 'Year';

ylabel 'Level';

axis tight

Overlay recession bands, returning the handles to the bands. Change the band color to
red and increase the transparency.

 recessionplot

9-817

hBands = recessionplot;

set(hBands,'FaceColor','r','FaceAlpha',0.4)

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

9 Functions — Alphabetical List

9-818

Example: 'axes',h1 overlays recession bands on the axes identified by the handle h1

'axes' — Handle to axes
gca (default) | handle

Handle to axes displaying a time series plot, specified as the comma-separated pair
consisting of 'axes' and an axes handle. The time series plot must have serial date
numbers on the horizontal axis
Example: 'axes',h1

'recessions' — Recession data
Data_Recessions.mat (default) | matrix

Recession data indicating the beginning and end of historical recessions, specified as the
comma-separated pair consisting of 'recessions' and a numRecessions-by-2 matrix
of serial date numbers. The first column indicates the beginning of the recession, and the
second column indicates the end of the recession. The default recession data is the U.S.
recession data in Data_Recessions.mat, reported by the National Bureau of Economic
Research.

Output Arguments

hBands — Handles
vector

Handles to the recession bands, returned as a vector of handles.

More About

Tips

• recessionplot requires that you express dates on the horizontal axis of a time
series plot as serial date numbers. To convert other date information to this format
before plotting, use datenum.

• Use the output handles to change the color and transparency of the recession bands
by setting their FaceColor and FaceAlpha properties. This might be necessary to
achieve satisfactory displays when working with certain monitors and projectors.

 recessionplot

9-819

See Also
datenum

Introduced in R2012a

9 Functions — Alphabetical List

9-820

refine

Class: dssm

Refine initial parameters to aid diffuse state-space model estimation

Syntax

refine(Mdl,Y,params0)

refine(Mdl,Y,params0,Name,Value)

Output = refine(___)

Description

refine(Mdl,Y,params0) finds a set of initial parameter values to use when fitting the
state-space model Mdl to the response data Y ,using the crude set of initial parameter
values params0. The software uses several routines, and displays the resulting
loglikelihood and initial parameter values for each routine.

refine(Mdl,Y,params0,Name,Value) displays results of the routines with additional
options specified by one or more Name,Value pair arguments. For example, you can
include a linear regression component composed of predictors and an initial value for the
coefficients.

Output = refine(___) returns a structure array (Output) containing a vector of
refined, initial parameter values, the loglikelihood corresponding the initial parameter
values, and the computation method yielding the values. You can use any of the input
arguments in the previous syntaxes.

Tips

• Likelihood surfaces of state-space models can be complicated, for example, they
can contain multiple local maxima. If estimate fails to converge, or converges to an
unsatisfactory solution, then refine can find a better set of initial parameter values
to pass to estimate.

 refine

9-821

• The refined initial parameter values returned by refine can appear similar to each
other and to params0. Choose a set yielding estimates that make economic sense and
correspond to relatively large loglikelihood values.

• If a refinement attempt fails, then the software displays errors and sets the
corresponding loglikelihood to -Inf. It also sets its initial parameter values to [].

Input Arguments

Mdl — Diffuse state-space model
dssm model object

Diffuse state-space model containing unknown parameters, specified as a dssm model
object returned by dssm.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary using, the appropriate input and name-value pair arguments.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix. Each row of the matrix corresponds to a period and each column corresponds
to a particular observation in the model. Therefore, T is the sample size and n is the
number of observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1 cell
vector. Y{t} contains an nt-dimensional vector of observations for period t, where t
= 1,...,T. The corresponding dimensions of the coefficient matrices in Mdl.C{t} and
Mdl.D{t} must be consistent with the matrix in Y{t} for all periods. The last cell of
Y contains the latest observations.

• Suppose that you created Mdl implicitly by specifying a parameter-to-matrix mapping
function, and the function has input arguments for the observed responses or
predictors. The mapping function establishes a link to observed responses and the
predictor data in the MATLAB workspace, which overrides the value of Y.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-829.

9 Functions — Alphabetical List

9-822

Data Types: double | cell

params0 — Initial values of unknown parameters
numeric vector

Initial values of unknown parameters for numeric maximum likelihood estimation,
specified as a numeric vector.

The elements of params0 correspond to the unknown parameters in the state-space
model matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and
covariance matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise, following the order A, B, C, D, Mean0, Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-
to-matrix mapping function), then set initial parameter values for the state-space
model matrices, initial state values, and state types within the parameter-to-matrix
mapping function.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Beta0' — Initial values of regression coefficients
numeric matrix

Initial values of regression coefficients, specified as the comma-separated pair consisting
of 'Beta0' and a d-by-n numeric matrix. d is the number of predictor variables (see
Predictors) and n is the number of observed response series (see Y).

By default, Beta0 is the ordinary least-squares estimate of Y onto Predictors.

Data Types: double

 refine

9-823

'Predictors' — Predictor data
[] (default) | numeric matrix

Predictor data used to deflate the observations in a time-invariant state-space model,
specified as the comma-separated pair consisting of 'Predictors' and a T-by-d
numeric matrix. T is the number of periods and d is the number of predictor variables.
Row t corresponds to the observed predictors at period t (Zt) in the expanded observation
equation

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters. Predictors and Y must have the same number of rows.

For n observations per period, the software regresses all predictor series onto each
observation. Then, the software returns a d-by-n matrix of fitted regression coefficient
vectors for each observation series.

If you specify Predictors, then Mdl must be time invariant. Otherwise, the software
returns an error.

By default, the software excludes a regression component from the state-space model.
Data Types: double

Output Arguments

Output — Information about initial parameter values
structure array

Information about the initial parameter values, returned as a 1-by-5 structure array.
The software uses five algorithms to find initial parameter values, and each element of
Output corresponds to an algorithm.

This table describes the fields of Output.

Field Description

Description Refinement algorithm.

9 Functions — Alphabetical List

9-824

Field Description

Each element of Output corresponds to one
of these algorithms:

'Loose bound interior point'

'Nelder-Mead algorithm'

'Quasi-Newton'

'Starting value perturbation'

'Starting value shrinkage'

Loglikelihood Loglikelihood corresponding to the initial
parameter values.

Parameters Vector of refined initial parameter values.
The order of the parameters is the same
as the order in params0. If you pass
these initial values to estimate, then the
estimation results can improve.

Examples

Refine Parameters When Fitting Time-Invariant Diffuse State-Space Model

Suppose that a latent process is a random walk. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

rng(1); % For reproducibility

u = randn(T,1);

x = cumsum([1.5;u]);

x = x(2:end);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

 refine

9-825

where is Gaussian with mean 0 and standard deviation 1.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Assume that the state is a stationary AR(1) process. Then the state-space model to
estimate is

Specify the coefficient matrices. Use NaN values for unknown parameters.

A = NaN;

B = NaN;

C = 1;

D = NaN;

Create the diffuse state-space model by passing the coefficient matrices to dssm and
specifying that the state type is diffuse.

StateType = 2;

Mdl = dssm(A,B,C,D,'StateType',StateType);

Mdl is a dssm model object. The software sets values for the initial state mean and
variance to 0 and Inf. Verify that the model is specified correctly using the display in the
Command Window.

Pass the observations to estimate to estimate the parameters. For the params0
parameters that are unlikely to correspond to their true values. Also, specify lower bound
constraints of 0 for the standard deviations.

params0 = [-1e7 1e-6 2000];

EstMdl = estimate(Mdl,y,params0,'lb',[-Inf,0,0]);

Warning: Covariance matrix of estimators cannot be computed precisely due to

inversion difficulty. Check parameter identifiability. Also try different

starting values and other options to compute the covariance matrix.

Method: Maximum likelihood (fmincon)

Effective Sample size: 99

9 Functions — Alphabetical List

9-826

Logarithmic likelihood: -1874.82

Akaike info criterion: 3755.64

Bayesian info criterion: 3763.46

 | Coeff Std Err t Stat Prob

--

 c(1) | -9.99970e+06 1.00501e+06 -9.94989 0

 c(2) | 89578.46690 1.09581e+09 0.00008 0.99993

 c(3) | 3.65719 0.00005 75597.89470 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | -3.37649 3.67423 -0.91896 0.35812

estimate failed to converge, and so the results are undesirable.

Refine params0 using refine.

Output = refine(Mdl,y,params0);

logL = cell2mat({Output.LogLikelihood})';

[~,maxLogLIndx] = max(logL)

refinedParams0 = Output(maxLogLIndx).Parameters

Description = Output(maxLogLIndx).Description

maxLogLIndx =

 2

refinedParams0 =

 0.9781 0.8965 0.9336

Description =

Nelder-Mead simplex

The algorithm that yields the highest loglikelihood value is Loose bound interior
point, which is the third struct in the structure array Output.

Estimate Mdl using refinedParams0, which is the vector of refined initial parameter
values.

EstMdl = estimate(Mdl,y,refinedParams0,'lb',[-Inf,0,0]);

 refine

9-827

Method: Maximum likelihood (fmincon)

Effective Sample size: 99

Logarithmic likelihood: -179.018

Akaike info criterion: 364.036

Bayesian info criterion: 371.851

 | Coeff Std Err t Stat Prob

 c(1) | 0.97805 0.02947 33.18393 0

 c(2) | 0.89651 0.18465 4.85529 0.00000

 c(3) | 0.93355 0.15187 6.14707 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | -3.95108 0.72269 -5.46719 0

estimate converged, making the parameter estimates much more desirable. The
AR model coefficient is within two standard errors of 1, which suggests that the state
processes is a random walk.

Refine Diffuse State-Space Model Estimation Including Regression Component

Suppose that the relationship between the unemployment rate and the nominal gross
national product (nGNP) is linear. Suppose further that the unemployment rate is an
AR(1) series. Symbolically, and in state-space form, the model is

where:

• is the unemployment rate at time t.
• is the observed unemployment rate being deflated by the log of nGNP ().
• is the Gaussian series of state disturbances having mean 0 and unknown standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series data.

load Data_NelsonPlosser

Preprocess the data by taking the first difference of the unemployment rate and
converting nGNP to a series of returns. Remove the observations corresponding to the
string of NaN values at the beginning of the unemployment rate series.

9 Functions — Alphabetical List

9-828

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

y = DataTable.UR(~isNaN);

y = diff(y);

T = size(y,1);

Z = [ones(T,1) price2ret(gnpn)];

This example continues using the series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

Specify the coefficient matrices.

A = NaN;

B = NaN;

C = 1;

Create the state-space model using dssm by supplying the coefficient matrices and
specifying that the state values come from a diffuse distribution. The diffuse specification
indicates complete ignorance about the moments of the initial distribution.

StateType = 2;

Mdl = dssm(A,B,C,'StateType',StateType);

Mdl is a dssm model object.

Find a good set of starting parameters to use for estimation.

params0 = [150 1000]; % Initial values chosen arbitrarily

Beta0 = [1 -100];

Output = refine(Mdl,y,params0,'Predictors',Z,'Beta0',Beta0);

Output is a 1-by-5 structure array containing the recommended initial parameter
values.

Choose the initial parameter values corresponding to the largest loglikelihood.

logL = cell2mat({Output.LogLikelihood})';

[~,maxLogLIndx] = max(logL)

refinedParams0 = Output(maxLogLIndx).Parameters

Description = Output(maxLogLIndx).Description

maxLogLIndx =

 refine

9-829

 5

refinedParams0 =

 0.2070 -1.3229 1.3610 -24.8848

Description =

Starting value shrinkage

The algorithm that yields the highest loglikelihood value is Nelder-Mead simplex,
which is the second struct in the structure array Output.

Estimate Mdl using the refined initial parameter values refinedParams0.

EstMdl = estimate(Mdl,y,refinedParams0(1:(end - 2)),'Predictors',Z,...

 'Beta0',refinedParams0((end - 1):end));

Method: Maximum likelihood (fminunc)

Effective Sample size: 60

Logarithmic likelihood: -101.924

Akaike info criterion: 211.849

Bayesian info criterion: 220.292

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.20700 0.12330 1.67891 0.09317

 c(2) | -1.32287 0.08415 -15.71964 0

 y <- z(1) | 1.36101 0.23736 5.73388 0

 y <- z(2) | -24.88484 1.78021 -13.97861 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.21611 0 Inf 0

Algorithms

The Kalman filter accommodates missing data by not updating filtered state estimates
corresponding to missing observations. In other words, suppose that your data has
a missing observation at period t. Then, the state forecast for period t, based on the
previous t – 1 observations, is equivalent to the filtered state for period t.

9 Functions — Alphabetical List

9-830

See Also
dssm | estimate

More About
• “What Are State-Space Models?” on page 8-3

Introduced in R2015b

 refine

9-831

refine

Class: ssm

Refine initial parameters to aid state-space model estimation

Syntax

refine(Mdl,Y,params0)

refine(Mdl,Y,params0,Name,Value)

Output = refine(___)

Description

refine(Mdl,Y,params0) finds a set of initial parameter values to use when fitting the
state-space model Mdl to the response data Y, using the crude set of initial parameter
values params0. The software uses several routines, and displays the resulting
loglikelihood and initial parameter values for each routine.

refine(Mdl,Y,params0,Name,Value) displays results of the routines with additional
options specified by one or more Name,Value pair arguments. For example, you can
include a linear regression component composed of predictors and an initial value for the
coefficients.

Output = refine(___) returns a structure array (Output) containing a vector of
refined, initial parameter values, the loglikelihood corresponding the initial parameter
values, and the method the software used to obtain the values. You can use any of the
input arguments in the previous syntaxes.

Tips

• Likelihood surfaces of state-space models can be complicated, for example, they
might contain multiple local maxima. If estimate fails to converge, or converges to
an unsatisfactory solution, then refine might find a better set of initial parameter
values to pass to estimate.

9 Functions — Alphabetical List

9-832

• The refined initial parameter values returned by refine might appear similar to
each other and to params0. Choose a set yielding estimates that make economic sense
and correspond to relatively large loglikelihood values.

• If a refinement attempt fails, then the software displays errors and sets the
corresponding loglikelihood to -Inf. It also sets its initial parameter values to [].

Input Arguments

Mdl — Standard state-space model
ssm model object

Standard state-space model containing unknown parameters, specified as an ssm model
object returned by ssm.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary, using the appropriate input and name-value pair arguments.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix. Each row of the matrix corresponds to a period and each column corresponds
to a particular observation in the model. Therefore, T is the sample size and n is the
number of observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1 cell
vector. Y{t} contains an nt-dimensional vector of observations for period t, where t
= 1,...,T. The corresponding dimensions of the coefficient matrices in Mdl.C{t} and
Mdl.D{t} must be consistent with the matrix in Y{t} for all periods. The last cell of
Y contains the latest observations.

• Suppose that you created Mdl implicitly by specifying a parameter-to-matrix mapping
function, and the function has input arguments for the observed responses or
predictors. The mapping function establishes a link to observed responses and the
predictor data in the MATLAB workspace, which overrides the value of Y.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-829.

 refine

9-833

Data Types: double | cell

params0 — Initial values of unknown parameters
numeric vector

Initial values of unknown parameters for numeric maximum likelihood estimation,
specified as a numeric vector.

The elements of params0 correspond to the unknown parameters in the state-space
model matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and
covariance matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise, following the order A, B, C, D, Mean0, Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-
to-matrix mapping function), then set initial parameter values for the state-space
model matrices, initial state values, and state types within the parameter-to-matrix
mapping function.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Beta0' — Initial values of regression coefficients
numeric matrix

Initial values of regression coefficients, specified as the comma-separated pair consisting
of 'Beta0' and a d-by-n numeric matrix. d is the number of predictor variables (see
Predictors) and n is the number of observed response series (see Y).

By default, Beta0 is the ordinary least-squares estimate of Y onto Predictors.

Data Types: double

9 Functions — Alphabetical List

9-834

'Predictors' — Predictor data
[] (default) | numeric matrix

Predictor data used to deflate the observations in a time-invariant state-space model,
specified as the comma-separated pair consisting of 'Predictors' and a T-by-d
numeric matrix. T is the number of periods and d is the number of predictor variables.
Row t corresponds to the observed predictors at period t (Zt) in the expanded observation
equation

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters. Predictors and Y must have the same number of rows.

For n observations per period, the software regresses all predictor series onto each
observation. Then, the software returns a d-by-n matrix of fitted regression coefficient
vectors for each observation series.

If you specify Predictors, then Mdl must be time invariant. Otherwise, the software
returns an error.

By default, the software excludes a regression component from the state-space model.
Data Types: double

Output Arguments

Output — Information about initial parameter values
structure array

Information about the initial parameter values, returned as a 1-by-5 structure array.
The software uses five algorithms to find initial parameter values, and each element of
Output corresponds to an algorithm.

This table describes the fields of Output.

Field Description

Description Refinement algorithm.

 refine

9-835

Field Description

Each element of Output corresponds to one
of these algorithms:

'Loose bound interior point'

'Nelder-Mead algorithm'

'Quasi-Newton'

'Starting value perturbation'

'Starting value shrinkage'

Loglikelihood Loglikelihood corresponding to the initial
parameter values.

Parameters Vector of refined initial parameter values.
The order of the parameters is the same
as the order in params0. If you pass
these initial values to estimate, then the
estimation results can improve.

Examples

Refine Parameters When Fitting Time-Invariant State-Space Model

Suppose that a latent process is a random walk. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

rng(1); % For reproducibility

u = randn(T,1);

x = cumsum([1.5;u]);

x = x(2:end);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

9 Functions — Alphabetical List

9-836

where is Gaussian with mean 0 and standard deviation 1.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + randn(T,1);

Together, the latent process and observation equations compose a state-space model.
Assume that the state is a stationary AR(1) process. Then the state-space model to
estimate is

Specify the coefficient matrices. Use NaN values for unknown parameters.

A = NaN;

B = NaN;

C = 1;

D = NaN;

Specify the state-space model using the coefficient matrices. Specify that the initial state
distribution is stationary using the StateType name-value pair argument.

StateType = 0;

Mdl = ssm(A,B,C,D,'StateType',StateType);

Mdl is an ssm model. The software sets values for the initial state mean and variance.
Verify that the model is specified correctly using the display in the Command Window.

Pass the observations to estimate to estimate the parameters. For the params0
parameters that are unlikely to correspond to their true values. Also, specify lower bound
constraints of 0 for the standard deviations.

params0 = [-1e7 1e-6 2000];

EstMdl = estimate(Mdl,y,params0,'lb',[-Inf,0,0]);

Warning: Covariance matrix of estimators cannot be computed precisely due to

inversion difficulty. Check parameter identifiability. Also try different

starting values and other options to compute the covariance matrix.

Method: Maximum likelihood (fmincon)

Sample size: 100

 refine

9-837

Logarithmic likelihood: -2464.23

Akaike info criterion: 4934.46

Bayesian info criterion: 4942.27

 | Coeff Std Err t Stat Prob

--

 c(1) | -9.99977e+06 9.99977e+05 -10.00000 0

 c(2) | 1.23086e+05 1.91567e+13 0.00000 1.00000

 c(3) | 2006.86501 3.12341e+11 0.00000 1.00000

 |

 | Final State Std Dev t Stat Prob

 x(1) | -3.37649 1999.42392 -0.00169 0.99865

estimate failed to converge, and so the results are undesirable.

Refine params0 using refine.

Output = refine(Mdl,y,params0);

logL = cell2mat({Output.LogLikelihood})';

[~,maxLogLIndx] = max(logL)

refinedParams0 = Output(maxLogLIndx).Parameters

Description = Output(maxLogLIndx).Description

maxLogLIndx =

 2

refinedParams0 =

 0.9705 -0.8934 0.9330

Description =

Nelder-Mead simplex

The algorithm that yields the highest loglikelihood value is Loose bound interior
point, which is the third struct in the structure array Output.

Estimate Mdl using refinedParams0, which is the vector of refined initial parameter
values.

EstMdl = estimate(Mdl,y,refinedParams0,'lb',[-Inf,0,0]);

9 Functions — Alphabetical List

9-838

Method: Maximum likelihood (fmincon)

Sample size: 100

Logarithmic likelihood: -181.379

Akaike info criterion: 368.758

Bayesian info criterion: 376.574

 | Coeff Std Err t Stat Prob

 c(1) | 0.97050 0.02863 33.90367 0

 c(2) | 0.89343 0.18521 4.82401 0.00000

 c(3) | 0.93303 0.15176 6.14806 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | -3.93007 0.72066 -5.45343 0

estimate converged, making the parameter estimates much more desirable. The
AR model coefficient is within two standard errors of 1, which suggests that the state
processes is a random walk.

Refine Estimation of State-Space Model Containing Regression Component

Suppose that the relationship between the change in the unemployment rate and the
nominal gross national product (nGNP) growth rate is of interest. Suppose further that
the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically, and
in state-space form, the model is

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed change in the unemployment rate being deflated by the growth rate

of nGNP ().
• is the Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

 refine

9-839

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series data.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % The sample size

Z = [ones(T-1,1) diff(log(gnpn))];

y = diff(u);

This example continues using the series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

Specify the coefficient matrices.

A = [NaN NaN; 0 0];

B = [1; 1];

C = [1 0];

D = NaN;

Specify the state-space model using ssm.

Mdl = ssm(A,B,C,D);

Estimate the model parameters. Specify the regression component and its initial value
for optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Restrict the estimate of to all positive, real numbers.

params0 = [0 0 1e-11];

Beta0 = [0 0];

EstMdl = estimate(Mdl,y,params0,'Predictors',Z,...

 'Beta0',Beta0,'lb',[-Inf,-Inf,0,-Inf,-Inf]);

Warning: Covariance matrix of estimators cannot be computed precisely due to

inversion difficulty. Check parameter identifiability. Also try different

starting values and other options to compute the covariance matrix.

Method: Maximum likelihood (fmincon)

Sample size: 61

9 Functions — Alphabetical List

9-840

Logarithmic likelihood: -109.709

Akaike info criterion: 229.417

Bayesian info criterion: 239.972

 | Coeff Std Err t Stat Prob

 c(1) | -0.25172 0.27386 -0.91917 0.35801

 c(2) | 0.50899 0.23603 2.15650 0.03105

 c(3) | 0.00000 1.86328e+07 0.00000 1

 y <- z(1) | 1.85671 0.11960 15.52383 0

 y <- z(2) | -27.50973 1.01219 -27.17849 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 0.84457 0 Inf 0

 x(2) | 0.88637 0 Inf 0

The software could not estimate the parameter covariance matrix.

Refine the initial parameter values.

Output = refine(Mdl,y,params0,'Predictors',Z,'Beta0',Beta0);

Output is a 1-by-5 structure array containing the recommended initial parameter
values.

Choose the initial parameter values corresponding to the largest loglikelihood.

logL = cell2mat({Output.LogLikelihood})';

[~,maxLogLIndx] = max(logL)

refinedParams0 = Output(maxLogLIndx).Parameters

Description = Output(maxLogLIndx).Description

maxLogLIndx =

 2

refinedParams0 =

 -0.3410 1.0500 -0.4859 1.3612 -24.4671

Description =

Nelder-Mead simplex

 refine

9-841

The algorithm that yields the highest loglikelihood value is Quasi-Newton, which is the
first struct in the structure array Output.

Estimate Mdl using the refined initial parameter values refinedParams0.

pBeta = numel(Beta0);

EstMdl = estimate(Mdl,y,refinedParams0(1:(end - pBeta)),'Predictors',Z,...

 'Beta0',refinedParams0((end - pBeta + 1):end),...

 'lb',[-Inf,-Inf,0,-Inf,-Inf]);

Method: Maximum likelihood (fmincon)

Sample size: 61

Logarithmic likelihood: -99.7245

Akaike info criterion: 209.449

Bayesian info criterion: 220.003

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.34098 0.29608 -1.15164 0.24948

 c(2) | 1.05003 0.41377 2.53771 0.01116

 c(3) | 0.48592 0.36790 1.32079 0.18657

 y <- z(1) | 1.36121 0.22338 6.09358 0

 y <- z(2) | -24.46711 1.60018 -15.29024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.01264 0.44690 2.26592 0.02346

 x(2) | 0.77718 0.58917 1.31912 0.18713

estimate returns reasonable parameter estimates and their corresponding standard
errors.

Algorithms

The Kalman filter accommodates missing data by not updating filtered state estimates
corresponding to missing observations. In other words, suppose that your data has
a missing observation at period t. Then, the state forecast for period t, based on the
previous t – 1 observations, is equivalent to the filtered state for period t.

See Also
estimate | filter | forecast | simulate | smooth | ssm

9 Functions — Alphabetical List

9-842

More About
• “What Are State-Space Models?” on page 8-3

 regARIMA class

9-843

regARIMA class

Create regression model with ARIMA time series errors

Description

regARIMA creates a regression model with ARIMA time series errors to maintain the
sensitivity interpretation of regression coefficients.

By default, the time series errors (also called unconditional disturbances) are
independent, identically distributed, mean 0 Gaussian random variables. If the errors
have an autocorrelation structure, then you can specify models for them. The models
include:

• moving average (MA)
• autoregressive (AR)
• mixed autoregressive and moving average (ARMA)
• integrated (ARIMA)
• multiplicative seasonal (SARIMA)

Specify error models containing known coefficients to:

• Simulate responses using simulate.
• Explore impulse responses using impulse.
• Forecast future observations using forecast.
• Estimate unknown coefficients with data using estimate.

Construction

Mdl = regARIMA creates a regression model with degree 0 ARIMA errors and no
regression coefficient.

Mdl = regARIMA(p,D,q) creates a regression model with errors modeled by a
nonseasonal, linear time series with autoregressive degree p, differencing degree D, and
moving average degree q.

9 Functions — Alphabetical List

9-844

Mdl = regARIMA(Name,Value) creates a regression model with ARIMA errors using
additional options specified by one or more Name,Value pair arguments. Name can also
be a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several Name,Value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Note: For regression models with nonseasonal ARIMA errors, use p, D, and q. For
regression models with seasonal ARIMA errors, use Name,Value pair arguments.

p

Nonseasonal, autoregressive polynomial degree for the error model, specified as a
positive integer.

D

Nonseasonal integration degree for the error model, specified as a nonnegative integer.

q

Nonseasonal, moving average polynomial degree for the error model, specified as a
positive integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Intercept'

Regression model intercept, specified as the comma-separated pair consisting of
'Intercept' and a scalar.

Default: NaN

 regARIMA class

9-845

'Beta'

Regression model coefficients associated with the predictor data, specified as the comma-
separated pair consisting of 'Beta' and a vector.

Default: [] (no regression coefficients corresponding to predictor data)

'AR'

Nonseasonal, autoregressive coefficients for the error model, specified as the comma-
separated pair consisting of 'AR' and a cell vector. The coefficients must yield a stable
polynomial.

• If you specify ARLags, then AR is an equivalent-length cell vector of coefficients
associated with the lags in ARLags. For example, if ARLags = [1, 4] and
AR = {0.2, 0.1}, then, ignoring all other specifications, the error model is
u u u

t t t t
= + +

- -
0 2 0 1

1 4
. . .e

• If you do not specify ARLags, then AR is a cell vector of coefficients at lags 1,2,...,p,
which is the nonseasonal, autoregressive polynomial degree. For example, if AR =
{0.2, 0.1} and you do not specify ARLags, then, ignoring all other specifications,
the error model is u u u

t t t t
= + +

- -
0 2 0 1

1 2
. . .e

Default: Cell vector of NaNs with the same length as ARLags.

'MA'

Nonseasonal, moving average coefficients for the error model, specified as the comma-
separated pair consisting of 'MA' and a cell vector. The coefficients must yield an
invertible polynomial.

• If you specify MALags, then MA is an equivalent-length cell vector of coefficients
associated with the lags in MALags. For example, if MALags = [1, 4] and
MA = {0.2, 0.1}, then, ignoring all other specifications, the error model is
u

t t t t
= + +

- -
e e e0 2 0 1

1 4
. . .

• If you do not specify MALags, then MA is a cell vector of coefficients at lags 1,2,...,q,
which is the nonseasonal, moving average polynomial degree. For example, if MA =
{0.2, 0.1} and you do not specify MALags, then, ignoring all other specifications,
the error model is u

t t t t
= + +

- -
e e e0 2 0 1

1 2
. . .

Default: Cell vector of NaNs with the same length as MALags.

9 Functions — Alphabetical List

9-846

'ARLags'

Lags associated with the AR coefficients in the error model, specified as the comma-
separated pair consisting of 'ARLags' and a vector of positive integers.

Default: Vector of integers 1,2,...,p, the nonseasonal, autoregressive polynomial degree.

'MALags'

Lags associated with the MA coefficients in the error model, specified as the comma-
separated pair consisting of 'MALags' and a vector of positive integers.

Default: Vector of integers 1,2,...,q, the nonseasonal moving average polynomial degree.

'SAR'

Seasonal, autoregressive coefficients for the error model, specified as the comma-
separated pair consisting of 'SAR' and a cell vector. The coefficient must yield a stable
polynomial.

• If you specify SARLags, then SAR is an equivalent-length cell vector of coefficients
associated with the lags in SARLags. For example, if SARLags = [1, 4], SAR =
{0.2, 0.1}, and Seasonality = 4, then, ignoring all other specifications, the
error model is

1 0 2 0 1 1
4 4

- -() -() =. . .L L L u
t t

e

• If you do not specify SARLags, then SAR is a cell vector of coefficients at lags 1,2,...,ps,
which is the seasonal, autoregressive polynomial degree. For example, if SAR =
{0.2, 0.1} and Seasonality = 4, and you do not specify SARLags, then, ignoring
all other specifications, the error model is

1 0 2 0 1 1
2 4

- - -() () =. . .L L L u
t t

e

Default: Cell vector of NaNs with the same length as SARLags.

'SMA'

Seasonal, moving average coefficients for the error model, specified as the comma-
separated pair consisting of 'SMA' and a cell vector. The coefficient must yield an
invertible polynomial.

 regARIMA class

9-847

• If you specify SMALags, then SMA is an equivalent-length cell vector of coefficients
associated with the lags in SMALags. For example, if SMALags = [1, 4], SMA =
{0.2, 0.1}, and Seasonality = 4, then, ignoring all other specifications, the error

model is 1 1 0 2 0 1
4 4

-() ()= + +L u L L
t t

. . .e

• If you do not specify SMALags, then SMA is a cell vector of coefficients at lags 1,2,...,qs,
the seasonal, moving average polynomial degree. For example, if SMA = {0.2, 0.1}
and Seasonality = 4, and you do not specify SMALags, then, ignoring all other

specifications, the error model is 1 1 0 2 0 1
4 2

-() ()= + +L u L L
t t

. . .e

Default: Cell vector of NaNs with the same length as SMALags.

'SARLags'

Lags associated with the SAR coefficients in the error model, specified as the comma-
separated pair consisting of 'SARLags' and a vector of positive integers.

Default: Vector of integers 1,2,...,ps, the seasonal, autoregressive polynomial degree.

'SMALags'

Lags associated with the SMA coefficients in the error model, specified as the comma-
separated pair consisting of 'SMALags' and a vector of positive integers.

Default: Vector of integers 1,2,...,qs, the seasonal moving average polynomial degree.

'D'

Nonseasonal differencing polynomial degree (i.e., nonseasonal integration degree) for the
error model, specified as the comma-separated pair consisting of 'D' and a nonnegative
integer.

Default: 0 (no nonseasonal integration)

'Seasonality'

Seasonal differencing polynomial degree for the error model, specified as the comma-
separated pair consisting of 'Seasonality' and a nonnegative integer.

Default: 0 (no seasonal integration)

9 Functions — Alphabetical List

9-848

'Variance'

Variance of the model innovations εt, specified as the comma-separated pair consisting of
'Variance' and a positive scalar.

Default: NaN

'Distribution'

Conditional probability distribution of the innovation process, specified as the comma-
separated pair consisting of 'Distribution' and a string or a structure array.

Distribution String Structure array

Gaussian 'Gaussian' struct('Name','Gaussian')

Student’s t 't'

By default, DoF is NaN.
struct('Name','t','DoF',DoF)

DoF > 2 or DoF = NaN

Default: 'Gaussian'

Notes

• Each AR, SAR, MA, and SMA coefficient is associated with an underlying lag operator
polynomial and is subject to a near-zero tolerance exclusion test. That is, the software

compares each coefficient to the default lag operator zero tolerance, 1e-12. If the
magnitude of a coefficient is greater than 1e-12, then the software includes it in the
model. Otherwise, the software considers the coefficient sufficiently close to 0, and
excludes it from the model. For additional details, see LagOp.

• Specify the lags associated with the seasonal polynomials SAR and SMA in the
periodicity of the observed data, and not as multiples of the Seasonality parameter.
This convention does not conform to standard Box and Jenkins [1] notation, but it is a
more flexible approach for incorporating multiplicative seasonality.

Properties
AR

Cell vector of nonseasonal, autoregressive coefficients corresponding to a stable
polynomial of the error model. Associated lags are 1,2,...,p, which is the nonseasonal,
autoregressive polynomial degree, or as specified in ARLags.

 regARIMA class

9-849

Beta

Real vector of regression coefficients corresponding to the columns of the predictor data
matrix.

D

Nonnegative integer indicating the nonseasonal integration degree of the error model.

Distribution

Data structure for the conditional probability distribution of the innovation process. The
field Name stores the distribution name 'Gaussian' or 't'. If the distribution is 't',
then the structure also has the field DoF that stores the degrees of freedom.

Intercept

Scalar intercept in the error model.

MA

Cell vector of nonseasonal moving average coefficients corresponding to an invertible
polynomial of the error model. Associated lags are 1,2,...,q to the degree of the
nonseasonal moving average polynomial, or as specified in MALags.

P

Scalar, compound autoregressive polynomial degree of the error model.

P is the total number of lagged observations necessary to initialize the autoregressive
component of the error model. P includes the effects of nonseasonal and seasonal
integration captured by the properties D and Seasonality, respectively, and the
nonseasonal and seasonal autoregressive polynomials AR and SAR, respectively.

P does not necessarily conform to standard Box and Jenkins notation [1]. If D = 0,
Seasonality = 0, and SAR = {}, then P conforms to the standard notation.

Q

Scalar, compound moving average polynomial degree of the error model.

Q is the total number of lagged innovations necessary to initialize the moving average
component of the model. Q includes the effects of nonseasonal and seasonal moving
average polynomials MA and SMA, respectively.

9 Functions — Alphabetical List

9-850

Q does not necessarily conform to standard Box and Jenkins notation [1]. If SMA = {},
then Q conforms to the standard notation.

SAR

Cell vector of seasonal autoregressive coefficients corresponding to a stable polynomial
of the error model. Associated lags are 1,2,...,ps, which is the seasonal autoregressive
polynomial degree, or as specified in SARLags.

SMA

Cell vector of seasonal moving average coefficients corresponding to an invertible
polynomial of the error model. Associated lags are 1,2,...,qs, which is the seasonal moving
average polynomial degree, or as specified in SMALags.

Seasonality

Nonnegative integer indicating the seasonal differencing polynomial degree for the error
model.

Variance

Positive scalar variance of the model innovations.

Methods

arima Convert regression model with ARIMA
errors to ARIMAX model

estimate Estimate parameters of regression models
with ARIMA errors

filter Filter disturbances through regression
model with ARIMA errors

forecast Forecast responses of regression model
with ARIMA errors

impulse Impulse response of regression model with
ARIMA errors

infer Infer innovations of regression models with
ARIMA errors

 regARIMA class

9-851

print Display estimation results for regression
models with ARIMA errors

simulate Monte Carlo simulation of regression model
with ARIMA errors

Definitions

Regression Model with ARIMA Time Series Errors

A model that explains the behavior of a response using a linear regression model with
predictor data, though the errors have autocorrelation indicative of an ARIMA process.

The model has the following form (in lag operator notation):

y c X u

a L A L L L u b L B L

t t t

D s
t t

= + +

() () -() -() = () ()

b

e1 1 ,

where

• t = 1,...,T.
• yt is the response series.
• Xt is row t of X, which is the matrix of concatenated predictor data vectors. That is, Xt

is observation t of each predictor series.
• c is the regression model intercept.
• β is the regression coefficient.
• ut is the disturbance series.
• εt is the innovations series.
•

L y yj
t t j=

-
.

•
a L a aL Lp

p() = - - -()1 1 ... , which is the degree p, nonseasonal autoregressive

polynomial.
•

A L A L A Lp
p

s

s() = -()- -1 1 ... , which is the degree ps, seasonal autoregressive

polynomial.

9 Functions — Alphabetical List

9-852

•
1 -()L

D
, which is the degree D, nonseasonal integration polynomial.

•
1 -()L

s
, which is the degree s, seasonal integration polynomial.

•
b L b L b Lq

q() = +()+ +1 1 ... , which is the degree q, nonseasonal moving average

polynomial.
•

B L B L B Lq
q

s

s() = +()+ +1 1 ... , which is the degree qs, seasonal moving average

polynomial.

Regression models with ARIMA errors contain a hierarchy of error series. The
unconditional disturbance, ut, or structural disturbance, is based on the structural
regression component. The conditional error (one-step-ahead forecast or prediction error),
εt is the innovation of ut.

Note: The degrees of the lag operators in the seasonal polynomials A(L) and B(L) do not
conform to those defined by Box and Jenkins [1]. In other words, Econometrics Toolbox
does not treat p1 = s, p2 = 2s,...,ps = cps nor q1 = s, q2 = 2s,...,qs = cqs where cp and cq are
positive integers. The software is flexible as it lets you specify the lag operator degrees.
See “Multiplicative ARIMA Model Specifications” on page 5-48.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Specify a Regression Model with Nonseasonal ARIMA Errors

Specify the following regression model with ARIMA(2,1,3) errors:

 regARIMA class

9-853

Mdl = regARIMA(2,1,3)

Mdl =

 ARIMA(2,1,3) Error Model:

 Distribution: Name = 'Gaussian'

 Intercept: NaN

 P: 3

 D: 1

 Q: 3

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {NaN NaN NaN} at Lags [1 2 3]

 SMA: {}

 Variance: NaN

The output displays the values of the properties P, D, and Q of Mdl. The corresponding
autoregressive and moving average coefficients (contained in AR and MA) are cell arrays
containing the correct number of NaN values. Note that P = p + D = 3, indicating that you
need three presample observations to initialize the model for estimation.

Modify a Regression Model with ARIMA Errors

Define the regression model with ARIMA errors:

where is Gaussian with variance 0.5.

Mdl = regARIMA('Intercept',2,'AR',{0.2 0.3},'MA',{0.1},...

 'Variance',0.5,'Beta',[1.5 0.2])

Mdl =

 Regression with ARIMA(2,0,1) Error Model:

 --

 Distribution: Name = 'Gaussian'

 Intercept: 2

9 Functions — Alphabetical List

9-854

 Beta: [1.5 0.2]

 P: 2

 D: 0

 Q: 1

 AR: {0.2 0.3} at Lags [1 2]

 SAR: {}

 MA: {0.1} at Lags [1]

 SMA: {}

 Variance: 0.5

Mdl is fully specified to, for example, simulate a series of responses given the predictor
data matrix, .

Modify the model to estimate the regression coefficient, the AR terms, and the variance
of the innovations.

Mdl.Beta = [NaN NaN];

Mdl.AR = {NaN NaN};

Mdl.Variance = NaN;

Change the innovations distribution to a distribution with 15 degrees of freedom.

Mdl.Distribution = struct('Name','t','DoF',15)

Mdl =

 Regression with ARIMA(2,0,1) Error Model:

 --

 Distribution: Name = 't', DoF = 15

 Intercept: 2

 Beta: [NaN NaN]

 P: 2

 D: 0

 Q: 1

 AR: {NaN NaN} at Lags [1 2]

 SAR: {}

 MA: {0.1} at Lags [1]

 SMA: {}

 Variance: NaN

Specify a Regression Model with SARIMA Errors

Specify the following model:

 regARIMA class

9-855

where is Gaussian with variance 1.

Mdl = regARIMA('Intercept',1,'Beta',6,'AR',0.2,...

 'MA',0.1,'SAR',{0.5,0.2},'SARLags',[4, 8],...

 'SMA',{0.05,0.01},'SMALags',[4 8],'D',1,...

 'Seasonality',4,'Variance',1)

Mdl =

 Regression with ARIMA(1,1,1) Error Model Seasonally Integrated with Seasonal AR(8) and MA(8):

 --

 Distribution: Name = 'Gaussian'

 Intercept: 1

 Beta: [6]

 P: 14

 D: 1

 Q: 9

 AR: {0.2} at Lags [1]

 SAR: {0.5 0.2} at Lags [4 8]

 MA: {0.1} at Lags [1]

 SMA: {0.05 0.01} at Lags [4 8]

 Seasonality: 4

 Variance: 1

If you do not specify SARLags or SMALags, then the coefficients in SAR and SMA
correspond to lags 1 and 2 by default.

Mdl = regARIMA('Intercept',1,'Beta',6,'AR',0.2,...

 'MA',0.1,'SAR',{0.5,0.2},'SMA',{0.05,0.01},...

 'D',1,'Seasonality',4,'Variance',1)

Mdl =

 Regression with ARIMA(1,1,1) Error Model Seasonally Integrated with Seasonal AR(2) and MA(2):

 --

 Distribution: Name = 'Gaussian'

 Intercept: 1

 Beta: [6]

 P: 8

9 Functions — Alphabetical List

9-856

 D: 1

 Q: 3

 AR: {0.2} at Lags [1]

 SAR: {0.5 0.2} at Lags [1 2]

 MA: {0.1} at Lags [1]

 SMA: {0.05 0.01} at Lags [1 2]

 Seasonality: 4

 Variance: 1

• “Specify Regression Models with ARIMA Errors Using regARIMA” on page 4-10
• “Specify the Default Regression Model with ARIMA Errors” on page 4-20
• “Modify regARIMA Model Properties” on page 4-22
• “Multiplicative ARIMA Model Specifications” on page 5-48

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

See Also
arima | estimate | filter | forecast | impulse | infer | print | simulate

More About
• “Time Series Regression Models” on page 4-3
• “Nonspherical Models” on page 3-94
• “ARIMA Model Including Exogenous Covariates” on page 5-58

 reflect

9-857

reflect
Class: LagOp

Reflect lag operator polynomial coefficients around lag zero

Syntax

B = reflect(A)

Description

Given a lag operator polynomial object A(L),B = reflect(A) negates all coefficient
matrices except the coefficient matrix at lag 0. For example, given a polynomial of degree
p,

A L A A L A L A LP
p

() ...= + + + +0 1 2
2

the reflected polynomial B(L) is

B L A A L A L A LP
p() = - - - -

0 1 2

2
...

with the same degree and dimension as A(L).

Examples

Reflect a Lag Operator Polynomial

Create a LagOp polynomial and its reflection:

A = LagOp({0.8 1 0 .6});

B = reflect(A)

B =

9 Functions — Alphabetical List

9-858

 1-D Lag Operator Polynomial:

 Coefficients: [0.8 -1 -0.6]

 Lags: [0 1 3]

 Degree: 3

 Dimension: 1

 ret2price

9-859

ret2price
Convert returns to prices

Syntax

[TickSeries,TickTimes] = ...

ret2price(RetSeries,StartPrice,RetIntervals,StartTime,Method)

Description

[TickSeries,TickTimes] = ...

ret2price(RetSeries,StartPrice,RetIntervals,StartTime,Method)

generates price series for the specified assets, given the asset starting prices and the
return observations for each asset.

Input Arguments

RetSeries Time series array of returns. RetSeries can be a column vector
or a matrix:

• As a vector, RetSeries represents a univariate series of
returns of a single asset. The length of the vector is the
number of observations (NUMOBS). The first element contains
the oldest observation, and the last element the most recent.

• As a matrix, RetSeries represents a NUMOBS-by-number
of assets (NUMASSETS) matrix of asset returns. Rows
correspond to time indices. The first row contains the oldest
observations and the last row the most recent. ret2price
assumes that the observations across a given row occur at
the same time for all columns, and each column is a return
series of an individual asset.

StartPrice A NUMASSETS element vector of initial prices for each
asset, or a single scalar initial price applied to all assets. If
StartPrice = [] or is unspecified, all asset prices start at 1.

9 Functions — Alphabetical List

9-860

RetIntervals A NUMOBS element vector of time intervals between return
observations, or a single scalar interval applied to all
observations. If RetIntervals is [] or is unspecified,
ret2price assumes that all intervals have length 1.

StartTime (optional) Scalar starting time for the first observation, applied
to the price series of all assets. The default is 0.

Method Character string indicating the compounding method used
to compute asset returns. If Method is 'Continuous', [],
or unspecified, then ret2price computes continuously
compounded returns. If Method is 'Periodic' then
ret2price computes simple periodic returns. Method is case
insensitive.

Output Arguments

TickSeries Array of asset prices:

• When RetSeries is a NUMOBS element column vector,
TickSeries is a NUMOBS+1 column vector. The first element
contains the starting price of the asset, and the last element the
most recent price.

• When RetSeries is a NUMOBS-by-NUMASSETS matrix, then
RetSeries is a (NUMOBS+1)-by-NUMASSETS matrix. The first
row contains the starting price of the assets, and the last row
contains the most recent prices.

TickTimes A NUMOBS+1 element vector of price observation times. The initial
time is zero unless specified in StartTime.

Examples

Convert Between Stock Prices and Returns

Create a stock price process continuously compounded at 10 percent

S = 100*exp(0.10*[0:19]');

 ret2price

9-861

 % Create the stock price series

Compute 10 percent returns for reference

R = price2ret(S); % Convert the price series to a

 % 10 percent return series

Convert the resulting return series to the original price series, and compare results:

P = ret2price(R, 100); % Convert to the original price

 % series

[S P] % Compare the original and

 % computed price series

ans =

 100.0000 100.0000

 110.5171 110.5171

 122.1403 122.1403

 134.9859 134.9859

 149.1825 149.1825

 164.8721 164.8721

 182.2119 182.2119

 201.3753 201.3753

 222.5541 222.5541

 245.9603 245.9603

 271.8282 271.8282

 300.4166 300.4166

 332.0117 332.0117

 366.9297 366.9297

 405.5200 405.5200

 448.1689 448.1689

 495.3032 495.3032

 547.3947 547.3947

 604.9647 604.9647

 668.5894 668.5894

Compare the Relative Price Performance of Stocks

This example compares the relative price performance of the NASDAQ and the NYSE
indexes.

Load the equity index data.

9 Functions — Alphabetical List

9-862

load Data_EquityIdx

Convert the returns back to prices, specifying the same starting price, 100, for each
series, and plot the results.

figure;

plot(ret2price(price2ret([DataTable.NASDAQ DataTable.NYSE]), 100))

ylabel('Prices')

legend('Nasdaq', 'NYSE','Location','Best')

axis tight

 ret2price

9-863

The blue (upper) plot shows the NASDAQ price series. The green (lower) plot shows the
NYSE price series.

See Also
price2ret | ret2tick

Introduced before R2006a

9 Functions — Alphabetical List

9-864

simsmooth
Class: ssm

State-space model simulation smoother

Syntax

X = simsmooth(Mdl,Y)

X = simsmooth(Mdl,Y,Name,Value)

Description

X = simsmooth(Mdl,Y) returns simulated states (X) by applying a simulation
smoother to the time-invariant or time-varying state-space model (Mdl) and responses
(Y). That is, the software uses forward filtering and back sampling to obtain one random
path from the posterior distribution of the states.

X = simsmooth(Mdl,Y,Name,Value) returns simulated states with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — Standard state-space model
ssm model object

Standard state-space model, specified as anssm model object returned by ssm or
estimate. A standard state-space model has finite initial state covariance matrix
elements. That is, Mdl cannot be a dssm model object.

If Mdl is not fully specified (that is, Mdl contains unknown parameters), then specify
values for the unknown parameters using the 'Params' Name,Value pair argument.
Otherwise, the software throws an error.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

 simsmooth

9-865

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix, where each row corresponds to a period and each column corresponds to a
particular observation in the model. T is the sample size and m is the number of
observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1
cell vector. Each element of the cell vector corresponds to a period and contains an
nt-dimensional vector of observations for that period. The corresponding dimensions
of the coefficient matrices in Mdl.C{t} and Mdl.D{t} must be consistent with the
matrix in Y{t} for all periods. The last cell of Y contains the latest observations.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-450.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NumOut' — Number of output arguments of parameter-to-matrix mapping function
positive integer

Number of output arguments of the parameter-to-matrix mapping function for implicitly
defined state-space models, specified as the comma-separated pair consisting of
'NumOut' and a positive integer.

If you implicitly define a state-space model and you do not supply NumOut, then the
software automatically detects the number of output arguments of the parameter-to-
matrix mapping function. Such detection consumes extra resources, and might slow the
simulation smoother.

For explicitly defined models, the software ignores NumOut and displays a warning
message.

'NumPaths' — Number of sample paths to generate variants
1 (default) | positive integer

9 Functions — Alphabetical List

9-866

Number of sample paths to generate variants, specified as the comma-separated pair
consisting of 'NumPaths' and a positive integer.

Example: 'NumPaths',1000

Data Types: double

'Params' — Values for unknown parameters
numeric vector

Values for unknown parameters in the state-space model, specified as the column-
separated pair consisting of 'Params' and a numeric vector.

The elements of Params correspond to the unknown parameters in the state-space model
matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and covariance
matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of Params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise following the order A, B, C, D, Mean0, and Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-to-
matrix mapping function), then you must set initial parameter values for the state-
space model matrices, initial state values, and state types within the parameter-to-
matrix mapping function.

If Mdl contains unknown parameters, then you must specify their values. Otherwise, the
software ignores the value of Params.

Data Types: double

'Tolerance' — Forecast uncertainty threshold
0 (default) | nonnegative scalar

Forecast uncertainty threshold, specified as the comma-separated pair consisting of
'Tolerance' and a nonnegative scalar.

If the forecast uncertainty for a particular observation is less than Tolerance during
numerical estimation, then the software removes the uncertainty corresponding to the
observation from the forecast covariance matrix before its inversion.

It is best practice to set Tolerance to a small number, for example, le-15, to overcome
numerical obstacles during estimation.

 simsmooth

9-867

Example: 'Tolerance',le-15

Data Types: double

Output Arguments

X — Simulated states
numeric matrix | cell matrix of numeric vectors

Simulated states, returned as a numeric matrix or cell matrix of vectors.

If Mdl is a time-invariant model with respect to the states, then X is a numObs-by-m-
by-numPaths array. That is, each row corresponds to a period, each column corresponds
to a state in the model, and each page corresponds to a sample path. The last row
corresponds to the latest simulated states.

If Mdl is a time-varying model with respect to the states, then X is a numObs-
by-numPaths cell matrix of vectors. X{t,j} contains a vector of length mt of simulated
states for period t of sample path j. The last row of X contains the latest set of simulated
states.

Definitions

Simulation Smoother

The simulation smoother is an algorithm for drawing samples from the conditional, joint,
posterior distribution of the states given the complete observed response series. You can
use these random draws to conduct a simulation study of the estimators.

For a univariate, time-invariant state-space model, the simulation smoother algorithm
follows these steps.

1 Obtains the smoothed states (ˆ ,..,;x t T
t

= 1) using the Kalman filter.

2 Chooses initial state mean and variance values. Draw the initial random state x
0

*

from the Gaussian distribution with the initial state mean and variance.

9 Functions — Alphabetical List

9-868

3 Randomly generates T state disturbances and observation innovations from the
standard normal distribution. Denote the random variants for period t e

t

* and u
t

* ,
respectively.

4 Creates random observations and states by plugging e
t

* and u
t

* into the state-space
model

x Ax B

y Cx Du

t t t

t t t

*

-

* *

* * *

= +

= +

1 e
.

5 Obtains smoothed states (x̂
t

*) by applying the Kalman filter to the state-space model

using the observation series yt
* .

6 Obtains the random path of smoothed states from the posterior distribution using

%x x x x
t t t t

= - +
* *

ˆ ˆ .

For more details, see [1].

Examples

Simulate States of Time-Invariant State-Space Models Using Simulation Smoother

Suppose that a latent process is an AR(1) model. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

 simsmooth

9-869

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

9 Functions — Alphabetical List

9-870

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

Simulate one path each of states and observations. Specify that the paths span 100
periods.

simX = simsmooth(Mdl,y);

simX is a 100-by-1 vector of simulated states.

Plot the true state values with the simulated states.

figure;

plot(1:T,x,'-k',1:T,simX,':r','LineWidth',2);

title 'True State Values and Simulated States';

xlabel 'Period';

ylabel 'State';

legend({'True state values','Simulated state values'});

 simsmooth

9-871

By default, simulate simulates one path for each state in the state-space model. To
conduct a Monte Carlo study, specify to simulate a large number of paths using the
'NumPaths' name-value pair argument.

Estimate Posterior Distribution of States in State-Space Model

The simsmooth function draws random samples from the distribution of smoothed
states, or the distribution of a state given all of the data and parameters. This is the
definition of posterior distribution of a state. Suppose that a latent process is an AR(1).
Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 0.5.

9 Functions — Alphabetical List

9-872

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',0.5^2);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.05. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.05*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D);

Smooth the states of the state space model.

xsmooth = smooth(Mdl,y);

Draw 1000 paths from the posterior distribution of .

N = 1000;

SimX = simsmooth(Mdl,y,'NumPaths',N);

SimX is a 100-by- 1-by- 1000 array. Rows correspond to periods, columns correspond to
individual states, and leaves correspond to separate paths.

 simsmooth

9-873

Because SimX has a singleton dimension, collapse it so that its leaves correspond to the
columns using squeeze.

SimX = squeeze(SimX);

Compute the mean, standard deviation, and 95% confidence intervals of the state at each
period.

xbar = mean(SimX,2);

xstd = std(SimX,[],2);

ci = [xbar - 1.96*xstd, xbar + 1.96*xstd];

Plot the smoothed states, and the means and 95% confidence intervals of the draws at
each period.

figure;

plot(xsmooth,'k','LineWidth',2);

hold on;

plot(xbar,'--r','LineWidth',2);

plot(1:T,ci(:,1),'--r',1:T,ci(:,2),'--r');

legend('Smoothed states','Simulation Mean','95% CIs');

title('Smooth States and Simulation Statistics');

xlabel('Period')

9 Functions — Alphabetical List

9-874

• “Smooth States of State-Space Model” on page 8-80
• “Compare Simulation Smoother to Smoothed States” on page 8-162
• “Simulate States of Time-Varying State-Space Model Using Simulation Smoother”

on page 8-112
• “Estimate Random Parameter of State-Space Model” on page 8-116

Algorithms

For increased speed in simulating states, the simulation smoother implements minimal
dimensionality error checking. Therefore, for models with unknown parameter values,

 simsmooth

9-875

you should ensure that the dimensions of the data and the dimensions of the coefficient
matrices are consistent.

References

[1] Durbin J., and S. J. Koopman. “A Simple and Efficient Simulation Smoother for State
Space Time Series Analysis.” Biometrika. Vol 89., No. 3, 2002, pp. 603–615.

[2] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
estimate | filter | simulate | smooth | ssm

More About
• “What Are State-Space Models?” on page 8-3

9 Functions — Alphabetical List

9-876

simulate
Monte Carlo simulation of conditional variance models

Syntax

V = simulate(Mdl,numObs)

V = simulate(Mdl,numObs,Name,Value)

[V,Y] = simulate(___)

Description

V = simulate(Mdl,numObs) simulates a numObs-period conditional variance path
from the fully specified conditional variance model Mdl. Mdl can be a garch, egarch, or
gjr model.

V = simulate(Mdl,numObs,Name,Value) simulates conditional variance paths with
additional options specified by one or more Name,Value pair arguments. For example,
you can generate multiple sample paths or specify presample innovation paths.

[V,Y] = simulate(___) additionally simulates response paths using any of the input
arguments in the previous syntaxes.

Examples

Simulate GARCH Model Conditional Variances and Responses

Simulate conditional variance and response paths from a GARCH(1,1) model.

Specify a GARCH(1,1) model with known parameters.

Mdl = garch('Constant',0.01,'GARCH',0.7,'ARCH',0.2);

Simulate 500 sample paths, each with 100 observations.

rng default; % For reproducibility

[V,Y] = simulate(Mdl,100,'NumPaths',500);

figure

 simulate

9-877

subplot(2,1,1)

plot(V)

title('Simulated Conditional Variances')

subplot(2,1,2)

plot(Y)

title('Simulated Responses')

The simulated responses look like draws from a stationary stochastic process.

Plot the 2.5th, 50th (median), and 97.5th percentiles of the simulated conditional
variances.

lower = prctile(V,2.5,2);

9 Functions — Alphabetical List

9-878

middle = median(V,2);

upper = prctile(V,97.5,2);

figure

plot(1:100,lower,'r:',1:100,middle,'k',...

 1:100,upper,'r:','LineWidth',2)

legend('95% Interval','Median')

title('Approximate 95% Intervals')

The intervals are asymmetric due to positivity constraints on the conditional variance.

Simulate EGARCH Model Conditional Variances and Responses

Simulate conditional variance and response paths from an EGARCH(1,1) model.

 simulate

9-879

Specify an EGARCH(1,1) model with known parameters.

Mdl = egarch('Constant',0.001,'GARCH',0.7,'ARCH',0.2,...

 'Leverage',-0.3);

Simulate 500 sample paths, each with 100 observations.

rng default; % For reproducibility

[V,Y] = simulate(Mdl,100,'NumPaths',500);

figure

subplot(2,1,1)

plot(V)

title('Simulated Conditional Variances')

subplot(2,1,2)

plot(Y)

title('Simulated Responses (Innovations)')

9 Functions — Alphabetical List

9-880

The simulated responses look like draws from a stationary stochastic process.

Plot the 2.5th, 50th (median), and 97.5th percentiles of the simulated conditional
variances.

lower = prctile(V,2.5,2);

middle = median(V,2);

upper = prctile(V,97.5,2);

figure

plot(1:100,lower,'r:',1:100,middle,'k',...

 1:100, upper,'r:','LineWidth',2)

legend('95% Interval','Median')

title('Approximate 95% Intervals')

 simulate

9-881

The intervals are asymmetric due to positivity constraints on the conditional variance.

Simulate GJR Model Conditional Variances and Responses

Simulate conditional variance and response paths from a GJR(1,1) model.

Specify a GJR(1,1) model with known parameters.

Mdl = gjr('Constant',0.001,'GARCH',0.7,'ARCH',0.2,...

 'Leverage',0.1);

Simulate 500 sample paths, each with 100 observations.

rng default; % For reproducibility

[V,Y] = simulate(Mdl,100,'NumPaths',500);

9 Functions — Alphabetical List

9-882

figure

subplot(2,1,1)

plot(V)

title('Simulated Conditional Variances')

subplot(2,1,2)

plot(Y)

title('Simulated Responses (Innovations)')

The simulated responses look like draws from a stationary stochastic process.

Plot the 2.5th, 50th (median), and 97.5th percentiles of the simulated conditional
variances.

 simulate

9-883

lower = prctile(V,2.5,2);

middle = median(V,2);

upper = prctile(V,97.5,2);

figure

plot(1:100,lower,'r:',1:100,middle,'k',...

 1:100, upper,'r:','LineWidth',2)

legend('95% Interval','Median')

title('Approximate 95% Intervals')

9 Functions — Alphabetical List

9-884

The intervals are asymmetric due to positivity constraints on the conditional variance.

Forecast Conditional Variances by Monte-Carlo Simulation

Simulate conditional variances of the daily NASDAQ Composite Index returns for 500
days. Use the simulations to make forecasts and approximate 95% forecast intervals.
Compare the forecasts among GARCH(1,1), EGARCH(1,1), and GJR(1,1) fits.

Load the NASDAQ data included with the toolbox. Convert the index to returns.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ;

r = price2ret(nasdaq);

T = length(r);

Fit GARCH(1,1), EGARCH(1,1), and GJR(1,1) models to the entire data set. Infer
conditional variances to use as presample conditional variances for the forecast
simulation.

Mdl = cell(3,1); % Preallocation

Mdl{1} = garch(1,1);

Mdl{2} = egarch(1,1);

Mdl{3} = gjr(1,1);

EstMdl = cellfun(@(x)estimate(x,r,'Display','off'),Mdl,...

 'UniformOutput',false);

v0 = cellfun(@(x)infer(x,r),EstMdl,'UniformOutput',false);

EstMdl is 3-by-1 cell vector. Each cell is a different type of estimated conditional
variance model, e.g., EstMdl{1} is an estimated GARCH(1,1) model. V0 is a 3-by-1 cell
vector, and each cell contains the inferred conditional variances from the corresponding,
estimated model.

Simulate 1000 samples paths with 500 observations each. Use the observed returns and
inferred conditional variances as presample data.

vSim = cell(3,1); % Preallocation

for j = 1:3

 rng default; % For reproducibility

 vSim{j} = simulate(EstMdl{j},500,'NumPaths',1000,'E0',r,'V0',v0{j});

end

vSim is a 3-by-1 cell vector, and each cell contains a 500-by-1000 matrix of simulated
conditional variances generated from the corresponding, estimated model.

 simulate

9-885

Plot the simulation mean forecasts and approximate 95% forecast intervals, along with
the conditional variances inferred from the data.

lower = cellfun(@(x)prctile(x,2.5,2),vSim,'UniformOutput',false);

upper = cellfun(@(x)prctile(x,97.5,2),vSim,'UniformOutput',false);

mn = cellfun(@(x)mean(x,2),vSim,'UniformOutput',false);

datesPlot = dates(end - 250:end);

datesFH = dates(end) + (1:500)';

h = zeros(3,4);

figure

for j = 1:3

 col = zeros(1,3);

 col(j) = 1;

 h(j,1) = plot(datesPlot,v0{j}(end-250:end),'Color',col);

 hold on

 h(j,2) = plot(datesFH,mn{j},'Color',col,'LineWidth',3);

 h(j,3:4) = plot([datesFH datesFH],[lower{j} upper{j}],':',...

 'Color',col,'LineWidth',2);

end

hGCA = gca;

plot(datesFH(1)*[1 1],hGCA.YLim,'k--');

datetick;

axis tight;

h = h(:,1:3);

legend(h(:),'GARCH - Inferred','EGARCH - Inferred','GJR - Inferred',...

 'GARCH - Sim. Mean','EGARCH - Sim. Mean','GJR - Sim. Mean',...

 'GARCH - 95% Fore. Int.','EGARCH - 95% Fore. Int.',...

 'GJR - 95% Fore. Int.','Location','NorthEast')

title('Simulated Conditional Variance Forecasts')

hold off

9 Functions — Alphabetical List

9-886

• “Simulate GARCH Models” on page 6-97
• “Simulate Conditional Variance Model” on page 6-111
• “Assess EGARCH Forecast Bias Using Simulations” on page 6-104

Input Arguments

Mdl — Conditional variance model
garch model object | egarch model object | gjr model object

Conditional variance model without any unknown parameters, specified as a garch,
egarch, or gjr model object.

 simulate

9-887

Mdl cannot contain any properties that have NaN value.

numObs — Sample path length
positive integer

Sample path length, specified as a positive integer. That is, the number of random
observations to generate per output path. V and Y have numObs rows.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'numPaths',1000,'E0',[0.5; 0.5] specifies to generate 1000 sample
paths and to use [0.5; 0.5] as presample innovations per path.

'NumPaths' — Number of sample paths to generate
1 (default) | positive integer

Number of sample paths to generate, specified as the comma-separated pair consisting of
'NumPaths' and a positive integer. V and Y have NumPaths columns.

Example: 'NumPaths',1000

Data Types: double

'E0' — Presample innovations
numeric column vector | numeric matrix

Presample innovations, specified as the comma-separated pair consisting of 'E0' and
a numeric column vector or matrix. The presample innovations provide initial values
for the innovations process of the conditional variance model Mdl. The presample
innovations derive from a distribution with mean 0.

E0 must contain at least Mdl.Q elements or rows. If E0 contains extra rows, simulate
uses the latest Mdl.Q only.

The last element or row contains the latest presample innovation.

• If E0 is a column vector, it represents a single path of the underlying innovation
series. simulate applies E0 to each simulated path.

9 Functions — Alphabetical List

9-888

• If E0 is a matrix, then each column represents a presample path of the underlying
innovation series. E0 must have at least NumPaths columns. If E0 has more columns
than necessary, simulate uses the first NumPaths columns only.

The defaults are:

• For GARCH(P,Q) and GJR(P,Q) models, simulate sets any necessary presample
innovations to an independent sequence of disturbances with mean zero and standard
deviation equal to the unconditional standard deviation of the conditional variance
process.

• For EGARCH(P,Q) models, simulate sets any necessary presample innovations to
an independent sequence of disturbances with mean zero and variance equal to the
exponentiated unconditional mean of the logarithm of the EGARCH variance process.

Example: 'E0',[0.5; 0.5]

'V0' — Positive presample conditional variance paths
numeric column vector | numeric matrix

Positive presample conditional variance paths, specified as a numeric vector or matrix.
V0 provides initial values for the conditional variances in the model.

• If V0 is a column vector, then simulate applies it to each output path.
• If V0 is a matrix, then it must have at least NumPaths columns. If V0 has more

columns than necessary, simulate uses the first NumPaths columns only.

• For GARCH(P,Q) and GJR(P,Q) models:

• V0 must have at least Mdl.P rows to initialize the variance equation.
• By default, simulate sets any necessary presample variances to the unconditional

variance of the conditional variance process.
• For EGARCH(P,Q) models, simulate:

• V0 must have at least max(Mdl.P,Mdl.Q) rows to initialize the variance
equation.

• By default, simulate sets any necessary presample variances to the
exponentiated unconditional mean of the logarithm of the EGARCH variance
process.

 simulate

9-889

If the number of rows in V0 exceeds the number necessary, then simulate uses the
latest, required number of observations only. The last element or row contains the latest
observation.
Example: 'V0',[1; 0.5]

Data Types: double

Notes

• If E0 and V0 are column vectors, simulate applies them to every column of the
outputs V and Y. This application allows simulated paths to share a common starting
point for Monte Carlo simulation of forecasts and forecast error distributions.

• NaNs indicate missing values. simulate removes missing values. The software
merges the presample data (E0 and V0), and then uses list-wise deletion to remove
any rows containing at least one NaN. Removing NaNs in the data reduces the sample
size. Removing NaNs can also create irregular time series.

• simulate assumes that you synchronize presample data such that the latest
observation of each presample series occurs simultaneously.

Output Arguments

V — Simulated conditional variance paths
numeric column vector | numeric matrix

Simulated conditional variance paths of the mean-zero innovations associated with Y,
returned as a numeric column vector or matrix.

V is a numObs-by-NumPaths matrix, in which each column corresponds to a simulated
conditional variance path. Rows of V are periods corresponding to the periodicity of Mdl.

Y — Simulated response paths
numeric column vector | numeric matrix

Simulated response paths, returned as a numeric column vector or matrix. Y usually
represents a mean-zero, heteroscedastic time series of innovations with conditional
variances given in V (a continuation of the presample innovation series E0).

9 Functions — Alphabetical List

9-890

Y can also represent a time series of mean-zero, heteroscedastic innovations plus an
offset. If Mdl includes an offset, then simulate adds the offset to the underlying mean-
zero, heteroscedastic innovations so that Y represents a time series of offset-adjusted
innovations.

Y is a numObs-by-NumPaths matrix, in which each column corresponds to a simulated
response path. Rows of Y are periods corresponding to the periodicity of Mdl.

More About
• Using garch Objects
• Using egarch Objects
• Using gjr Objects
• “Monte Carlo Simulation of Conditional Variance Models” on page 6-92
• “Presample Data for Conditional Variance Model Simulation” on page 6-95
• “Monte Carlo Forecasting of Conditional Variance Models” on page 6-115

References

[1] Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal
of Econometrics. Vol. 31, 1986, pp. 307–327.

[2] Bollerslev, T. “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return.” The Review of Economics and Statistics. Vol. 69,
1987, pp. 542–547.

[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[4] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

[5] Engle, R. F. “Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of United Kingdom Inflation.” Econometrica. Vol. 50, 1982, pp. 987–
1007.

[6] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The
Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.

 simulate

9-891

[7] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[8] Nelson, D. B. “Conditional Heteroskedasticity in Asset Returns: A New Approach.”
Econometrica. Vol. 59, 1991, pp. 347–370.

See Also
egarch | estimate | filter | forecast | garch | gjr | infer | print

Introduced in R2012a

9 Functions — Alphabetical List

9-892

simulate
Class: arima

Monte Carlo simulation of ARIMA or ARIMAX models

Syntax
[Y,E] = simulate(Mdl,numObs)

[Y,E,V] = simulate(Mdl,numObs)

[Y,E,V] = simulate(Mdl,numObs,Name,Value)

Description
[Y,E] = simulate(Mdl,numObs) simulates sample paths and innovations from the
ARIMA model, Mdl. The responses can include the effects of seasonality.

[Y,E,V] = simulate(Mdl,numObs) additionally simulates conditional variances, V.

[Y,E,V] = simulate(Mdl,numObs,Name,Value) simulates sample paths with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
Mdl

ARIMA or ARIMAX model, specified as an arima model returned by arima or estimate.

The properties of Mdl cannot contain NaNs.

numObs

Positive integer that indicates the number of observations (rows) to generate for each
path of the outputs Y, E, and V.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 simulate

9-893

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'E0'

Mean zero presample innovations that provide initial values for the model. E0 is a
column vector or a matrix with at least NumPaths columns and enough rows to initialize
the model and any conditional variance model. The number of observations required
is at least Mdl.Q, but can be more if you specify a conditional variance model. If the
number of rows exceeds the number necessary, then simulate only uses the most recent
observations. If the number of columns exceeds NumPaths, then simulate only uses the
first NumPaths columns. If E0 is a column vector, then it is applied to each simulated
path. The last row contains the most recent presample observation.

Default: simulate sets the necessary presample observations to 0.

'NumPaths'

Positive integer that indicates the number of sample paths (columns) to generate.

Default: 1

'V0'

Positive presample conditional variances which provide initial values for any conditional
variance model. If the variance of the model is constant, then V0 is unnecessary. V0 is a
column vector or a matrix with at least NumPaths columns and enough rows to initialize
the variance model. If the number of rows exceeds the number necessary, then simulate
only uses the most recent observations. If the number of columns exceeds NumPaths,
then simulate only uses the first NumPaths columns. If V0 is a column vector, then
simulate applies it to each simulated path. The last row contains the most recent
observation.

Default: simulate sets the necessary presample observations to the unconditional
variance of the conditional variance process.

'X'

Matrix of predictor data with length Mdl.Beta columns of separate series. The number
of observations (rows) of X must equal or exceed numObs. If the number of observations

9 Functions — Alphabetical List

9-894

of X exceeds numObs, then simulate only uses the most recent observations. simulate
applies the entire matrix X to each simulated response series. The last row contains the
most recent observation.

Default: simulate does not use a regression component regardless of the value of
Mdl.Beta.

'Y0'

Presample response data that provides initial values for the model. Y0 is a column vector
or a matrix with at least Mdl.P rows and NumPaths columns. If the number of rows
exceeds Mdl.P, then simulate only uses the most recent Mdl.P observations. If the
number of columns exceeds NumPaths, then simulate only uses the first NumPaths
columns. If Y0 is a column vector, then it is applied to each simulated path. The last row
contains the most recent presample observation.

Default: simulate sets the necessary presample observations to the unconditional
mean if the AR process is stable, or to 0 for unstable processes or when you specify X.

Notes

• NaNs indicate missing values, and simulate removes them. The software merges
the presample data, then uses list-wise deletion to remove any NaNs in the presample

data matrix or X. That is, simulate sets PreSample = [Y0 E0 V0], then it removes
any row in PreSample or X that contains at least one NaN.

• The removal of NaNs in the main data reduces the effective sample size. Such removal
can also create irregular time series.

• simulate assumes that you synchronize the predictor series such that the most
recent observations occur simultaneously. The software also assumes that you
synchronize the presample series similarly.

Output Arguments

Y

numObs-by-NumPaths matrix of simulated response data.

 simulate

9-895

E

numObs-by-NumPaths matrix of simulated mean zero innovations.

V

numObs-by-NumPaths matrix of simulated conditional variances of the innovations in E.

Examples

Simulate Responses and Innovations

Simulate response and innovation paths from a multiplicative seasonal model.

Specify the model

where follows a Gaussian distribution with mean 0 and variance 0.1.

Mdl = arima('MA',-0.5,'SMA',0.3,...

 'SMALags',12,'D',1,'Seasonality',12,...

 'Variance',0.1,'Constant',0);

Simulate 500 paths with 100 observations each.

rng default % For reproducibility

[Y, E] = simulate(Mdl,100,'NumPaths',500);

figure

subplot(2,1,1);

plot(Y)

title('Simulated Response')

subplot(2,1,2);

plot(E)

title('Simulated Innovations')

9 Functions — Alphabetical List

9-896

Plot the 2.5th, 50th (median), and 97.5th percentiles of the simulated response paths.

lower = prctile(Y,2.5,2);

middle = median(Y,2);

upper = prctile(Y,97.5,2);

figure

plot(1:100,lower,'r:',1:100,middle,'k',...

 1:100,upper,'r:')

legend('95% Interval','Median')

 simulate

9-897

Compute statistics across the second dimension (across paths) to summarize the sample
paths.

Plot a histogram of the simulated paths at time 100.

figure

histogram(Y(100,:),10)

title('Response Distribution at Time 100')

9 Functions — Alphabetical List

9-898

Simulate Predictors and Responses

Simulate three predictor series and a response series.

Specify and simulate a path of length 20 for each of the three predictor series modeled by

where follows a Gaussian distribution with mean 0 and variance 0.01, and = {1,2,3}.

[MdlX1,MdlX2,MdlX3] = deal(arima('AR',0.2,'MA',...

 {0.5,-0.3},'Constant',2,'Variance',0.01));

 simulate

9-899

rng(4); % For reproducibility

simX1 = simulate(MdlX1,20);

simX2 = simulate(MdlX2,20);

simX3 = simulate(MdlX3,20);

SimX = [simX1 simX2 simX3];

Specify and simulate a path of length 20 for the response series modeled by

where follows a Gaussian distribution with mean 0 and variance 1.

MdlY = arima('AR',{0.05 -0.02 0.01},'MA',...

 {0.04,0.01},'D',1,'Constant',0.5,'Variance',1,...

 'Beta',[0.5 -0.03 -0.7]);

simY = simulate(MdlY,20,'X',SimX);

Plot the series together.

figure

plot([SimX simY])

title('Simulated Series')

legend('{X_1}','{X_2}','{X_3}','Y')

9 Functions — Alphabetical List

9-900

Forecast a Process Using Simulations

Forecast the daily NASDAQ Composite Index using Monte Carlo simulations.

Load the NASDAQ data included with the toolbox. Extract the first 1500 observations for
fitting.

load Data_EquityIdx

nasdaq = DataTable.NASDAQ(1:1500);

n = length(nasdaq);

Specify, and then fit an ARIMA(1,1,1) model.

NasdaqModel = arima(1,1,1);

 simulate

9-901

NasdaqFit = estimate(NasdaqModel,nasdaq);

 ARIMA(1,1,1) Model:

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 0.430313 0.185554 2.31907

 AR{1} -0.0743894 0.081985 -0.907353

 MA{1} 0.311256 0.0772657 4.02838

 Variance 27.826 0.636248 43.7346

Simulate 1000 paths with 500 observations each. Use the observed data as presample
data.

rng default;

Y = simulate(NasdaqFit,500,'NumPaths',1000,'Y0',nasdaq);

Plot the simulation mean forecast and approximate 95% forecast intervals.

lower = prctile(Y,2.5,2);

upper = prctile(Y,97.5,2);

mn = mean(Y,2);

figure

plot(nasdaq,'Color',[.7,.7,.7])

hold on

h1 = plot(n+1:n+500,lower,'r:','LineWidth',2);

plot(n+1:n+500,upper,'r:','LineWidth',2)

h2 = plot(n+1:n+500,mn,'k','LineWidth',2);

legend([h1 h2],'95% Interval','Simulation Mean',...

 'Location','NorthWest')

title('NASDAQ Composite Index Forecast')

hold off

9 Functions — Alphabetical List

9-902

• “Simulate Stationary Processes” on page 5-151
• “Simulate Trend-Stationary and Difference-Stationary Processes” on page 5-163
• “Simulate Multiplicative ARIMA Models” on page 5-169
• “Simulate Conditional Mean and Variance Models” on page 5-175

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.

 simulate

9-903

[3] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | estimate | filter | forecast | impulse | infer | print

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149
• “Transient Effects in Conditional Mean Model Simulations” on page 5-150
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

9 Functions — Alphabetical List

9-904

simulate
Class: regARIMA

Monte Carlo simulation of regression model with ARIMA errors

Syntax

[Y,E] = simulate(Mdl,numObs)

[Y,E,U] = simulate(Mdl,numObs)

[Y,E,U] = simulate(Mdl,numObs,Name,Value)

Description

[Y,E] = simulate(Mdl,numObs) simulates one sample path of observations (Y) and
innovations (E) from the regression model with ARIMA time series errors, Mdl. The
software simulates numObs observations and innovations per sample path.

[Y,E,U] = simulate(Mdl,numObs) additionally simulates unconditional
disturbances, U.

[Y,E,U] = simulate(Mdl,numObs,Name,Value) simulates sample paths with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl

Regression model with ARIMA errors, specified as a regARIMA model returned by
regARIMA or estimate.

The properties of Mdl cannot contain NaNs.

numObs

Number of observations (rows) to generate for each path of Y, E, and U, specified as a
positive integer.

 simulate

9-905

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'E0'

Presample innovations that have mean 0 and provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'E0' and a column vector or
matrix.

• If E0 is a column vector, then it is applied to each inferred path.
• If E0 is a matrix, then it requires at least NumPaths columns. If E0 contains more

columns than required, then simulate uses the first NumPaths columns.
• E0 must contain at least Mdl.Q rows. If E0 contains more rows than required, then

simulate uses the latest presample innovations. The last row contains the latest
presample innovation.

Default: simulate sets the necessary presample innovations to 0.

'NumPaths'

Number of sample paths (columns) to generate for Y, E, and U, specified as the comma-
separated pair consisting of 'NumPaths' and a positive integer.

Default: 1

'U0'

Presample unconditional disturbances that provide initial values for the ARIMA error
model, specified as the comma-separated pair consisting of 'U0' and a column vector or
matrix.

• If U0 is a column vector, then it is applied to each inferred path.
• If U0 is a matrix, then it requires at least NumPaths columns. If U0 contains more

columns than required, then infer uses the first NumPaths columns.
• U0 must contain at least Mdl.P rows. If U0 contains more rows than required, then

simulate uses the latest presample unconditional disturbances. The last row
contains the latest presample unconditional disturbance.

9 Functions — Alphabetical List

9-906

Default: simulate sets the necessary presample unconditional disturbances to 0.

'X'

Predictor data in the regression model, specified as the comma-separated pair consisting
of 'X' and a matrix.

The columns of X are separate, synchronized time series, with the last row containing the
latest observations. X must have at least numObs rows. If the number of rows of X exceeds
the number required, then simulate uses the latest observations.

Default: simulate does not use a regression component regardless of its presence in
Mdl.

Notes

• NaNs in E0, U0, and X indicate missing values and simulate removes them. The
software merges the presample data sets (E0 and U0), then uses list-wise deletion to

remove any NaNs. simulate similarly removes NaNs from X. Removing NaNs in the
data reduces the sample size, and can also create irregular time series.

• simulate assumes that you synchronize presample data such that the latest
observation of each presample series occurs simultaneously.

• All predictors (i.e., columns in X) are associated with each response path in Y.

Output Arguments

Y

Simulated responses, returned as a numObs-by-NumPaths matrix.

E

Simulated, mean 0 innovations, returned as a numObs-by-NumPaths matrix.

U

Simulated unconditional disturbances, returned as a numObs-by-NumPaths matrix.

 simulate

9-907

Examples
Simulate Responses, Innovations, and Unconditional Disturbances

Simulate paths of responses, innovations, and unconditional disturbances from a
regression model with errors.

Specify the model:

where follows a t-distribution with 15 degrees of freedom.

Distribution = struct('Name','t','DoF',15);

Mdl = regARIMA('AR',{0.2, 0.1},'MA',{0.5},'SAR',0.01,...

 'SARLags',12,'SMA',0.02,'SMALags',12,'D',1,...

 'Seasonality',12,'Beta',[1.5; -2],'Intercept',0,...

 'Variance',0.1,'Distribution',Distribution)

Mdl =

 Regression with ARIMA(2,1,1) Error Model Seasonally Integrated with Seasonal AR(12) and MA(12):

 --

 Distribution: Name = 't', DoF = 15

 Intercept: 0

 Beta: [1.5 -2]

 P: 27

 D: 1

 Q: 13

 AR: {0.2 0.1} at Lags [1 2]

 SAR: {0.01} at Lags [12]

 MA: {0.5} at Lags [1]

 SMA: {0.02} at Lags [12]

 Seasonality: 12

 Variance: 0.1

Simulate and plot 500 paths with 25 observations each.

T = 25;

rng(1)

X = randn(T,2);

9 Functions — Alphabetical List

9-908

[Y,E,U] = simulate(Mdl,T,'NumPaths',500,'X',X);

figure

subplot(2,1,1);

plot(Y)

axis tight

title('{\bf Simulated Response Paths}')

subplot(2,2,3);

plot(E)

axis tight

title('{\bf Simulated Innovations Paths}')

subplot(2,2,4);

plot(U)

axis tight

title('{\bf Simulated Unconditional Disturbances Paths}')

 simulate

9-909

Plot the 2.5th, 50th (median), and 97.5th percentiles of the simulated response paths.

lower = prctile(Y,2.5,2);

middle = median(Y,2);

upper = prctile(Y,97.5,2);

figure

plot(1:25,lower,'r:',1:25,middle,'k',...

 1:25,upper,'r:')

title('\bf{95% Percentile Confidence Interval for the Response}')

legend('95% Interval','Median','Location','Best')

9 Functions — Alphabetical List

9-910

Compute statistics across the second dimension (across paths) to summarize the sample
paths.

Plot a histogram of the simulated paths at time 20.

figure

histogram(Y(20,:),10)

title('Response Distribution at Time 20')

 simulate

9-911

Forecast Stationary Process Using Monte Carlo Simulations

Regress the stationary, quarterly log GDP onto the CPI using a regression model with
ARMA(1,1) errors, and forecast log GDP using Monte Carlo simulation.

Load the US Macroeconomic data set and preprocess the data.

load Data_USEconModel;

logGDP = log(DataTable.GDP);

dlogGDP = diff(logGDP); % For stationarity

dCPI = diff(DataTable.CPIAUCSL); % For stationarity

numObs = length(dlogGDP);

gdp = dlogGDP(1:end-15); % Estimation sample

cpi = dCPI(1:end-15);

9 Functions — Alphabetical List

9-912

T = length(gdp); % Effective sample size

frstHzn = T+1:numObs; % Forecast horizon

hoCPI = dCPI(frstHzn); % Holdout sample

dts = dates(2:end); % Date nummbers

Fit a regression model with ARMA(1,1) errors.

ToEstMdl = regARIMA('ARLags',1,'MALags',1);

EstMdl = estimate(ToEstMdl,gdp,'X',cpi);

 Regression with ARIMA(1,0,1) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 0.0147934 0.00162892 9.08176

 AR{1} 0.576012 0.100093 5.75477

 MA{1} -0.152584 0.119784 -1.27382

 Beta1 0.00289724 0.00139893 2.07104

 Variance 9.57339e-05 6.55617e-06 14.6021

Infer unconditional disturbances.

[~,u0] = infer(EstMdl,gdp,'X',cpi);

Simulate 1000 paths with 15 observations each. Use the inferred unconditional
disturbances as presample data.

rng(1); % For reproducibility

gdpF = simulate(EstMdl,15,'NumPaths',1000,...

 'U0',u0,'X',hoCPI);

Plot the simulation mean forecast and approximate 95% forecast intervals.

lower = prctile(gdpF,2.5,2);

upper = prctile(gdpF,97.5,2);

mn = mean(gdpF,2);

figure

plot(dts(end-65:end),dlogGDP(end-65:end),'Color',[.7,.7,.7])

datetick

hold on

h1 = plot(dts(frstHzn),lower,'r:','LineWidth',2);

 simulate

9-913

plot(dts(frstHzn),upper,'r:','LineWidth',2)

h2 = plot(dts(frstHzn),mn,'k','LineWidth',2);

legend([h1 h2],'95% Interval','Simulation Mean',...

 'Location','NorthWest')

h = gca;

ph = patch([repmat(dts(frstHzn(1)),1,2) repmat(dts(frstHzn(end)),1,2)],...

 [h.YLim fliplr(h.YLim)],...

 [0 0 0 0],'b');

ph.FaceAlpha = 0.1;

axis tight

title('{\bf log GDP Forecast - 15 Quarter Horizon}')

hold off

9 Functions — Alphabetical List

9-914

Forecast a Unit Root Nonstationary Process Using Monte Carlo Simulations

Regress the unit root nonstationary, quarterly log GDP onto the CPI using a regression
model with ARIMA(1,1,1) errors with known intercept. Forecast log GDP using Monte
Carlo simulation.

Load the US Macroeconomic data set and preprocess the data.

load Data_USEconModel;

numObs = length(DataTable.GDP);

logGDP = log(DataTable.GDP(1:end-15));

cpi = DataTable.CPIAUCSL(1:end-15);

T = length(logGDP);

frstHzn = T+1:numObs; % Forecast horizon

 simulate

9-915

hoCPI = DataTable.CPIAUCSL(frstHzn); % Holdout sample

Fit a regression model with ARIMA(1,1,1). The intercept is not identifiable in a model
with integrated errors, so fix its value before estimation.

intercept = 5.867;

ToEstMdl = regARIMA('ARLags',1,'MALags',1,'D',1,...

 'Intercept',intercept);

EstMdl = estimate(ToEstMdl,logGDP,'X',cpi);

 Regression with ARIMA(1,1,1) Error Model:

 --

 Conditional Probability Distribution: Gaussian

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Intercept 5.867 Fixed Fixed

 AR{1} 0.92271 0.0309777 29.7863

 MA{1} -0.38785 0.0603537 -6.42627

 Beta1 0.00396683 0.00164982 2.4044

 Variance 0.000108944 7.27203e-06 14.9813

Infer unconditional disturbances.

[~,u0] = infer(EstMdl,logGDP,'X',cpi);

Simulate 1000 paths with 15 observations each. Use the inferred unconditional
disturbances as presample data.

rng(1); % For reproducibility

GDPF = simulate(EstMdl,15,'NumPaths',1000,...

 'U0',u0,'X',hoCPI);

Plot the simulation mean forecast and approximate 95% forecast intervals.

lower = prctile(GDPF,2.5,2);

upper = prctile(GDPF,97.5,2);

mn = mean(GDPF,2);

figure

plot(dates(end-65:end),log(DataTable.GDP(end-65:end)),'Color',...

 [.7,.7,.7])

datetick

9 Functions — Alphabetical List

9-916

hold on

h1 = plot(dates(frstHzn),lower,'r:','LineWidth',2);

plot(dates(frstHzn),upper,'r:','LineWidth',2)

h2 = plot(dates(frstHzn),mn,'k','LineWidth',2);

legend([h1 h2],'95% Interval','Simulation Mean',...

 'Location','NorthWest')

h = gca;

ph = patch([repmat(dates(frstHzn(1)),1,2) repmat(dates(frstHzn(end)),1,2)],...

 [h.YLim fliplr(h.YLim)],...

 [0 0 0 0],'b');

ph.FaceAlpha = 0.1;

axis tight

title('{\bf log GDP Forecast - 15 Quarter Horizon}')

hold off

 simulate

9-917

The unconditional disturbances, , are nonstationary, therefore the widths of the
forecast intervals grow with time.

• “Compare Alternative ARIMA Model Representations” on page 4-136
• “Simulate Stationary Processes” on page 5-151
• “Simulate Trend-Stationary and Difference-Stationary Processes” on page 5-163

References

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Davidson, R., and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[3] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc.,
1995.

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[5] Pankratz, A. Forecasting with Dynamic Regression Models. John Wiley & Sons, Inc.,
1991.

[6] Tsay, R. S. Analysis of Financial Time Series. 2nd ed. Hoboken, NJ: John Wiley &
Sons, Inc., 2005.

See Also
regARIMA | estimate | filter | forecast | infer

More About
• “Monte Carlo Simulation of Conditional Mean Models” on page 5-146
• “Presample Data for Conditional Mean Model Simulation” on page 5-149
• “Transient Effects in Conditional Mean Model Simulations” on page 5-150
• “Monte Carlo Forecasting of Conditional Mean Models” on page 5-181

9 Functions — Alphabetical List

9-918

simulate
Class: ssm

Monte Carlo simulation of state-space models

Syntax

[Y,X] = simulate(Mdl,numObs)

[Y,X] = simulate(Mdl,numObs,Name,Value)

[Y,X,U,E] = simulate(___)

Description

[Y,X] = simulate(Mdl,numObs) simulates one sample path of observations (Y) and
states (X) from a fully specified, state-space model (Mdl). The software simulates numObs
observations and states per sample path.

[Y,X] = simulate(Mdl,numObs,Name,Value) returns simulated responses and
states with additional options specified by one or more Name,Value pair arguments.

For example, specify the number of paths or model parameter values.

[Y,X,U,E] = simulate(___) additionally simulate state disturbances (U) and
observation innovations (E) using any of the input arguments in the previous syntaxes.

Tip

Simulate states from their joint conditional posterior distribution given the responses by
using simsmooth.

Input Arguments

Mdl — Standard state-space model
ssm model object

 simulate

9-919

Standard state-space model, specified as anssm model object returned by ssm or
estimate. A standard state-space model has finite initial state covariance matrix
elements. That is, Mdl cannot be a dssm model object.

If Mdl is not fully specified (that is, Mdl contains unknown parameters), then specify
values for the unknown parameters using the 'Params' Name,Value pair argument.
Otherwise, the software throws an error.

numObs — Number of periods per path to simulate
positive integer

Number of periods per path to generate variants, specified as a positive integer.

If Mdl is a time-varying model, then the length of the cell vector corresponding to the
coefficient matrices must be at least numObs.

If numObs is fewer than the number of periods that Mdl can support, then the software
only uses the matrices in the first numObs cells of the cell vectors corresponding to the
coefficient matrices.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NumPaths' — Number of sample paths to generate variants
1 (default) | positive integer

Number of sample paths to generate variants, specified as the comma-separated pair
consisting of 'NumPaths' and a positive integer.

Example: 'NumPaths',1000

Data Types: double

'Params' — Values for unknown parameters
numeric vector

Values for unknown parameters in the state-space model, specified as the column-
separated pair consisting of 'Params' and a numeric vector.

9 Functions — Alphabetical List

9-920

The elements of Params correspond to the unknown parameters in the state-space model
matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and covariance
matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of Params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise following the order A, B, C, D, Mean0, and Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-to-
matrix mapping function), then you must set initial parameter values for the state-
space model matrices, initial state values, and state types within the parameter-to-
matrix mapping function.

If Mdl contains unknown parameters, then you must specify their values. Otherwise, the
software ignores the value of Params.

Data Types: double

Output Arguments

Y — Simulated observations
matrix | cell matrix of numeric vectors

Simulated observations, returned as a matrix or cell matrix of numeric vectors.

If Mdl is a time-invariant model with respect to the observations, then Y is a numObs-
by-n-by-numPaths array. That is, each row corresponds to a period, each column
corresponds to an observation in the model, and each page corresponds to a sample path.
The last row corresponds to the latest simulated observations.

If Mdl is a time-varying model with respect to the observations, then Y is a numObs-
by-numPaths cell matrix of vectors. Y{t,j} contains a vector of length nt of simulated
observations for period t of sample path j. The last row of Y contains the latest set of
simulated observations.
Data Types: cell | double

X — Simulated states
numeric matrix | cell matrix of numeric vectors

Simulated states, returned as a numeric matrix or cell matrix of vectors.

 simulate

9-921

If Mdl is a time-invariant model with respect to the states, then X is a numObs-by-m-
by-numPaths array. That is, each row corresponds to a period, each column corresponds
to a state in the model, and each page corresponds to a sample path. The last row
corresponds to the latest simulated states.

If Mdl is a time-varying model with respect to the states, then X is a numObs-
by-numPaths cell matrix of vectors. X{t,j} contains a vector of length mt of simulated
states for period t of sample path j. The last row of X contains the latest set of simulated
states.

U — Simulated state disturbances
matrix | cell matrix of numeric vectors

Simulated state disturbances, returned as a matrix or cell matrix of vectors.

If Mdl is a time-invariant model with respect to the state disturbances, then U is a
numObs-by-h-by-numPaths array. That is, each row corresponds to a period, each column
corresponds to a state disturbance in the model, and each page corresponds to a sample
path. The last row corresponds to the latest simulated state disturbances.

If Mdl is a time-varying model with respect to the state disturbances, then U is a numObs-
by-numPaths cell matrix of vectors. U{t,j} contains a vector of length ht of simulated
state disturbances for period t of sample path j. The last row of U contains the latest set
of simulated state disturbances.
Data Types: cell | double

E — Simulated observation innovations
matrix | cell matrix of numeric vectors

Simulated observation innovations, returned as a matrix or cell matrix of numeric
vectors.

If Mdl is a time-invariant model with respect to the observation innovations, then E is a
numObs-by-h-by-numPaths array. That is, each row corresponds to a period, each column
corresponds to an observation innovation in the model, and each page corresponds to a
sample path. The last row corresponds to the latest simulated observation innovations.

If Mdl is a time-varying model with respect to the observation innovations, then E is
a numObs-by-numPaths cell matrix of vectors. E{t,j} contains a vector of length ht
of simulated observation innovations for period t of sample path j. The last row of E
contains the latest set of simulated observations.

9 Functions — Alphabetical List

9-922

Data Types: cell | double

Examples

Simulate States and Observations of Time-Invariant State-Space Model

Suppose that a latent process is an AR(1) model. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',1);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

 simulate

9-923

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

9 Functions — Alphabetical List

9-924

Simulate one path each of states and observations. Specify that the paths span 100
periods.

[simY,simX] = simulate(Mdl,100);

simY is a 100-by-1 vector of simulated responses. simX is a 100-by-1 vector of simulated
states.

Plot the true state values with the simulated states. Also, plot the observed responses
with the simulated responses.

figure

subplot(2,1,1)

plot(1:T,x,'-k',1:T,simX,':r','LineWidth',2)

title({'True State Values and Simulated States'})

xlabel('Period')

ylabel('State')

legend({'True state values','Simulated state values'})

subplot(2,1,2)

plot(1:T,y,'-k',1:T,simY,':r','LineWidth',2)

title({'Observed Responses and Simulated responses'})

xlabel('Period')

ylabel('Response')

legend({'Observed responses','Simulated responses'})

 simulate

9-925

By default, simulate simulates one path for each state and observation in the state-
space model. To conduct a Monte Carlo study, specify to simulate a large number of
paths.

Simulate State-Space Models Containing Unknown Parameters

To generate variates from a state-space model, specify values for all unknown
parameters.

Explicitly create the this state-space model.

9 Functions — Alphabetical List

9-926

where and are independent Gaussian random variables with mean 0 and variance 1.
Suppose that the initial state mean and variance are 1, and that the state is a stationary
process.

A = NaN;

B = NaN;

C = 1;

D = NaN;

mean0 = 1;

cov0 = 1;

stateType = 0;

Mdl = ssm(A,B,C,D,'Mean0',mean0,'Cov0',cov0,'StateType',stateType);

Simulate 100 responses from Mdl. Specify that the autoregressive coefficient is 0.75, the
state disturbance standard deviation is 0.5, and the observation innovation standard
deviation is 0.25.

params = [0.75 0.5 0.25];

y = simulate(Mdl,100,'Params',params);

figure;

plot(y);

title 'Simulated Responses';

xlabel 'Period';

 simulate

9-927

The software searches for NaN values column-wise following the order A, B, C, D, Mean0,
and Cov0. The order of the elements in params should correspond to this search.

Estimate Monte-Carlo Forecasts of State-Space Model

Suppose that the relationship between the change in the unemployment rate () and
the nominal gross national product (nGNP) growth rate () can be expressed in the
following, state-space model form.

9 Functions — Alphabetical List

9-928

where:

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect on .
• is the nGNP growth rate at time t.
• is a dummy state for the MA(1) effect on .
• is the observed change in the unemployment rate.
• is the observed nGNP growth rate.
• and are Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

 simulate

9-929

T = size(gnpn,1); % Sample size

y = zeros(T-1,2); % Preallocate

y(:,1) = diff(u);

y(:,2) = diff(log(gnpn));

This example proceeds using series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

To determine how well the model forecasts observations, remove the last 10 observations
for comparison.

numPeriods = 10; % Forecast horizon

isY = y(1:end-numPeriods,:); % In-sample observations

oosY = y(end-numPeriods+1:end,:); % Out-of-sample observations

Specify the coefficient matrices.

A = [NaN NaN NaN 0; 0 0 0 0; NaN 0 NaN NaN; 0 0 0 0];

B = [1 0;1 0 ; 0 1; 0 1];

C = [1 0 0 0; 0 0 1 0];

D = [NaN 0; 0 NaN];

Specify the state-space model using ssm. Verify that the model specification is consistent
with the state-space model.

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 4

Observation vector length: 2

State disturbance vector length: 2

Observation innovation vector length: 2

Sample size supported by model: Unlimited

Unknown parameters for estimation: 8

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

9 Functions — Alphabetical List

9-930

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c3)x2(t-1) + (c4)x3(t-1) + u1(t)

x2(t) = u1(t)

x3(t) = (c2)x1(t-1) + (c5)x3(t-1) + (c6)x4(t-1) + u2(t)

x4(t) = u2(t)

Observation equations:

y1(t) = x1(t) + (c7)e1(t)

y2(t) = x3(t) + (c8)e2(t)

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types are not specified.

Estimate the model parameters, and use a random set of initial parameter values for
optimization. Restrict the estimate of and to all positive, real numbers using the
'lb' name-value pair argument. For numerical stability, specify the Hessian when the
software computes the parameter covariance matrix, using the 'CovMethod' name-
value pair argument.

rng(1);

params0 = rand(8,1);

[EstMdl,estParams] = estimate(Mdl,isY,params0,...

 'lb',[-Inf -Inf -Inf -Inf -Inf -Inf 0 0],'CovMethod','hessian');

Method: Maximum likelihood (fmincon)

Sample size: 51

Logarithmic likelihood: -170.92

Akaike info criterion: 357.84

Bayesian info criterion: 373.295

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.06750 0.16548 0.40791 0.68334

 c(2) | -0.01372 0.05887 -0.23302 0.81575

 c(3) | 2.71201 0.27039 10.03006 0

 c(4) | 0.83816 2.84586 0.29452 0.76836

 c(5) | 0.06273 2.83471 0.02213 0.98234

 c(6) | 0.05197 2.56873 0.02023 0.98386

 simulate

9-931

 c(7) | 0.00272 2.40764 0.00113 0.99910

 c(8) | 0.00016 0.13942 0.00113 0.99910

 |

 | Final State Std Dev t Stat Prob

 x(1) | -0.00000 0.00272 -0.00033 0.99973

 x(2) | 0.12237 0.92954 0.13164 0.89527

 x(3) | 0.04049 0.00016 256.67560 0

 x(4) | 0.01183 0.00016 72.49713 0

EstMdl is an ssm model, and you can access its properties using dot notation.

Filter the estimated, state-space model, and extract the filtered states and their
variances from the final period.

[~,~,Output] = filter(EstMdl,isY);

Modify the estimated, state-space model so that the initial state means and covariances
are the filtered states and their covariances of the final period. This sets up simulation
over the forecast horizon.

EstMdl1 = EstMdl;

EstMdl1.Mean0 = Output(end).FilteredStates;

EstMdl1.Cov0 = Output(end).FilteredStatesCov;

Simulate 5e5 paths of observations from the fitted, state-space model EstMdl. Specify to
simulate observations for each period.

numPaths = 5e5;

SimY = simulate(EstMdl1,10,'NumPaths',numPaths);

SimY is a 10-by- 2-by- numPaths array containing the simulated observations. The rows
of SimY correspond to periods, the columns correspond to an observation in the model,
and the pages correspond to paths.

Estimate the forecasted observations and their 95% confidence intervals in the forecast
horizon.

MCFY = mean(SimY,3);

CIFY = quantile(SimY,[0.025 0.975],3);

Estimate the theoretical forecast bands.

[Y,YMSE] = forecast(EstMdl,10,isY);

9 Functions — Alphabetical List

9-932

Lb = Y - sqrt(YMSE)*1.96;

Ub = Y + sqrt(YMSE)*1.96;

Plot the forecasted observations with their true values and the forecast intervals.

figure

h = plot(dates(end-numPeriods-9:end),[isY(end-9:end,1);oosY(:,1)],'-k',...

 dates(end-numPeriods+1:end),MCFY(end-numPeriods+1:end,1),'.-r',...

 dates(end-numPeriods+1:end),CIFY(end-numPeriods+1:end,1,1),'-b',...

 dates(end-numPeriods+1:end),CIFY(end-numPeriods+1:end,1,2),'-b',...

 dates(end-numPeriods+1:end),Y(:,1),':c',...

 dates(end-numPeriods+1:end),Lb(:,1),':m',...

 dates(end-numPeriods+1:end),Ub(:,1),':m',...

 'LineWidth',3);

xlabel('Period')

ylabel('Change in the unemployment rate')

legend(h([1,2,4:6]),{'Observations','MC forecasts',...

 '95% forecast intervals','Theoretical forecasts',...

 '95% theoretical intervals'},'Location','Best')

title('Observed and Forecasted Changes in the Unemployment Rate')

figure

h = plot(dates(end-numPeriods-9:end),[isY(end-9:end,2);oosY(:,2)],'-k',...

 dates(end-numPeriods+1:end),MCFY(end-numPeriods+1:end,2),'.-r',...

 dates(end-numPeriods+1:end),CIFY(end-numPeriods+1:end,2,1),'-b',...

 dates(end-numPeriods+1:end),CIFY(end-numPeriods+1:end,2,2),'-b',...

 dates(end-numPeriods+1:end),Y(:,2),':c',...

 dates(end-numPeriods+1:end),Lb(:,2),':m',...

 dates(end-numPeriods+1:end),Ub(:,2),':m',...

 'LineWidth',3);

xlabel('Period')

ylabel('nGNP growth rate')

legend(h([1,2,4:6]),{'Observations','MC forecasts',...

 '95% MC intervals','Theoretical forecasts','95% theoretical intervals'},...

 'Location','Best')

title('Observed and Forecasted nGNP Growth Rates')

 simulate

9-933

9 Functions — Alphabetical List

9-934

• “Simulate States and Observations of Time-Invariant State-Space Model” on page
8-103

• “Simulate Time-Varying State-Space Model” on page 8-107
• “Forecast State-Space Model Using Monte-Carlo Methods” on page 8-125
• “Estimate Random Parameter of State-Space Model” on page 8-116

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

 simulate

9-935

See Also
estimate | filter | forecast | simsmooth | smooth | ssm

More About
• “What Are State-Space Models?” on page 8-3

9 Functions — Alphabetical List

9-936

smooth

Class: dssm

Backward recursion of diffuse state-space models

Syntax

X = smooth(Mdl,Y)

X = smooth(Mdl,Y,Name,Value)

[X,logL,Output] = smooth(___)

Description

X = smooth(Mdl,Y) returns smoothed states (X) by performing backward recursion
of the fully-specified diffuse state-space model Mdl. That is, smooth applies the diffuse
Kalman filter using Mdl and the observed responses Y.

X = smooth(Mdl,Y,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, specify the regression coefficients and
predictor data to deflate the observations, or specify to use the univariate treatment of a
multivariate model.

If Mdl is not fully specified, then you must specify the unknown parameters as known
scalars using the 'Params' Name,Value pair argument.

[X,logL,Output] = smooth(___) uses any of the input arguments in the previous
syntaxes to additionally return the loglikelihood value (logL) and an output structure
array (Output) using any of the input arguments in the previous syntaxes. The fields of
Output include:

• Smoothed states and their estimated covariance matrix
• Smoothed state disturbances and their estimated covariance matrix
• Smoothed observation innovations and their estimated covariance matrix
• The loglikelihood value

 smooth

9-937

• The adjusted Kalman gain
• And a vector indicating which data the software used to filter

Tips

• Mdl does not store the response data, predictor data, and the regression coefficients.
Supply the data wherever necessary using the appropriate input or name-value pair
arguments.

• It is a best practice to allow dssm.smooth to determine the value of SwitchTime.
However, in rare cases, you might experience numerical issues during estimation,
filtering, or smoothing diffuse state-space models. For such cases, try experimenting
with various SwitchTime specifications, or consider a different model structure (e.g.,
simplify or reverify the model). For example, convert the diffuse state-space model to
a standard state-space model using ssm.

• To accelerate estimation for low-dimensional, time-invariant models, set
'Univariate',true. Using this specification, the software sequentially updates
rather then updating all at once during the filtering process.

Input Arguments

Mdl — Diffuse state-space model
dssm model object

Diffuse state-space model, specified as an dssm model object returned by dssm or
estimate.

If Mdl is not fully specified (that is, Mdl contains unknown parameters), then specify
values for the unknown parameters using the 'Params' name-value pair argument.
Otherwise, the software issues an error. estimate returns fully-specified state-space
models.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary using the appropriate input or name-value pair arguments.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

9 Functions — Alphabetical List

9-938

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix, where each row corresponds to a period and each column corresponds to a
particular observation in the model. T is the sample size and m is the number of
observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1
cell vector. Each element of the cell vector corresponds to a period and contains an
nt-dimensional vector of observations for that period. The corresponding dimensions
of the coefficient matrices in Mdl.C{t} and Mdl.D{t} must be consistent with the
matrix in Y{t} for all periods. The last cell of Y contains the latest observations.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-450.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Beta' — Regression coefficients
[] (default) | numeric matrix

Regression coefficients corresponding to predictor variables, specified as the comma-
separated pair consisting of 'Beta' and a d-by-n numeric matrix. d is the number of
predictor variables (see Predictors) and n is the number of observed response series
(see Y).

If Mdl is an estimated state-space model, then specify the estimated regression
coefficients stored in estParams.

'Params' — Values for unknown parameters
numeric vector

Values for unknown parameters in the state-space model, specified as the column-
separated pair consisting of 'Params' and a numeric vector.

 smooth

9-939

The elements of Params correspond to the unknown parameters in the state-space model
matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and covariance
matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of Params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise following the order A, B, C, D, Mean0, and Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-to-
matrix mapping function), then you must set initial parameter values for the state-
space model matrices, initial state values, and state types within the parameter-to-
matrix mapping function.

If Mdl contains unknown parameters, then you must specify their values. Otherwise, the
software ignores the value of Params.

Data Types: double

'Predictors' — Predictor variables in state-space model observation equation
[] (default) | numeric matrix

Predictor variables in the state-space model observation equation, specified as the
comma-separated pair consisting of 'Predictors' and a T-by-d numeric matrix. T is
the number of periods and d is the number of predictor variables. Row t corresponds to
the observed predictors at period t (Zt). The expanded observation equation is

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters.

If there are n observations per period, then the software regresses all predictor series
onto each observation.

If you specify Predictors, then Mdl must be time invariant. Otherwise, the software
returns an error.

By default, the software excludes a regression component from the state-space model.

9 Functions — Alphabetical List

9-940

Data Types: double

'SwitchTime' — Final period for diffuse state initialization
positive integer

Final period for diffuse state initialization, specified as the comma-separated pair
consisting of 'SwitchTime' and a positive integer. That is, estimate uses the
observations from period 1 to period SwitchTime as a presample to implement the exact
initial Kalman filter (see “Diffuse Kalman Filter” on page 8-15 and [1]). After initializing
the diffuse states, estimate applies the standard Kalman filter to the observations from
periods SwitchTime + 1 to T.

The default value for SwitchTime is the last period in which the estimated smoothed
state precision matrix is singular (i.e., the inverse of the covariance matrix). This
specification represents the fewest number of observations required to initialize the
diffuse states. Therefore, it is a best practice to use the default value.

If you set SwitchTime to a value greater than the default, then the effective sample
size decreases. If you set SwitchTime to a value that is fewer than the default, then
estimate might not have enough observations to initialize the diffuse states, which can
result in an error or improper values.

In general, estimating, filtering, and smoothing state-space models with at least one
diffuse state requires SwitchTime to be at least one. The default estimation display
contains the effective sample size.
Data Types: double

'Tolerance' — Forecast uncertainty threshold
0 (default) | nonnegative scalar

Forecast uncertainty threshold, specified as the comma-separated pair consisting of
'Tolerance' and a nonnegative scalar.

If the forecast uncertainty for a particular observation is less than Tolerance during
numerical estimation, then the software removes the uncertainty corresponding to the
observation from the forecast covariance matrix before its inversion.

It is best practice to set Tolerance to a small number, for example, le-15, to overcome
numerical obstacles during estimation.
Example: 'Tolerance',le-15

 smooth

9-941

Data Types: double

'Univariate' — Univariate treatment of multivariate series flag
false (default) | true

Univariate treatment of a multivariate series flag, specified as the comma-separated pair
consisting of 'Univariate' and true or false. Univariate treatment of a multivariate
series is also known as sequential filtering.

The univariate treatment can accelerate and improve numerical stability of the Kalman
filter. However, all observation innovations must be uncorrelated. That is, DtDt' must be
diagonal, where Dt, t = 1,...,T, is one of the following:

• The matrix D{t} in a time-varying state-space model
• The matrix D in a time-invariant state-space model

Example: 'Univariate',true

Data Types: logical

Output Arguments

X — Smoothed states
numeric matrix | cell vector of vectors

Smoothed states, returned as a numeric matrix or a cell vector of matrices.

If Mdl is time invariant, then the number of rows of X is the sample size, and the number
of columns of X is the number of states. The last row of X contains the latest, smoothed
states.

If Mdl is time varying, then X is a cell vector with length equal to the sample size. Cell
t of X contains a vector of smoothed states with length equal to the number of states in
period t. The last cell of X contains the latest, smoothed states.

smooth pads the first SwitchTime periods of X with zeros or empty cells. The zeros or
empty cells represent the periods required to initialize the diffuse states.

logL — Loglikelihood function value
scalar

9 Functions — Alphabetical List

9-942

Loglikelihood function value, returned as a scalar.

Missing observations and observations before SwitchTime do not contribute to the
loglikelihood.

Output — Smoothing results by period
structure array

Smoothing results by period, returned as a structure array.

Output is a T-by-1 structure, where element t corresponds to the smoothing recursion at
time t.

• If Univariate is false (it is by default), then the following table describes the fields
of Output.

Field Description Estimate

LogLikelihood Scalar loglikelihood
objective function value

N/A

SmoothedStates mt-by-1 vector of smoothed
states

E x y yt T| ,...,1()

SmoothedStatesCov mt-by-mt variance-
covariance matrix of the
smoothed states

Var x y yt T| ,...,1()

SmoothedStatesDisturb kt-by-1 vector of smoothed,
state disturbances

E u y yt T| ,...,1()

SmoothedStateDisturbCovkt-by-kt variance-
covariance matrix of
the smoothed, state
disturbances

Var u y yt T| ,...,1()

SmoothedObsInnov ht-by-1 vector of smoothed
observation innovations

E y yt Te | ,...,1()

SmoothedObsInnovCov ht-by-ht variance-
covariance matrix of the
smoothed, observation
innovations

Var y yt Te | ,...,1()

KalmanGain mt-by-nt adjusted Kalman
gain matrix

N/A

 smooth

9-943

Field Description Estimate

DataUsed ht-by-1 logical vector
indicating whether the
software filters using a
particular observation. For
example, if observation
i at time t is a NaN, then
element i in DataUsed at
time t is 0.

N/A

• If Univarite is true, then the fields of Output are the same as in the previous
table, but the values in KalmanGain might vary.

smooth pads the first SwitchTime periods of the fields of Output with empty cells.
These empty cells represent the periods required to initialize the diffuse states.
Data Types: struct

Examples

Smooth States of Time-Invariant Diffuse State-Space Model

Suppose that a latent process is a random walk. Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 1.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

x0 = 1.5;

rng(1); % For reproducibility

u = randn(T,1);

x = cumsum([x0;u]);

x = x(2:end);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

9 Functions — Alphabetical List

9-944

where is Gaussian with mean 0 and standard deviation 0.75. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.75*randn(T,1);

Specify the four coefficient matrices.

A = 1;

B = 1;

C = 1;

D = 0.75;

Create the diffuse state-space model using the coefficient matrices. Specify that the inital
state distribution is diffuse.

Mdl = dssm(A,B,C,D,'StateType',2)

Mdl =

State-space model type: dssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

 smooth

9-945

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 Inf

State types

 x1

 Diffuse

Mdl is an dssm model. Verify that the model is correctly specified using the display in the
Command Window.

Smooth states for periods 1 through 100. Plot the true state values and the smoothed
state estimates.

SmoothedX = smooth(Mdl,y);

figure

plot(1:T,x,'-k',1:T,SmoothedX,':r','LineWidth',2)

title({'State Values'})

xlabel('Period')

ylabel('State')

legend({'True state values','Smoothed state values'})

9 Functions — Alphabetical List

9-946

The true values and smoothed estimates are approximately the same.

Smooth States of Diffuse State-Space Model Containing Regression Component

Suppose that the linear relationship between unemployment rate and the nominal gross
national product (nGNP) is of interest. Suppose further that unemployment rate is an
AR(1) series. Symbolically, and in state-space form, the model is

where:

• is the unemployment rate at time t.

 smooth

9-947

• is the observed change in the unemployment rate being deflated by the return of
nGNP ().

• is the Gaussian series of state disturbances having mean 0 and unknown standard
deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and removing
the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

y = diff(DataTable.UR(~isNaN));

T = size(gnpn,1); % The sample size

Z = price2ret(gnpn);

This example continues using the series without NaN values. However, using the Kalman
filter framework, the software can accommodate series containing missing values.

Specify the coefficient matrices.

A = NaN;

B = NaN;

C = 1;

Create the state-space model using dssm by supplying the coefficient matrices and
specifying that the state values come from a diffuse distribution. The diffuse specification
indicates complete ignorance about the moments of the initial distribution.

StateType = 2;

Mdl = dssm(A,B,C,'StateType',StateType);

Estimate the parameters. Specify the regression component and its initial value for
optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Display the estimates and all optimization diagnostic information. Restrict
the estimate of to all positive, real numbers.

params0 = [0.3 0.2]; % Initial values chosen arbitrarily

Beta0 = 0.1;

9 Functions — Alphabetical List

9-948

[EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,'Beta0',Beta0,...

 'lb',[-Inf 0 -Inf]);

Method: Maximum likelihood (fmincon)

Effective Sample size: 60

Logarithmic likelihood: -110.477

Akaike info criterion: 226.954

Bayesian info criterion: 233.287

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.59436 0.09408 6.31738 0

 c(2) | 1.52554 0.10758 14.17991 0

 y <- z(1) | -24.26161 1.55730 -15.57930 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 2.54764 0 Inf 0

EstMdl is a dssm model, and you can access its properties using dot notation.

Smooth the estimated diffuse state-space model. EstMdl does not store the data or the
regression coefficients, so you must pass in them in using the name-value pair arguments
'Predictors' and 'Beta', respectively. Plot the smoothed states.

SmoothedX = smooth(EstMdl,y,'Predictors',Z,'Beta',estParams(end));

figure

plot(dates(end-(T-1)+1:end),SmoothedX);

xlabel('Period')

ylabel('Change in the unemployment rate')

title('Smoothed Change in the Unemployment Rate')

axis tight

 smooth

9-949

Extract Other Estimates from Output

Estimate a diffuse state-space model, smooth the states, and then extract other estimates
from the Output output argument.

Consider the diffuse state-space model

9 Functions — Alphabetical List

9-950

The state variable is an AR(1) model with autoregressive coefficient . is a
random walk. The disturbances and are independent Gaussian random variables
with mean 0 and standard deviations and , respectively. The observation is the
error-free sum of and .

Generate data from the state-space model. To simulate the data, suppose that the sample
size , , , , and .

rng(1); % For reproducibility

T = 100;

ARMdl = arima('AR',0.6,'Constant',0,'Variance',0.2^2);

x1 = simulate(ARMdl,T,'Y0',2);

u3 = 0.1*randn(T,1);

x3 = cumsum([2;u3]);

x3 = x3(2:end);

y = x1 + x3;

Specify the coefficient matrices of the state-space model. To indicate unknown
parameters, use NaN values.

A = [NaN 0; 0 1];

B = [NaN 0; 0 NaN];

C = [1 1];

Create a diffuse state-space model that describes the model above. Specify that and
 have diffuse initial state distributions.

StateType = [2 2];

Mdl = dssm(A,B,C,'StateType',StateType);

Estimate the unknown parameters of Mdl. Choose initial parameter values for
optimization. Specify that the standard deviations are constrained to be positive, but all
other parameters are unconstrained using the 'lb' name-value pair argument.

params0 = [0.01 0.1 0.01]; % Initial values chosen arbitrarily

EstMdl = estimate(Mdl,y,params0,'lb',[-Inf 0 0]);

Method: Maximum likelihood (fmincon)

Effective Sample size: 98

Logarithmic likelihood: 3.44283

Akaike info criterion: -0.885655

Bayesian info criterion: 6.92986

 smooth

9-951

 | Coeff Std Err t Stat Prob

--

 c(1) | 0.54134 0.20494 2.64145 0.00826

 c(2) | 0.18439 0.03305 5.57897 0

 c(3) | 0.11783 0.04347 2.71039 0.00672

 |

 | Final State Std Dev t Stat Prob

 x(1) | 0.24884 0.17168 1.44943 0.14722

 x(2) | 1.73762 0.17168 10.12121 0

The parameters are close to their true values.

Smooth the states of EstMdl, and request all other available output.

[X,logL,Output] = smooth(EstMdl,y);

X is a T-by-2 matrix of smoothed states, logL is the final, optimized log-likelihood value,
and Output is a structure array containing various estimates that the Kalman filter
requires. List the fields of output using fields.

fields(Output)

ans =

 'LogLikelihood'

 'SmoothedStates'

 'SmoothedStatesCov'

 'SmoothedStateDisturb'

 'SmoothedStateDisturbCov'

 'SmoothedObsInnov'

 'SmoothedObsInnovCov'

 'KalmanGain'

 'DataUsed'

Convert Output to a table.

OutputTbl = struct2table(Output);

OutputTbl(1:10,1:4) % Display first ten rows of first four variables

ans =

 LogLikelihood SmoothedStates SmoothedStatesCov SmoothedStateDisturb

9 Functions — Alphabetical List

9-952

 _____________ ______________ _________________ ____________________

 [] [] [] []

 [] [] [] []

 [0.1827] [2x1 double] [2x2 double] [2x1 double]

 [0.0972] [2x1 double] [2x2 double] [2x1 double]

 [0.4472] [2x1 double] [2x2 double] [2x1 double]

 [0.2073] [2x1 double] [2x2 double] [2x1 double]

 [0.5167] [2x1 double] [2x2 double] [2x1 double]

 [0.2389] [2x1 double] [2x2 double] [2x1 double]

 [0.5064] [2x1 double] [2x2 double] [2x1 double]

 [-0.0105] [2x1 double] [2x2 double] [2x1 double]

The first two rows of the table contain empty cells or zeros. These correspond to the
observations required to initialize the diffuse Kalman filter. That is, SwitchTime is 2.

SwitchTime = 2;

Plot the smoothed states and their individual 95% Wald-type confidence intervals.

CI = nan(T,2,2);

for j = (SwitchTime + 1):T

 CovX = OutputTbl.SmoothedStatesCov{j};

 CI(j,:,1) = X(j,1) + 1.96*sqrt(CovX(1,1))*[-1 1];

 CI(j,:,2) = X(j,2) + 1.96*sqrt(CovX(2,2))*[-1 1];

end

figure;

plot(1:T,X(:,1),'k',1:T,CI(:,:,1),'--r');

xlabel('Period');

ylabel('Smoothed states');

title('State 1 Estimates')

legend('Smoothed','95% Individual CIs');

grid on;

figure;

plot(1:T,X(:,2),'k',1:T,CI(:,:,2),'--r');

xlabel('Period');

ylabel('Smoothed states');

title('State 2 Estimates')

legend('Smoothed','95% Individual CIs');

grid on;

 smooth

9-953

9 Functions — Alphabetical List

9-954

• “Smooth Time-Varying Diffuse State-Space Model” on page 8-91
• “Filter Time-Varying Diffuse State-Space Model” on page 8-68

Algorithms

• The Kalman filter accommodates missing data by not updating filtered state
estimates corresponding to missing observations. In other words, suppose there is
a missing observation at period t. Then, the state forecast for period t based on the
previous t – 1 observations and filtered state for period t are equivalent.

 smooth

9-955

• For explicitly defined state-space models, filter applies all predictors to each
response series. However, each response series has its own set of regression
coefficients.

• The diffuse Kalman filter requires presample data. If missing observations begin
the time series, then the diffuse Kalman filter must gather enough nonmissing
observations to initialize the diffuse states.

• For diffuse state-space models, filter usually switches from the diffuse Kalman
filter to the standard Kalman filter when the number of cumulative observations and
the number of diffuse states are equal. However, if a diffuse state-space model has
identifiability issues (e.g., the model is too complex to fit to the data), then filter
might require more observations to initialize the diffuse states. In extreme cases,
filter requires the entire sample.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
dssm | estimate | filter | forecast | refine

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

Introduced in R2015b

9 Functions — Alphabetical List

9-956

smooth

Class: ssm

Backward recursion of state-space models

Syntax

X = smooth(Mdl,Y)

X = smooth(Mdl,Y,Name,Value)

[X,logL,Output] = smooth(___)

Description

X = smooth(Mdl,Y) returns smoothed states (X) by performing backward recursion of
the fully-specified state-space model Mdl. That is, smooth applies the standard Kalman
filter using Mdl and the observed responses Y.

X = smooth(Mdl,Y,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

If Mdl is not fully specified, then you must set the unknown parameters to known scalars
using the Params Name,Value pair argument.

[X,logL,Output] = smooth(___) uses any of the input arguments in the previous
syntaxes to additionally return the loglikelihood value (logL) and an output structure
array (Output) containing:

• Smoothed states and their estimated covariance matrix
• Smoothed state disturbances and their estimated covariance matrix
• Smoothed observation innovations and their estimated covariance matrix
• The loglikelihood value
• The adjusted Kalman gain
• And a vector indicating which data the software used to filter

 smooth

9-957

Input Arguments

Mdl — Standard state-space model
ssm model object

Standard state-space model, specified as an ssm model object returned by ssm or
estimate.

If Mdl is not fully specified (that is, Mdl contains unknown parameters), then specify
values for the unknown parameters using the 'Params' name-value pair argument.
Otherwise, the software issues an error. estimate returns fully-specified state-space
models.

Mdl does not store observed responses or predictor data. Supply the data wherever
necessary using the appropriate input or name-value pair arguments.

Y — Observed response data
numeric matrix | cell vector of numeric vectors

Observed response data to which Mdl is fit, specified as a numeric matrix or a cell vector
of numeric vectors.

• If Mdl is time invariant with respect to the observation equation, then Y is a T-by-n
matrix, where each row corresponds to a period and each column corresponds to a
particular observation in the model. T is the sample size and m is the number of
observations per period. The last row of Y contains the latest observations.

• If Mdl is time varying with respect to the observation equation, then Y is a T-by-1
cell vector. Each element of the cell vector corresponds to a period and contains an
nt-dimensional vector of observations for that period. The corresponding dimensions
of the coefficient matrices in Mdl.C{t} and Mdl.D{t} must be consistent with the
matrix in Y{t} for all periods. The last cell of Y contains the latest observations.

NaN elements indicate missing observations. For details on how the Kalman filter
accommodates missing observations, see “Algorithms” on page 9-450.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

9 Functions — Alphabetical List

9-958

'Beta' — Regression coefficients
[] (default) | numeric matrix

Regression coefficients corresponding to predictor variables, specified as the comma-
separated pair consisting of 'Beta' and a d-by-n numeric matrix. d is the number of
predictor variables (see Predictors) and n is the number of observed response series
(see Y).

If Mdl is an estimated state-space model, then specify the estimated regression
coefficients stored in estParams.

'Params' — Values for unknown parameters
numeric vector

Values for unknown parameters in the state-space model, specified as the column-
separated pair consisting of 'Params' and a numeric vector.

The elements of Params correspond to the unknown parameters in the state-space model
matrices A, B, C, and D, and, optionally, the initial state mean Mean0 and covariance
matrix Cov0.

• If you created Mdl explicitly (that is, by specifying the matrices without a parameter-
to-matrix mapping function), then the software maps the elements of Params to NaNs
in the state-space model matrices and initial state values. The software searches for
NaNs column-wise following the order A, B, C, D, Mean0, and Cov0.

• If you created Mdl implicitly (that is, by specifying the matrices with a parameter-to-
matrix mapping function), then you must set initial parameter values for the state-
space model matrices, initial state values, and state types within the parameter-to-
matrix mapping function.

If Mdl contains unknown parameters, then you must specify their values. Otherwise, the
software ignores the value of Params.

Data Types: double

'Predictors' — Predictor variables in state-space model observation equation
[] (default) | numeric matrix

Predictor variables in the state-space model observation equation, specified as the
comma-separated pair consisting of 'Predictors' and a T-by-d numeric matrix. T is
the number of periods and d is the number of predictor variables. Row t corresponds to
the observed predictors at period t (Zt). The expanded observation equation is

 smooth

9-959

y Z Cx Dut t t t- = +b .

That is, the software deflates the observations using the regression component. β is the
time-invariant vector of regression coefficients that the software estimates with all other
parameters.

If there are n observations per period, then the software regresses all predictor series
onto each observation.

If you specify Predictors, then Mdl must be time invariant. Otherwise, the software
returns an error.

By default, the software excludes a regression component from the state-space model.
Data Types: double

'SquareRoot' — Square root filter method flag
false (default) | true

Square root filter method flag, specified as the comma-separated pair consisting of
'SquareRoot' and true or false. If true, then estimate applies the square root
filter method when implementing the Kalman filter.

If you suspect that the eigenvalues of the filtered state or forecasted observation
covariance matrices are close to zero, then specify 'SquareRoot',true. The square root
filter is robust to numerical issues arising from finite the precision of calculations, but
requires more computational resources.
Example: 'SquareRoot',true

Data Types: logical

'Tolerance' — Forecast uncertainty threshold
0 (default) | nonnegative scalar

Forecast uncertainty threshold, specified as the comma-separated pair consisting of
'Tolerance' and a nonnegative scalar.

If the forecast uncertainty for a particular observation is less than Tolerance during
numerical estimation, then the software removes the uncertainty corresponding to the
observation from the forecast covariance matrix before its inversion.

It is best practice to set Tolerance to a small number, for example, le-15, to overcome
numerical obstacles during estimation.

9 Functions — Alphabetical List

9-960

Example: 'Tolerance',le-15

Data Types: double

'Univariate' — Univariate treatment of multivariate series flag
false (default) | true

Univariate treatment of a multivariate series flag, specified as the comma-separated pair
consisting of 'Univariate' and true or false. Univariate treatment of a multivariate
series is also known as sequential filtering.

The univariate treatment can accelerate and improve numerical stability of the Kalman
filter. However, all observation innovations must be uncorrelated. That is, DtDt' must be
diagonal, where Dt, t = 1,...,T, is one of the following:

• The matrix D{t} in a time-varying state-space model
• The matrix D in a time-invariant state-space model

Example: 'Univariate',true

Data Types: logical

Output Arguments

X — Smoothed states
matrix | cell vector of vectors

Smoothed states, returned as a matrix or a cell vector of matrices.

If Mdl is time invariant, then the number of rows of X is the sample size, and the number
of columns of X is the number of states. The last row of X contains the latest, smoothed
states.

If Mdl is time varying, then X is a cell vector with length equal to the sample size. Cell
t of X contains a vector of smoothed states with length equal to the number of states in
period t. The last cell of X contains the latest, smoothed states.

Data Types: cell | double

logL — Loglikelihood function value
scalar

Loglikelihood function value, returned as a scalar.

 smooth

9-961

Missing observations do not contribute to the loglikelihood.

Output — Smoothing results by period
structure array

Smoothing results by period, returned as a structure array.

Output is a T-by-1 structure, where element t corresponds to the smoothing recursion at
time t.

• If Univariate is false (it is by default), then the following table describes the fields
of Output.

Field Description Estimate

LogLikelihood Scalar loglikelihood
objective function value

N/A

SmoothedStates mt-by-1 vector of smoothed
states

E x y yt T| ,...,1()

SmoothedStatesCov mt-by-mt variance-
covariance matrix of the
smoothed states

Var x y yt T| ,...,1()

SmoothedStatesDisturb kt-by-1 vector of smoothed
state disturbances

E u y yt T| ,...,1()

SmoothedStateDisturbCovkt-by-kt variance-
covariance matrix of
the smoothed, state
disturbances

Var u y yt T| ,...,1()

SmoothedObsInnov ht-by-1 vector of smoothed
observation innovations

E y yt Te | ,...,1()

SmoothedObsInnovCov ht-by-ht variance-
covariance matrix of the
smoothed, observation
innovations

Var y yt Te | ,...,1()

KalmanGain mt-by-nt adjusted Kalman
gain matrix

N/A

DataUsed ht-by-1 logical vector
indicating whether the

N/A

9 Functions — Alphabetical List

9-962

Field Description Estimate

software filters using a
particular observation. For
example, if observation
i at time t is a NaN, then
element i in DataUsed at
time t is 0.

• If Univarite is true, then the fields of Output are the same as in the previous
table, but the values in KalmanGain might vary.

Examples

Smooth States of Time-Invariant State-Space Model

Suppose that a latent process is an AR(1). Subsequently, the state equation is

where is Gaussian with mean 0 and standard deviation 0.5.

Generate a random series of 100 observations from , assuming that the series starts at
1.5.

T = 100;

ARMdl = arima('AR',0.5,'Constant',0,'Variance',0.5^2);

x0 = 1.5;

rng(1); % For reproducibility

x = simulate(ARMdl,T,'Y0',x0);

Suppose further that the latent process is subject to additive measurement error.
Subsequently, the observation equation is

where is Gaussian with mean 0 and standard deviation 0.05. Together, the latent
process and observation equations compose a state-space model.

Use the random latent state process (x) and the observation equation to generate
observations.

y = x + 0.05*randn(T,1);

 smooth

9-963

Specify the four coefficient matrices.

A = 0.5;

B = 1;

C = 1;

D = 0.75;

Specify the state-space model using the coefficient matrices.

Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = (0.50)x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + (0.75)e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1.33

State types

9 Functions — Alphabetical List

9-964

 x1

 Stationary

Mdl is an ssm model. Verify that the model is correctly specified using the display
in the Command Window. The software infers that the state process is stationary.
Subsequently, the software sets the initial state mean and covariance to the mean and
variance of the stationary distribution of an AR(1) model.

Smooth the states for periods 1 through 100. Plot the true state values and the smoothed
states.

SmoothedX = smooth(Mdl,y);

figure

plot(1:T,x,'-k',1:T,SmoothedX,':r','LineWidth',2)

title({'State Values'})

xlabel('Period')

ylabel('State')

legend({'True state values','Smoothed state values'})

 smooth

9-965

Smooth States of State-Space Model Containing Regression Component

Suppose that the linear relationship between the change in the unemployment rate and
the nominal gross national product (nGNP) growth rate is of interest. Suppose further
that the first difference of the unemployment rate is an ARMA(1,1) series. Symbolically,
and in state-space form, the model is

where:

9 Functions — Alphabetical List

9-966

• is the change in the unemployment rate at time t.
• is a dummy state for the MA(1) effect.
• is the observed unemployment rate being deflated by the growth rate of nGNP

().
• is the Gaussian series of state disturbances having mean 0 and standard

deviation 1.
• is the Gaussian series of observation innovations having mean 0 and standard

deviation .

Load the Nelson-Plosser data set, which contains the unemployment rate and nGNP
series, among other things.

load Data_NelsonPlosser

Preprocess the data by taking the natural logarithm of the nGNP series, and the first
difference of each series. Also, remove the starting NaN values from each series.

isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs

gnpn = DataTable.GNPN(~isNaN);

u = DataTable.UR(~isNaN);

T = size(gnpn,1); % Sample size

Z = [ones(T-1,1) diff(log(gnpn))];

y = diff(u);

Though this example removes missing values, the software can accommodate series
containing missing values in the Kalman filter framework.

Specify the coefficient matrices.

A = [NaN NaN; 0 0];

B = [1; 1];

C = [1 0];

D = NaN;

Specify the state-space model using ssm.

Mdl = ssm(A,B,C,D);

Estimate the model parameters. Specify the regression component and its initial value
for optimization using the 'Predictors' and 'Beta0' name-value pair arguments,
respectively. Restrict the estimate of to all positive, real numbers.

 smooth

9-967

params0 = [0.3 0.2 0.2]; % Chosen arbitrarily

[EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,...

 'Beta0',[0.1 0.2],'lb',[-Inf,-Inf,0,-Inf,-Inf]);

Method: Maximum likelihood (fmincon)

Sample size: 61

Logarithmic likelihood: -99.7245

Akaike info criterion: 209.449

Bayesian info criterion: 220.003

 | Coeff Std Err t Stat Prob

--

 c(1) | -0.34098 0.29608 -1.15164 0.24948

 c(2) | 1.05003 0.41377 2.53771 0.01116

 c(3) | 0.48592 0.36790 1.32080 0.18657

 y <- z(1) | 1.36121 0.22338 6.09358 0

 y <- z(2) | -24.46711 1.60018 -15.29024 0

 |

 | Final State Std Dev t Stat Prob

 x(1) | 1.01264 0.44690 2.26592 0.02346

 x(2) | 0.77718 0.58917 1.31912 0.18713

EstMdl is an ssm model, and you can access its properties using dot notation.

Smooth the states. EstMdl does not store the data or the regression coefficients, so you
must pass in them in using the name-value pair arguments 'Predictors' and 'Beta',
respectively. Plot the smoothed states. Recall that the first state is the change in the
unemployment rate, and the second state helps build the first.

SmoothedX = smooth(EstMdl,y,'Predictors',Z,'Beta',estParams(end-1:end));

figure

plot(dates(end-(T-1)+1:end),SmoothedX(:,1));

xlabel('Period')

ylabel('Change in the unemployment rate')

title('Smoothed Change in the Unemployment Rate')

9 Functions — Alphabetical List

9-968

• “Smooth Time-Varying State-Space Model” on page 8-84
• “Compare Simulation Smoother to Smoothed States” on page 8-162

Algorithms

• The Kalman filter accommodates missing data by not updating filtered state
estimates corresponding to missing observations. In other words, suppose there is
a missing observation at period t. Then, the state forecast for period t based on the
previous t – 1 observations and filtered state for period t are equivalent.

 smooth

9-969

• For explicitly defined state-space models, ssm.smooth applies all predictors to
each response series. However, each response series has its own set of regression
coefficients.

Tips

• Mdl does not store the response data, predictor data, and the regression coefficients.
Supply the data wherever necessary using the appropriate input or name-value pair
arguments.

• To accelerate estimation for low-dimensional, time-invariant models, set
'Univariate',true. Using this specification, the software sequentially updates
rather then updating all at once during the filtering process.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

See Also
estimate | filter | forecast | refine | simsmooth | ssm

More About
• “What Are State-Space Models?” on page 8-3
• “What Is the Kalman Filter?” on page 8-8

9 Functions — Alphabetical List

9-970

ssm class

Create state-space model

Description

ssm creates a standard, linear, state-space model object with independent Gaussian state
disturbances and observation innovations.

You can:

• Specify a time-invariant or time-varying model.
• Specify whether states are stationary, static, or nonstationary.
• Specify the state-transition, state-disturbance-loading, measurement-sensitivity, or

observation-innovation matrices:

• Explicitly by providing the matrices
• Implicitly by providing a function that maps the parameters to the matrices, that

is, a parameter-to-matrix mapping function

Once you have specified a model:

• If it contains unknown parameters, then pass the model and data to estimate, which
estimates the parameters.

• If the state and observation matrices do not contain unknown parameters (for
example, an estimated ssm model), then you can pass it to:

• filter to implement forward recursion and obtain filtered estimates
• forecast to obtain forecasted states and observations
• smooth to implement backward recursion and obtain smoothed estimates
• simulate to simulate states and observations from the state-space model

• ssm supports regression of exogenous predictors. To include a regression component
that deflates the observations, see estimate, filter, forecast, and smooth.

 ssm class

9-971

Construction
Mdl = ssm(A,B,C) creates a state-space model (Mdl) using state-transition matrix A,
state-disturbance-loading matrix B, and measurement-sensitivity matrix C.

Mdl = ssm(A,B,C,D) creates a state-space model using state-transition matrix A,
state-disturbance-loading matrix B, measurement-sensitivity matrix C, and observation-
innovation matrix D.

Mdl = ssm(___ ,Name,Value) uses any of the input arguments in the previous
syntaxes and additional options that you specify by one or more Name,Value pair
arguments.

Name can also be a property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN.

Mdl = ssm(ParamMap) creates a state-space model using a parameter-to-matrix
mapping function (ParamMap) that you write. The function maps a vector of parameters
to the matrices A, B, and C. Optionally, ParamMap can map parameters to D, Mean0,
or Cov0. To specify the types of states, the function can return StateType. To
accommodate a regression component in the observation equation, ParamMap can also
return deflated observation data.

Mdl = ssm(DSSMMdl) converts a diffuse state-space model object (DSSMMdl) to a state-
space model object (Mdl). ssm sets all initial variances of diffuse states in SSMMdl.Cov0
to 1e07.

Input Arguments

A — State-transition coefficient matrix
matrix | cell vector of matrices

State-transition coefficient matrix for explicit state-space model creation, specified as a
matrix or cell vector of matrices.

The state-transition coefficient matrix, At, specifies how the states, xt, are expected to
transition from period t – 1 to t, for all t = 1,...,T. That is, the expected state-transition
equation at period t is E(xt|xt–1) = Atxt–1.

For time-invariant state-space models, specify A as an m-by-m matrix, where m is the
number of states per period.

9 Functions — Alphabetical List

9-972

For time-varying state-space models, specify A as a T-dimensional cell array, where
A{t} contains an mt-by-mt – 1 state-transition coefficient matrix. If the number of states
changes from period t – 1 to t, then mt ≠ mt – 1.

NaN values in any coefficient matrix indicate unique, unknown parameters in the state-
space model. A contributes:

• sum(isnan(A(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in A at each period.

• numParamsA unknown parameters to time-varying state-space models, where
numParamsA = sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),A,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in A.

You cannot specify A and ParamMap simultaneously.

Data Types: double | cell

B — State-disturbance-loading coefficient matrix
matrix | cell vector of matrices

State-disturbance-loading coefficient matrix for explicit state-space model creation,
specified as a matrix or cell vector of matrices.

The state disturbances, ut, are independent Gaussian random variables with mean 0 and
standard deviation 1. The state-disturbance-loading coefficient matrix, Bt, specifies the
additive error structure in the state-transition equation from period t – 1 to t, for all t =
1,...,T. That is, the state-transition equation at period t is xt = Atxt–1 + Btut.

For time-invariant state-space models, specify B as an m-by-k matrix, where m is the
number of states and k is the number of state disturbances per period. B*B' is the state-
disturbance covariance matrix for all periods.

For time-varying state-space models, specify B as a T-dimensional cell array, where B{t}
contains an mt-by-kt state-disturbance-loading coefficient matrix. If the number of states
or state disturbances changes at period t, then the matrix dimensions between B{t-1}
and B{t} vary. B{t}*B{t}' is the state-disturbance covariance matrix for period t.

NaN values in any coefficient matrix indicate unique, unknown parameters in the state-
space model. B contributes:

 ssm class

9-973

• sum(isnan(B(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in B at each period.

• numParamsB unknown parameters to time-
varying state-space models, where numParamsB =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),B,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in B.

You cannot specify B and ParamMap simultaneously.

Data Types: double | cell

C — Measurement-sensitivity coefficient matrix
matrix | cell vector of matrices

Measurement-sensitivity coefficient matrix for explicit state-space model creation,
specified as a matrix or cell vector of matrices.

The measurement-sensitivity coefficient matrix, Ct, specifies how the states are expected
to linearly combine at period t to form the observations, yt, for all t = 1,...,T. That is, the
expected observation equation at period t is E(yt|xt) = Ctxt.

For time-invariant state-space models, specify C as an n-by-m matrix, where n is the
number of observations and m is the number of states per period.

For time-varying state-space models, specify C as a T-dimensional cell array, where C{t}
contains an nt-by-mt measurement-sensitivity coefficient matrix. If the number of states
or observations changes at period t, then the matrix dimensions between C{t-1} and
C{t} vary.

NaN values in any coefficient matrix indicate unique, unknown parameters in the state-
space model. C contributes:

• sum(isnan(C(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in C at each period.

• numParamsC unknown parameters to time-
varying state-space models, where numParamsC =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),C,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in C.

9 Functions — Alphabetical List

9-974

You cannot specify C and ParamMap simultaneously.

Data Types: double | cell

D — Observation-innovation coefficient matrix
[] (default) | matrix | cell vector of matrices

Observation-innovation coefficient matrix for explicit state-space model creation,
specified as a matrix or cell vector of matrices.

The observation innovations, εt, are independent Gaussian random variables with mean
0 and standard deviation 1. The observation-innovation coefficient matrix, Dt, specifies
the additive error structure in the observation equation at period t, for all t = 1,...,T. That
is, the observation equation at period t is yt = Ctxt + Dtεt.

For time-invariant state-space models, specify D as an n-by-h matrix, where n is the
number of observations and h is the number of observation innovations per period. D*D'
is the observation-innovation covariance matrix for all periods.

For time-varying state-space models, specify D as a T-dimensional cell array, where D{t}
contains an nt-by-ht matrix. If the number of observations or observation innovations
changes at period t, then the matrix dimensions between D{t-1} and D{t} vary.
D{t}*D{t}' is the observation-innovation covariance matrix for period t.

NaN values in any coefficient matrix indicate unique, unknown parameters in the state-
space model. D contributes:

• sum(isnan(D(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in D at each period.

• numParamsD unknown parameters to time-
varying state-space models, where numParamsD =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),D,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in D.

By default, D is an empty matrix indicating no observation innovations in the state-space
model.

You cannot specify D and ParamMap simultaneously.

Data Types: double | cell

 ssm class

9-975

ParamMap — Parameter-to-matrix mapping function
empty array ([]) (default) | function handle

Parameter-to-matrix mapping function for implicit state-space model creation, specified
as a function handle.

ParamMap must be a function that takes at least one input argument and returns at
least three output arguments. The requisite input argument is a vector of unknown
parameters, and the requisite output arguments correspond to the coefficient matrices
A, B, and C, respectively. If your parameter-to-mapping function requires the input
parameter vector argument only, then implicitly create a state-space model by entering
the following:

Mdl = ssm(@ParamMap)

In general, you can write an intermediate function, for example, ParamFun, using this
syntax:

function [A,B,C,D,Mean0,Cov0,StateType,DeflateY] = ...

 ParamFun(params,...otherInputArgs...)

In this general case, create the state-space model by entering

Mdl = ssm(@(params)ParamMap(params,...otherInputArgs...))

However:

• Follow the order of the output arguments.
• params is a vector, and each element corresponds to an unknown parameter.
• ParamFun must return A, B, and C, which correspond to the state-transition, state-

disturbance-loading, and measurement-sensitivity coefficient matrices, respectively.
• If you specify more input arguments than the parameter vector (params), such as

observed responses and predictors, then implicitly create the state-space model using
the syntax pattern

Mdl = ssm(@(params)ParamFun(params,y,z))

• For the optional output arguments D, Mean0, Cov0, StateType, and DeflateY:

• The optional output arguments correspond to the observation-innovation
coefficient matrix D and the name-value pair arguments Mean0, Cov0, and
StateType.

9 Functions — Alphabetical List

9-976

• To skip specifying an optional output argument, set the argument to [] in the
function body. For example, to skip specifying D, then set D = []; in the function.

• DeflateY is the deflated-observation data, which accommodates a regression
component in the observation equation. For example, in this function, which has
a linear regression component, Y is the vector of observed responses and Z is the
vector of predictor data.

function [A,B,C,D,Mean0,Cov0,StateType,DeflateY] = ParamFun(params,Y,Z)

 ...

 DeflateY = Y - params(9) - params(10)*Z;

 ...

end

• For the default values of Mean0, Cov0, and StateType, see “Algorithms” on page
9-996.

• It is best practice to:

• Load the data to the MATLAB Workspace before specifying the model.
• Create the parameter-to-matrix mapping function as its own file.

If you specify ParamMap, then you cannot specify any name-value pair arguments or any
other input arguments.
Data Types: function_handle

DSSMMdl — Diffuse state-space model
dssm model object

Diffuse state-space model to convert to a state-space model, specified as a dssm model
object.

ssm sets all initial variances of diffuse states in DSSMMdl.Cov0 from Inf to 1e7. Any
diffuse states with variance other than Inf retain their values.

To apply the standard Kalman filter instead of the diffuse Kalman filter for filtering,
smoothing, and parameter estimation, convert a diffuse state-space model to a state-
space model.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 ssm class

9-977

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Mean0' — Initial state mean
numeric vector

Initial state mean for explicit state-space model creation, specified as the comma-
separated pair consisting of 'Mean0' and a numeric vector with length equal to the
number of initial states. For the default values, see “Algorithms” on page 9-996.

If you specify ParamMap, then you cannot specify Mean0. Instead, specify the initial state
mean in the parameter-to-matrix mapping function.
Data Types: double

'Cov0' — Initial state covariance matrix
square matrix

Initial state covariance matrix for explicit state-space model creation, specified as the
comma-separated pair consisting of 'Cov0' and a square matrix with dimensions equal
to the number of initial states. For the default values, see “Algorithms” on page 9-996.

If you specify ParamMap, then you cannot specify Cov0. Instead, specify the initial state
covariance in the parameter-to-matrix mapping function.
Data Types: double

'StateType' — Initial state distribution indicator
0 | 1 | 2

Initial state distribution indicator for explicit state-space model creation, specified as
the comma-separated pair consisting of 'StateType' and a numeric vector with length
equal to the number of initial states. This table summarizes the available types of initial
state distributions.

Value Initial State Distribution Type

0 Stationary (for example, ARMA models)
1 The constant 1 (that is, the state is 1 with

probability 1)
2 Diffuse or nonstationary (for example,

random walk model, seasonal linear time
series) or static state

9 Functions — Alphabetical List

9-978

For example, suppose that the state equation has two state variables: The first state
variable is an AR(1) process, and the second state variable is a random walk. Specify the
initial distribution types by setting 'StateType',[0; 2].

If you specify ParamMap, then you cannot specify Mean0. Instead, specify the initial state
distribution indicator in the parameter-to-matrix mapping function.

For the default values, see “Algorithms” on page 9-996.
Data Types: double

Properties

A — State-transition coefficient matrix
matrix | cell vector of matrices | empty array ([])

State-transition coefficient matrix for explicitly created state-space models, specified as
a matrix, a cell vector of matrices, or an empty array ([]). For implicitly created state-
space models and before estimation, A is [] and read only.

The state-transition coefficient matrix, At, specifies how the states, xt, are expected to
transition from period t – 1 to t, for all t = 1,...,T. That is, the expected state-transition
equation at period t is E(xt|xt–1) = Atxt–1.

For time-invariant state-space models, A is an m-by-m matrix, where m is the number of
states per period.

For time-varying state-space models, A is a T-dimensional cell array, where A{t}
contains an mt-by-mt – 1 state-transition coefficient matrix. If the number of states
changes from period t – 1 to t, then mt ≠ mt – 1.

NaN values in any coefficient matrix indicate unknown parameters in the state-space
model. A contributes:

• sum(isnan(A(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in A at each period.

• numParamsA unknown parameters to time-varying state-space models, where
numParamsA = sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),A,'UniformOutput',0))).

 ssm class

9-979

In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in A.

Data Types: double | cell

B — State-disturbance-loading coefficient matrix
matrix | cell vector of matrices | empty array ([])

State-disturbance-loading coefficient matrix for explicitly created state-space models,
specified as a matrix, a cell vector of matrices, or an empty array ([]). For implicitly
created state-space models and before estimation, B is [] and read only.

The state disturbances, ut, are independent Gaussian random variables with mean 0 and
standard deviation 1. The state-disturbance-loading coefficient matrix, Bt, specifies the
additive error structure in the state-transition equation from period t – 1 to t, for all t =
1,...,T. That is, the state-transition equation at period t is xt = Atxt–1 + Btut.

For time-invariant state-space models, B is an m-by-k matrix, where m is the number of
states and k is the number of state disturbances per period. B*B' is the state-disturbance
covariance matrix for all periods.

For time-varying state-space models, B is a T-dimensional cell array, where B{t}
contains an mt-by-kt state-disturbance-loading coefficient matrix. If the number of states
or state disturbances changes at period t, then the matrix dimensions between B{t-1}
and B{t} vary. B{t}*B{t}' is the state-disturbance covariance matrix for period t.

NaN values in any coefficient matrix indicate unknown parameters in the state-space
model. B contributes:

• sum(isnan(B(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in B at each period.

• numParamsB unknown parameters to time-
varying state-space models, where numParamsB =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),B,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in B.

Data Types: double | cell

C — Measurement-sensitivity coefficient matrix
matrix | cell vector of matrices | empty array ([])

9 Functions — Alphabetical List

9-980

Measurement-sensitivity coefficient matrix for explicitly created state-space models,
specified as a matrix, a cell vector of matrices, or an empty array ([]). For implicitly
created state-space models and before estimation, C is [] and read only.

The measurement-sensitivity coefficient matrix, Ct, specifies how the states are expected
to combine linearly at period t to form the observations, yt, for all t = 1,...,T. That is, the
expected observation equation at period t is E(yt|xt) = Ctxt.

For time-invariant state-space models, C is an n-by-m matrix, where n is the number of
observations and m is the number of states per period.

For time-varying state-space models, C is a T-dimensional cell array, where C{t}
contains an nt-by-mt measurement-sensitivity coefficient matrix. If the number of states
or observations changes at period t, then the matrix dimensions between C{t-1} and
C{t} vary.

NaN values in any coefficient matrix indicate unknown parameters in the state-space
model. C contributes:

• sum(isnan(C(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in C at each period.

• numParamsC unknown parameters to time-
varying state-space models, where numParamsC =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),C,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in C.

Data Types: double | cell

D — Observation-innovation coefficient matrix
matrix | cell vector of matrices | empty array ([])

Observation-innovation coefficient matrix for explicitly created state-space models,
specified as a matrix, a cell vector of matrices, or an empty array ([]). For implicitly
created state-space models and before estimation, D is [] and read only.

The observation innovations, εt, are independent Gaussian random variables with mean
0 and standard deviation 1. The observation-innovation coefficient matrix, Dt, specifies
the additive error structure in the observation equation at period t, for all t = 1,...,T. That
is, the observation equation at period t is yt = Ctxt + Dtεt.

 ssm class

9-981

For time-invariant state-space models, D is an n-by-h matrix, where n is the number
of observations and h is the number of observation innovations per period. D*D' is the
observation-innovation covariance matrix for all peroids.

For time-varying state-space models, D is a T-dimensional cell array, where D{t}
contains an nt-by-ht matrix. If the number of observations or observation innovations
changes at period t, then the matrix dimensions between D{t-1} and D{t} vary.
D{t}*D{t}' is the state-disturbance covariance matrix for period t.

NaN values in any coefficient matrix indicate unknown parameters in the state-space
model. D contributes:

• sum(isnan(D(:))) unknown parameters to time-invariant state-space models. In
other words, if the state-space model is time invariant, then the software uses the
same unknown parameters defined in D at each period.

• numParamsD unknown parameters to time-
varying state-space models, where numParamsD =
sum(cell2mat(cellfun(@(x)sum(sum(isnan(x))),D,'UniformOutput',0))).
In other words, if the state-space model is time varying, then the software assigns a
new set of parameters for each matrix in D.

Data Types: double | cell

Mean0 — Initial state mean
numeric vector | empty array ([])

Initial state mean, specified as a numeric vector or an empty array ([]). Mean0 has
length equal to the number of initial states (size(A,1) or size(A{1},1)).

Mean0 is the mean of the Gaussian distribution of the states at period 0.

For implicitly created state-space models and before estimation, Mean0 is [] and read
only. However, estimate specifies Mean0 after estimation.

Data Types: double

Cov0 — Initial state covariance matrix
square matrix | empty array ([])

Initial state covariance matrix, specified as a square matrix or an empty array ([]). Cov0
has dimensions equal to the number of initial states (size(A,1) or size(A{1},1)).

9 Functions — Alphabetical List

9-982

Cov0 is the covariance of the Gaussian distribution of the states at period 0.

For implicitly created state-space models and before estimation, Cov0 is [] and read
only. However, estimate specifies Cov0 after estimation.

Data Types: double

StateType — Initial state distribution type
numeric vector | empty array ([])

Initial state distribution indicator, specified as a numeric vector or empty array ([]).
StateType has length equal to the number of initial states.

For implicitly created state-space models or models with unknown parameters,
StateType is [] and read only.

This table summarizes the available types of initial state distributions.

Value Initial State Distribution Type

0 Stationary (e.g., ARMA models)
1 The constant 1 (that is, the state is 1 with

probability 1)
2 Nonstationary (e.g., random walk model,

seasonal linear time series) or static state

For example, suppose that the state equation has two state variables: The first state
variable is an AR(1) process, and the second state variable is a random walk. Then,
StateType is [0; 2].

For nonstationary states, ssm sets Cov0 to 1e7 by default. Subsequently, the software
implements the Kalman filter for filtering, smoothing, and parameter estimation. This
specification imposes relatively weak knowledge on the initial state values of diffuse
states, and uses initial state covariance terms between all states.
Data Types: double

ParamMap — Parameter-to-matrix mapping function
function handle | empty array ([])

Parameter-to-matrix mapping function, specified as a function handle or an empty array
([]). ParamMap completely specifies the structure of the state-space model. That is,

 ssm class

9-983

ParamMap defines A, B, C, D, and, optionally, Mean0, Cov0, and StateType. For explicitly
created state-space models, ParamMap is [] and read only.

Data Types: function_handle

Methods

disp Display summary information for state-
space model

estimate Maximum likelihood parameter estimation
of state-space models

filter Forward recursion of state-space models
forecast Forecast states and observations of state-

space models
refine Refine initial parameters to aid state-space

model estimation
simsmooth State-space model simulation smoother
simulate Monte Carlo simulation of state-space

models
smooth Backward recursion of state-space models

Definitions

Static State

A static state does not change in value throughout the sample, that is, P x x
t t+ =() =

1
1

for all t = 1,...,T.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

9 Functions — Alphabetical List

9-984

Examples

Explicitly Create Standard State-Space Model with Known and Unknown Parameters

Create a standard state-space model containing two independent, autoregressive states,
and the observations are the deterministic sum of the two states. Symbolically, the
system of equations is

Specify the state-transition matrix.

A = [NaN 0; 0 NaN];

Specify the state-disturbance-loading matrix.

B = [NaN 0; 0 NaN];

Specify the measurement-sensitivity matrix.

C = [1 1];

Define the state-space model using ssm.

Mdl = ssm(A,B,C)

Mdl =

State-space model type: ssm

State vector length: 2

Observation vector length: 1

State disturbance vector length: 2

Observation innovation vector length: 0

Sample size supported by model: Unlimited

Unknown parameters for estimation: 4

State variables: x1, x2,...

 ssm class

9-985

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c3)u1(t)

x2(t) = (c2)x2(t-1) + (c4)u2(t)

Observation equation:

y1(t) = x1(t) + x2(t)

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types are not specified.

Mdl is an ssm model containing unknown parameters. A detailed summary of Mdl prints
to the Command Window.

It is good practice to verify that the state and observation equations are correct. If
the equations are not correct, then it might help to expand the state-space equation
manually.

Explicitly Create State-Space Model with Observation Error

Create a state-space model containing two independent, autoregressive states, and
the observations are the sum of the two states, plus Gaussian error. Symbolically, the
equation is

Define the state-transition matrix.

A = [NaN 0; 0 NaN];

Define the state-disturbance-loading matrix.

9 Functions — Alphabetical List

9-986

B = [NaN 0; 0 NaN];

Define the measurement-sensitivity matrix.

C = [1 1];

Define the observation-innovation matrix.

D = NaN;

Create the state-space model using ssm.

 Mdl = ssm(A,B,C,D)

Mdl =

State-space model type: ssm

State vector length: 2

Observation vector length: 1

State disturbance vector length: 2

Observation innovation vector length: 1

Sample size supported by model: Unlimited

Unknown parameters for estimation: 5

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

Unknown parameters: c1, c2,...

State equations:

x1(t) = (c1)x1(t-1) + (c3)u1(t)

x2(t) = (c2)x2(t-1) + (c4)u2(t)

Observation equation:

y1(t) = x1(t) + x2(t) + (c5)e1(t)

Initial state distribution:

Initial state means are not specified.

Initial state covariance matrix is not specified.

State types are not specified.

 ssm class

9-987

Mdl is an ssm model containing unknown parameters. A detailed summary of Mdl prints
to the Command Window.

It is good practice to verify that the state and observations equations are correct. If
the equations are not correct, then it might help to expand the state-space equation
manually.

Pass the data and Mdl to estimate to estimate the parameters.

Create Known State-Space Model with Initial State Values

Create a state-space model, where the state equation is an AR(2) model. The state
disturbances are mean zero Gaussian random variables with standard deviation of
0.3. The observation equation is the difference between the current and previous state
plus a mean zero Gaussian observation innovation with a standard deviation of 0.1.
Symbolically, the state-space model is

There are three states: is the AR(2) process, represents , and is the
AR(2) model constant.

Define the state-transition matrix.

A = [0.6 0.2 0.5; 1 0 0; 0 0 1];

Define the state-disturbance-loading matrix.

B = [0.3; 0; 0];

Define the measurement-sensitivity matrix.

C = [1 -1 0];

Define the observation-innovation matrix.

9 Functions — Alphabetical List

9-988

D = 0.1;

Use ssm to create the state-space model. Set the initial-state mean (Mean0) and
covariance matrix (Cov0). Identify the type of initial state distributions (StateType) by
noting the following:

• is a stationary, AR(2) process.
• is also a stationary, AR(2) process.
• is the constant 1 for all periods.

Mean0 = [0; 0; 1]; % The mean of the AR(2)

varAR2 = 0.3*(1 - 0.2)/((1 + 0.2)*((1 - 0.2)^2 - 0.6^2)); % The variance of the AR(2)

Cov1AR2 = 0.6*0.3/((1 + 0.2)*((1 - 0.2)^2) - 0.6^2); % The covariance of the AR(2)

Cov0 = zeros(3);

Cov0(1:2,1:2) = varAR2*eye(2) + Cov1AR2*flip(eye(2));

StateType = [0; 0; 1];

Mdl = ssm(A,B,C,D,'Mean0',Mean0,'Cov0',Cov0,'StateType',StateType)

Mdl =

State-space model type: ssm

State vector length: 3

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equations:

x1(t) = (0.60)x1(t-1) + (0.20)x2(t-1) + (0.50)x3(t-1) + (0.30)u1(t)

x2(t) = x1(t-1)

x3(t) = x3(t-1)

Observation equation:

y1(t) = x1(t) - x2(t) + (0.10)e1(t)

Initial state distribution:

 ssm class

9-989

Initial state means

 x1 x2 x3

 0 0 1

Initial state covariance matrix

 x1 x2 x3

 x1 0.71 0.44 0

 x2 0.44 0.71 0

 x3 0 0 0

State types

 x1 x2 x3

 Stationary Stationary Constant

Mdl is an ssm model.

You can display properties of Mdl using dot notation. For example, display the initial
state covariance matrix.

Mdl.Cov0

ans =

 0.7143 0.4412 0

 0.4412 0.7143 0

 0 0 0

Implicitly Create Time-Invariant State-Space Model

Use a parameter mapping function to create a time-invariant state-space model, where
the state model is AR(1) model. The states are observed with bias, but without random
error. Set the initial state mean and variance, and specify that the state is stationary.

Write a function that specifies how the parameters in params map to the state-space
model matrices, the initial state values, and the type of state. Symbolically, the model is

9 Functions — Alphabetical List

9-990

% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = timeInvariantParamMap(params)

% Time-invariant state-space model parameter mapping function example. This

% function maps the vector params to the state-space matrices (A, B, C, and

% D), the initial state value and the initial state variance (Mean0 and

% Cov0), and the type of state (StateType). The state model is AR(1)

% without observation error.

 varu1 = exp(params(2)); % Positive variance constraint

 A = params(1);

 B = sqrt(varu1);

 C = params(3);

 D = [];

 Mean0 = 0.5;

 Cov0 = 100;

 StateType = 0;

end

Save this code as a file named timeInvariantParamMap.m to a folder on your
MATLAB® path.

Create the state-space model by passing the function timeInvariantParamMap as a
function handle to ssm.

Mdl = ssm(@timeInvariantParamMap);

ssm implicitly creates the state-space model. Usually, you cannot verify implicitly defined
state-space models.

Convert Diffuse to Standard State-Space Model

If you estimate, filter, or smooth a diffuse state-space model containing at least one
diffuse state, then the software uses the diffuse Kalman filter. To use the standard
Kalman filter instead, convert the diffuse state-space model to a standard state-space
model. ssm attributes a large initial state variance (1e7) for diffuse states. A standard
state-space model treatment results in an approximation to the results of the diffuse
Kalman filter. However, estimate uses all of the data to fit the model, and filter and
smooth return filtered and smoothed estimates for all periods, respectively.

Explicitly create a one-dimensional diffuse state-space model. Specify that the first state
equation is , and that the observation model is .

A = 1;

 ssm class

9-991

B = 1;

C = 1;

D = 1;

DSSMMdl = dssm(A,B,C,D)

DSSMMdl =

State-space model type: dssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 Inf

State types

 x1

 Diffuse

DSSMMdl is a dssm model object. Because the model does not contain any unknown
parameters, dssm infers the initial state distribution and its parameters. In particular,

9 Functions — Alphabetical List

9-992

the initial state variance is Inf because the nonstationary state has a diffuse
distribution by default.

Convert DSSMMdl to a standard state-space model.

Mdl = ssm(DSSMMdl)

Mdl =

State-space model type: ssm

State vector length: 1

Observation vector length: 1

State disturbance vector length: 1

Observation innovation vector length: 1

Sample size supported by model: Unlimited

State variables: x1, x2,...

State disturbances: u1, u2,...

Observation series: y1, y2,...

Observation innovations: e1, e2,...

State equation:

x1(t) = x1(t-1) + u1(t)

Observation equation:

y1(t) = x1(t) + e1(t)

Initial state distribution:

Initial state means

 x1

 0

Initial state covariance matrix

 x1

 x1 1e+07

State types

 x1

 Diffuse

 ssm class

9-993

Mdl is an ssm model object. The structures of Mdl and DSSMMdl are equivalent, except
that the initial state variance of the state in Mdl is 1e7.

To see the difference between the two models, simulate 10 periods of data from a state-
space model that is similar to Mdl, except it has known initial state mean of 5 and
variance 2.

SimMdl = ssm(A,B,C,D,'Mean0',5,'Cov0',2,'StateType',2);

T = 10;

rng(1); % For reproducibility

y = simulate(SimMdl,T);

Obtain filtered and smoothed states from Mdl and DSSMMdl using the simulated data.

fMdl = filter(Mdl,y);

fDSSMMdl = filter(DSSMMdl,y);

sMdl = smooth(Mdl,y);

sDSSMMdl = smooth(DSSMMdl,y);

Plot the filtered and smoothed states.

figure;

plot(1:T,y,'-o',1:T,fMdl,'-d',1:T,fDSSMMdl,'-*');

legend('Simulated Data','Filtered States -- Mdl','Filtered States -- DSSMMdl');

figure;

plot(1:T,y,'-o',1:T,sMdl,'-d',1:T,sDSSMMdl,'-*');

legend('Simulated Data','Smoothed States -- Mdl','Smoothed States -- DSSMMdl');

9 Functions — Alphabetical List

9-994

 ssm class

9-995

Besides apparent transient behavior, the filtered and smoothed states between the
standard and diffuse state-space models appear nearly equivalent. The slight difference
occurs because filter and smooth set all diffuse state estimates in the diffuse state-
space model to 0 while they implement the diffuse Kalman filter. Once the covariance
matrices of the smoothed states attain full rank, filter and smooth switch to using the
standard Kalman filter. In this case, the switching time occurs after the first period.

• “Implicitly Create Time-Invariant State-Space Model” on page 8-22
• “Implicitly Create Time-Varying State-Space Model” on page 8-32
• “Implicitly Create State-Space Model Containing Regression Component” on page

8-28
• “Create State-Space Model with Random State Coefficient” on page 8-38

9 Functions — Alphabetical List

9-996

Tip

Specify ParamMap in a more general or complex setting, where, for example:

• The initial state values are parameters.
• In time-varying models, you want to use the same parameters for more than one

period.
• You want to impose parameter constraints.

Algorithms

• Default values for Mean0 and Cov0:

• If you explicitly specify the state-space model (that is, you provide the coefficient
matrices A, B, C, and optionally D), then:

• For stationary states, the software generates the initial value using the
stationary distribution. If you provide all values in the coefficient matrices
(that is, your model has no unknown parameters), then ssm generates the
initial values. Otherwise, the software generates the initial values during
estimation.

• For states that are always the constant 1, ssm sets Mean0 to 1 and Cov0 to 0.
• For diffuse states, the software sets Mean0 to 0 and Cov0 to 1e7 by default.

• If you implicitly create the state-space model (that is, you provide the parameter
vector to the coefficient-matrices-mapping function ParamMap), then the software
generates any initial values during estimation.

• For static states that do not equal 1 throughout the sample, the software cannot
assign a value to the degenerate, initial state distribution. Therefore, set static states
to 2 using the name-value pair argument StateType. Subsequently, the software
treats static states as nonstationary and assigns the static state a diffuse initial
distribution.

• It is best practice to set StateType for each state. By default, the software generates
StateType, but this behavior might not be accurate. For example, the software
cannot distinguish between a constant 1 state and a static state.

• The software cannot infer StateType from data because the data theoretically
comes from the observation equation. The realizations of the state equation are
unobservable.

 ssm class

9-997

• ssm models do not store observed responses or predictor data. Supply the data
wherever necessary using the appropriate input or name-value pair arguments.

• Suppose that you want to create a state-space model using a parameter-to-matrix
mapping function with this signature:

[A,B,C,D,Mean0,Cov0,StateType,DeflateY] = paramMap(params,Y,Z)

and you specify the model using an anonymous function

Mdl = ssm(@(params)paramMap(params,Y,Z))

The observed responses Y and predictor data Z are not input arguments in the
anonymous function. If Y and Z exist in the MATLAB Workspace before you create
Mdl, then the software establishes a link to them. Otherwise, if you pass Mdl to
estimate, the software throws an error.

The link to the data established by the anonymous function overrides all other
corresponding input argument values of estimate. This distinction is important
particularly when conducting a rolling window analysis. For details, see “Rolling-
Window Analysis of Time-Series Models” on page 8-168.

Alternatives

• If the states are observable, and the state equation resembles:

• An ARIMA model, then you can specify an arima model instead.
• A regression model with ARIMA errors, then you can specify a regARIMA model

instead.
• A conditional variance model, then you can specify a garch, egarch, or gjr model

instead.
• A VAR model, then you can estimate such a model using vgxvarx.

• To impose no prior knowledge on the initial state values of diffuse states, and to
implement the diffuse Kalman filter, create a dssm model object instead of an ssm
model object.

References

[1] Durbin J., and S. J. Koopman. Time Series Analysis by State Space Methods. 2nd ed.
Oxford: Oxford University Press, 2012.

9 Functions — Alphabetical List

9-998

See Also
dssm

More About
• “What Are State-Space Models?” on page 8-3
• “Rolling-Window Analysis of Time-Series Models” on page 8-168

 toCellArray

9-999

toCellArray

Class: LagOp

Convert lag operator polynomial object to cell array

Syntax

[coefficients, lags] = toCellArray(A)

Description

[coefficients, lags] = toCellArray(A) converts a lag operator polynomial
object A(L) to an equivalent cell array. coefficients is the cell array equivalent to
the lag operator polynomial A(L). lags is a vector of unique integer lags associated with
the polynomial coefficients. Elements of lags are in ascending order. The first element of
lags is the smaller of the smallest nonzero coefficient lag of the object and zero; the last
element of lags is the degree of the polynomial. That is, lags = [min(A.Lags,0), 1,
2, ... A.Degree].

Algorithms

LagOp objects implicitly store polynomial lags and corresponding coefficient matrices
of zero-valued coefficients via lag-based indexing. However, cell arrays conform to
traditional element indexing rules, and must explicitly store zero coefficient matrices.

The output cell array is equivalent to the input lag operator polynomial in the sense that
the same lag operator is created when the output coefficients and lags are used to create
a new LagOp object. That is, the following two statements produce the same polynomial
A(L):

[coefficients,lags] = toCellArray(A);

A = LagOp(coefficients,'Lags',lags);

9 Functions — Alphabetical List

9-1000

Examples

Convert Lag Operator to a Cell Array

Create a LagOp polynomial and convert it to a cell array:

A = LagOp({0.8 1 0 .6});

B = toCellArray(A);

class(B)

ans =

cell

 var2vec

9-1001

var2vec
Convert VAR model to VEC model

If any of the time series in a vector autoregression (VAR) model are cointegrated, then
the VAR model is nonstationary. You can determine the error-correction coefficient by
converting the VAR model to a vector error-correction (VEC) model. The error-correction
coefficient matrix determines, on average, how the time series react to deviations from
their long-run averages. The rank of the error-correction coefficient determines how
many cointegrating relations there exist in the model.

Because vgxvarx is suitable for estimating VAR models in reduced form, you can
convert an estimated VAR model to its VEC model equivalent using var2vec.

Syntax

[VEC,C] = var2vec(VAR)

Description

[VEC,C] = var2vec(VAR) returns the coefficient matrices (VEC) and the error-
correction coefficient matrix (C) of the vector error-correction model equivalent to the
vector autoregressive model with coefficient matrices (VAR). If the number of lags in
the input vector autoregressive model is p, then the number of lags in the output vector
error-correction model is q = p – 1.

Examples

Convert VAR Model to VEC Model Using Cell Arrays

Consider converting the following VAR(3) model to a VEC(2) model.

9 Functions — Alphabetical List

9-1002

Specify the coefficient matrices (, , and) of the VAR(3) model terms , , and
.

A1 = [0.54 0.86 -0.43;

 1.83 0.32 0.34;

 -2.26 -1.31 3.58];

A2 = zeros(3);

A3 = [0.14 -0.12 0.05;

 0.14 0.07 0.10;

 0.07 0.16 0.07];

Pack the matrices into separate cells of a 3 dimensional cell vector. Put A1 into the first
cell, A2 into the second cell, and A3 into the third cell.

VAR = {A1 A2 A3};

Compute the coefficient matrices of and , and error-correction coefficient
matrix of the equivalent VEC(2) model.

[VEC,C] = var2vec(VAR);

size(VEC)

ans =

 1 2

The specification of a cell array of matrices for the input argument indicates that the
VAR(3) model is a reduced-form model expressed as a difference equation. VAR{1} is the
coefficient of , and subsequent elements correspond to subsequent lags.

VEC is a 1-by-2 cell vector of 3-by-3 coefficient matrices for the VEC(2) equivalent of the
VAR(3) model. Because the VAR(3) model is in reduced form, the equivalent VEC model
is also. That is, VEC{1} is the coefficient of , and subsequent elements correspond
to subsequent lags. The orientation of VEC corresponds to the orientation of VAR.

Display the VEC(2) model coefficients.

B1 = VEC{1}

B2 = VEC{2}

C

 var2vec

9-1003

B1 =

 -0.1400 0.1200 -0.0500

 -0.1400 -0.0700 -0.1000

 -0.0700 -0.1600 -0.0700

B2 =

 -0.1400 0.1200 -0.0500

 -0.1400 -0.0700 -0.1000

 -0.0700 -0.1600 -0.0700

C =

 -0.3200 0.7400 -0.3800

 1.9700 -0.6100 0.4400

 -2.1900 -1.1500 2.6500

Since the constant offsets between the models are equivalent, the resulting VEC(2) model
is

Convert Structural VAR Model to VEC Model Using Lag Operator Polynomials

Consider converting the following structural VAR(2) model to a structural VEC(1) model.

Specify the autoregressive coefficient matrices , , and .

A0 = [0.54 -2.26;

9 Functions — Alphabetical List

9-1004

 1.83 0.86];

A1 = [0.32 -0.43

 -1.31 0.34];

A2 = [0.07 0.07

 -0.01 -0.02];

Pack the matrices into separate cells of a 3 dimensional cell vector. Put A0 into the
first cell, A1 into the second cell, and A2 into the third cell. Negate the coefficients
corresponding to all nonzero lag terms.

VARCoeff = {A0; -A1; -A2};

Create a lag operator polynomial that encompasses the autoregressive terms in the
VAR(2) model.

VAR = LagOp(VARCoeff)

VAR =

 2-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 3 Non-Zero Coefficients]

 Lags: [0 1 2]

 Degree: 2

 Dimension: 2

VAR is a LagOp lag operator polynomial. VAR specifies the VAR(2) model in lag operator
notation, as in this equation

 is the lag operator. If you expand the quantity and solve for , then the result is the
VAR(2) model in difference-equation notation.

Compute the coefficient matrices of and , and the error-correction coefficient
matrix of the equivalent VEC(1) model.

[VEC,C] = var2vec(VAR)

VEC =

 var2vec

9-1005

 2-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 2 Non-Zero Coefficients]

 Lags: [0 1]

 Degree: 1

 Dimension: 2

C =

 -0.1500 1.9000

 -3.1500 -0.5400

VAR.Coefficients{0} is , the coefficient matrix of . Subsequent elements in
VAR.Coefficients correspond to subsequent lags in VAR.Lags.

VEC is the VEC(1) equivalent of the VAR(2) model. Because the VAR(2) model is
structural, the equivalent VEC(1) model is as well. That is, VEC.Coefficients{0}
is the coefficient of , and subsequent elements correspond to subsequent lags in
VEC.Lags.

Display the VEC model coefficients in difference-equation notation.

B0 = VEC.Coefficients{0}

B1 = -VEC.Coefficients{1}

C

B0 =

 0.5400 -2.2600

 1.8300 0.8600

B1 =

 -0.0700 -0.0700

 0.0100 0.0200

C =

 -0.1500 1.9000

 -3.1500 -0.5400

9 Functions — Alphabetical List

9-1006

The resulting VEC(1) model is

Alternatively, reflect the lag operator polynomial VEC around lag 0 to obtain the
difference-equation notation coefficients.

DiffEqnCoeffs = reflect(VEC);

B = toCellArray(DiffEqnCoeffs);

B{1} == B0

B{2} == B1

ans =

 1 1

 1 1

ans =

 1 1

 1 1

Both methods produce the same coefficients.

Convert VARMA Model to VEC Model

Approximate the coefficients of the VEC model that represents this stationary and
invertible VARMA(8,4) model that is in lag operator form

 var2vec

9-1007

where and .

Create a cell vector containing the VAR coefficient matrices. Start with the coefficient of
, and then enter the rest in order by lag. Construct a vector that indicates the degree of

the lag term for the corresponding coefficients.

VAR0 = {[1 0.2 -0.1; 0.03 1 -0.15; 0.9 -0.25 1],...

 [0.5 -0.2 -0.1; -0.3 -0.1 0.1; 0.4 -0.2 -0.05],...

 [0.05 -0.02 -0.01; -0.1 -0.01 -0.001; 0.04 -0.02 -0.005]};

var0Lags = [0 4 8];

Create a cell vector containing the VMA coefficients matrices. Start with the coefficient of
, and then enter the rest in order by lag. Construct a vector that indicates the degree of

the lag term for the corresponding coefficients.

VMA0 = {eye(3),...

 [-0.02 0.03 0.3; 0.003 0.001 0.01; 0.3 0.01 0.01]};

vma0Lags = [0 4];

arma2ma requires LagOp lag operator polynomials for input arguments that comprise
structural VAR or VMA models. Construct separate LagOp polynomials that describe the
VAR(8) and VMA(4) components of the VARMA(8,4) model.

VARLag = LagOp(VAR0,'Lags',var0Lags);

VMALag = LagOp(VMA0,'Lags',vma0Lags);

VARLag and VMALag are LagOp lag operator polynomials that describe the VAR and
VMA components of the VARMA model.

Convert the VARMA(8,4) model to a VAR(p) model by obtaining the coefficients of the
truncated approximation of the infinite-lag polynomial. Set numLags to return at most 12
lagged terms.

numLags = 12;

VAR = arma2ar(VARLag,VMALag,numLags)

VAR =

 3-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 4 Non-Zero Coefficients]

9 Functions — Alphabetical List

9-1008

 Lags: [0 4 8 12]

 Degree: 12

 Dimension: 3

VAR is a LagOP lag operator polynomial. All coefficients except those corresponding to
lags 0, 4, 8, and 12 are 3-by-3 matrices of zeros. The coefficients in VAR.Coefficients
comprise a structural VAR(12) model approximation of the original VARMA(8,4) model.

Compute the coefficients of the VEC(11) model equivalent to the resulting VAR(12)
model.

[VEC,C] = var2vec(VAR)

VEC =

 3-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 12 Non-Zero Coefficients]

 Lags: [0 1 2 3 4 5 6 7 8 9 10 11]

 Degree: 11

 Dimension: 3

C =

 -1.2998 -0.1019 0.5440

 0.3831 -0.8937 0.0603

 -0.9484 0.5068 -1.0876

VEC is a LagOp lag operator polynomial containing the coefficient matrices of the
resulting VEC(11) model in VEC.Coefficients. VEC.Coefficients{0} is the
coefficient of , Vec{1} is the coefficient of , and so on.

Display the nonzero coefficients of the resulting VEC model.

lag2Idx = VEC.Lags + 1; % Lags start at 0. Add 1 to convert to indices.

VecCoeff = toCellArray(VEC);

for j = 1:numel(lag2Idx)

 fprintf('___________Lag %d__________\n',lag2Idx(j) - 1)

 fprintf('%8.3f %8.3f %8.3f \n',VecCoeff{lag2Idx(j)})

 fprintf ('__________________________\n')

 var2vec

9-1009

end

___________Lag 0__________

 1.000 0.030 0.900

 0.200 1.000 -0.250

 -0.100 -0.150 1.000

___________Lag 1__________

 -0.300 0.413 -0.048

 0.098 0.106 0.257

 0.444 -0.090 -0.088

___________Lag 2__________

 -0.300 0.413 -0.048

 0.098 0.106 0.257

 0.444 -0.090 -0.088

___________Lag 3__________

 -0.300 0.413 -0.048

 0.098 0.106 0.257

 0.444 -0.090 -0.088

___________Lag 4__________

 -0.051 0.101 0.042

 -0.053 0.007 -0.011

 0.046 0.001 -0.116

___________Lag 5__________

 -0.051 0.101 0.042

 -0.053 0.007 -0.011

 0.046 0.001 -0.116

___________Lag 6__________

 -0.051 0.101 0.042

 -0.053 0.007 -0.011

 0.046 0.001 -0.116

___________Lag 7__________

 -0.051 0.101 0.042

 -0.053 0.007 -0.011

 0.046 0.001 -0.116

___________Lag 8__________

 -0.014 -0.000 0.010

 0.007 0.000 0.018

9 Functions — Alphabetical List

9-1010

 0.034 0.001 -0.002

___________Lag 9__________

 -0.014 -0.000 0.010

 0.007 0.000 0.018

 0.034 0.001 -0.002

___________Lag 10__________

 -0.014 -0.000 0.010

 0.007 0.000 0.018

 0.034 0.001 -0.002

___________Lag 11__________

 -0.014 -0.000 0.010

 0.007 0.000 0.018

 0.034 0.001 -0.002

• “Determine Cointegration Rank of VEC Model” on page 7-114

Input Arguments

VAR — VAR(p) model coefficients
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

VAR(p) model coefficients, specified as a numeric vector, a cell vector of n-by-n numeric
matrices, or a LagOp lag operator polynomial object.

• For a numeric vector specification:

• The VAR(p) is a univariate time series.
• VAR must be a length p numeric vector.
• VAR(j) contains the scalar Aj, the coefficient of the lagged response yt–j.
• The coefficient of yt (A0) is 1.

• For a cell vector specification:

• VAR must have length p, and each cell contains an n-by-n numeric matrix (n > 1).
• VAR{j} must contain Aj, the coefficient matrix of the lag term yt–j.
• var2vec assumes that the coefficient of yt (A0) is the n-by-n identity.

 var2vec

9-1011

• For a LagOp lag operator polynomial specification:

• VAR.Degree must be p.
• VAR.Coefficients{0} is A0, the coefficient of yt. All other elements

correspond to the coefficients of the subsequent lag terms. For example,
VAR.Coefficients{j} is the coefficient matrix of yt–j. VAR.Lags stores all
nonzero lags.

• To construct a model in reduced form, set VAR.Coefficients{0} to
eye(VAR.Dimension).

For example, consider converting

1 0

0 1

0 1 0 2

1 0 1

0 1 0 01

0 2 0 3
1

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

-

-

È

Î
Í

˘

˚
˙= - -y y yt t t

. .

.

. .

. .
22 + et

to a VEC(1) model. The model is in difference-equation notation. You can convert the
model by entering

VEC = var2vec({[0.1 0.2; 1 0.1], [-0.1 0.01; 0.2 -0.3]});

The VAR(2) model in lag operator notation is

1 0

0 1

0 1 0 2

1 0 1

0 1 0 01

0 2 0 3

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ -

-
-

È

Î
Í

˘

˚
˙

Ê

Ë
Á

ˆ

¯
˜

. .

.

. .

. .
L yt == et .

The coefficient matrices of the lagged responses appear negated compared to the
corresponding coefficients in difference-equation notation. To obtain the same result
using LagOp lag operator polynomials, enter

VAR = LagOp({eye(2), -[0.1 0.2; 1 0.1], -[-0.1 0.01; 0.2 -0.3]});

VEC = var2vec(VAR);

Output Arguments

VEC — VEC(q) model coefficients of differenced responses
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

9 Functions — Alphabetical List

9-1012

VEC(q) model coefficients of differenced responses, returned as a numeric vector, a cell
vector of n-by-n numeric matrices, or a LagOp lag operator polynomial object. n is the
number of time series in the VAR(p) model.

VAR and VEC share the same data type and orientation.

var2vec converts VAR(p) models to VEC(p – 1) models. That is:

• If VAR is a cell or numeric vector, then numel(VEC) is numel(VAR) - 1.
• If VAR is a LagOp lag operator polynomial, then VEC.Degree is VAR.Degree - 1.

C — Error-correction coefficient
numeric matrix

Error-correction coefficient, returned as an n-by-n numeric matrix. n is the number of
time series in the VAR model.

More About

Difference-Equation Notation

A VAR(p) or VEC(q) model written in difference-equation notation isolates the present
value of the response vector and its structural coefficient matrix on the left side of the
equation. The right side of the equation contains the sum of the lagged responses, their
coefficient matrices, the present innovation vector, and, for VEC models, the error-
correction term.

That is, a VAR(p) model written in difference-equation notation is

A y a A y A y A yt t t p t p t0 1 1 2 2= + + + + +- - -... .e

A VEC(q) model written in difference equation notation is

B y b B y B y B y Cyt t t q t q t t0 1 1 2 2 1D D D D= + + + + + +- - - -... .e

For the variable and parameter definitions, see “VAR(p) Model” on page 9-1013 and
“VEC(q) Model” on page 9-1014.

 var2vec

9-1013

Lag Operator Notation

A VAR(p) or VEC(q) model written in lag-operator notation positions all response terms
to the left side of the equation. The right side of the equation contains the model constant
offset vector, the present innovation, and, for VEC models, the error-correction term.

That is, a VAR(p) model written in lag-operator notation is

A L y at t() = + e

where A L A A L A L A Lp
p

() ...= - - - -0 1 2
2 and L y yj

t t j=
-

.

A VEC(q) model written in difference equation notation is

B L y b Cyt t t()D = + +
-1 e

where B L B B L B L B Lq
q

() ...= - - - -0 1 2
2 .

For the variable and parameter definitions, see “VAR(p) Model” on page 9-1013 and
“VEC(q) Model” on page 9-1014.

When comparing lag operator notation to difference-equation notation, the signs of the
lag terms are opposites. For more details, see “Lag Operator Notation” on page 1-22.

VAR(p) Model

A VAR(p) model is a multivariate, autoregressive time series model that has this general
form:

A y a A y A y A yt t t p t p t0 1 1 2 2= + + + + +- - -... .e

• yt is an n-dimensional time series.
• A0 is the n-by-n invertible structural coefficient matrix. For models in reduced form,

A0 = In, which is the n-dimensional identity matrix.
• a is an n-dimensional vector of constant offsets.
• Aj is the n-by-n coefficient matrix of yt–j, j = 1,...,p.

9 Functions — Alphabetical List

9-1014

• εt is an n-dimensional innovations series. The innovations are serially uncorrelated,
and have a multivariate normal distribution with mean 0 and n-by-n covariance
matrix Σ.

VEC(q) Model

A VEC(q) model is a multivariate, autoregressive time series model that has this general
form:

B y b B y B y B y Cyt t t q t q t t0 1 1 2 2 1D D D D= + + + + + +- - - -... .e

• yt is an n-dimensional time series.
• Δ is the first difference operator, that is, Δyt = yt – yt–1.
• B0 is the n-by-n invertible structural coefficient matrix. For models in reduced form,

B0 = In, which is the n-dimensional identity matrix.
• b is an n-dimensional vector of constant offsets.
• Bj is the n-by-n coefficient matrix of Δyt–j, j = 1,...,q.
• εt is an n-dimensional innovations series. The innovations are serially uncorrelated,

and have a multivariate normal distribution with mean 0 and n-by-n covariance
matrix Σ.

• C is the n-by-n error-correction or impact coefficient matrix.

Tips

• To accommodate structural VAR models, specify the input argument VAR as a LagOp
lag operator polynomial.

• To access the cell vector of the lag operator polynomial coefficients of the output
argument VEC, enter toCellArray(VEC).

• To convert the model coefficients of the output argument from lag operator notation to
the model coefficients in difference-equation notation, enter

VECDEN = toCellArray(reflect(VEC));

VECDEN is a cell vector containing p coefficients corresponding to the differenced
response terms in VEC.Lags in difference-equation notation. The first element is the
coefficient of Δyt, the second element is the coefficient of Δyt–1, and so on.

• Consider converting a VAR(p) model to a VEC(q) model. If the error-correction
coefficient matrix (C) has:

 var2vec

9-1015

• Rank zero, then the converted VEC model is a stable VAR(p – 1) model in terms of
Δyt.

• Full rank, then the VAR(p) model is stable (i.e., has no unit roots) [2].
• Rank r, such that 0 < r < n, then the stable VEC model has r cointegrating

relations.
• The constant offset of the converted VEC model is the same as the constant offset of

the VAR model.

Algorithms

• var2vec does not impose stability requirements on the coefficients. To check for
stability, use isStable.

isStable requires a LagOp lag operator polynomial as an input argument. For
example, to check whether VAR, the cell array of n-by-n numeric matrices, composes a
stable time series, enter

varLagOp = LagOp([eye(n) VAR]);

isStable(varLagOp)

A 0 indicates that the polynomial is not stable.

• “Lag Operator Notation” on page 1-22
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Lutkepohl, H. "New Introduction to Multiple Time Series Analysis." Springer-Verlag,
2007.

See Also
arma2ar | arma2ma | isStable | LagOp | toCellArray | vec2var | vgxvarx

Introduced in R2015b

9 Functions — Alphabetical List

9-1016

vartovec
Vector autoregression (VAR) to vector error-correction model (VEC)

Syntax

[VEC,C] = vartovec(VAR)

Description

Note: vartovec will be removed in a future release. Use var2vec instead.

Given a vector autoregression (VAR) model, [VEC,C] = vartovec(VAR) converts VAR
to an equivalent vector error-correction (VEC) model. A VAR(p) model of a time series y(t)
has the form:

A y yy t A t A t p tp0 1 1() = -() + + -() + ()... e

The equivalent VEC(q) model, with q = p − 1, has the form:

B z t B z t B z t q Cy t tq0 1 1 1() = -() + + -() + -() + ()... e

where z(t) = y(t) − y(t − 1) and C is the error-correction coefficient.

Input Arguments

VAR

The VAR(p) model to be converted to an equivalent VEC(q) model, with q = p − 1. VAR
is specified by a (p + 1)-element cell vector of square matrices {A0 A1 ... Ap} associated
with coefficients at lags 0, 1, ..., p. To represent a univariate model, VAR may be specified

 vartovec

9-1017

as a double-precision vector. Alternatively, VAR may be specified as a LagOp object or a
vgxset object.

Output Arguments

VEC

The VEC representation of the input VAR model. The data type and orientation of VEC is
consistent with that of VAR

C

The error-correction coefficient. C is a square matrix the same size as the coefficients of
the associated VEC.

Examples

Convert a VAR Model to a VEC Model

Specify a VAR(2) model of time series yt:

y A y A yt t t t= + +
- -1 1 2 2

e

The coefficients are:

A1

0 1 0 3

0 2 0 1
=

-

-

È

Î
Í

˘

˚
˙

. .

. .

A2

0 2 0 8

0 7 0 4
=

-

- -

È

Î
Í

˘

˚
˙

. .

. .

Enter the coefficients from the difference equation directly into a cell array:

VAR = {eye(2) [-0.1 0.3 ; 0.2 -0.1] ...

9 Functions — Alphabetical List

9-1018

 [-0.2 0.8 ; -0.7 -0.4]};

Use vartovec to convert the VAR(2) model to an equivalent VEC(1) model:

[VEC, C] = vartovec(VAR);

Warning: VARTOVEC will be removed in a future release. Use VAR2VEC instead.

Since the original VAR model was specified as a cell array, the VEC model is also a cell
array. The error correction coefficient argument is a matrix.

You can express the same VAR(2) model as a lag operator polynomial:

I A L A L yt t- - =()1 2

2
e

Specify the model with the LagOp constructor:

VAR_LAG = LagOp({eye(2) [0.1 -0.3 ; -0.2 0.1] ...

 [0.2 -0.8 ; 0.7 0.4]});

Use vartovec to convert the VAR(2) model to an equivalent VEC(1) model:

[VEC_LAG, C_LAG] = vartovec(VAR_LAG)

Warning: VARTOVEC will be removed in a future release. Use VAR2VEC instead.

VEC_LAG =

 2-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 2 Non-Zero Coefficients]

 Lags: [0 1]

 Degree: 1

 Dimension: 2

C_LAG =

 -1.3000 1.1000

 -0.5000 -1.5000

Since the input model is a lag operator polynomial the output model is also is a lag
operator polynomial. See “Specify Lag Operator Polynomials” on page 2-11 for more
information on lag operator polynomials.

 vartovec

9-1019

More About

Algorithms

• Written as a polynomial in the lag operator Ly(t) = y(t − 1), a VAR(p) model has the
form:

A A L A L y t A L y t tp
p

0 1
- - - () = () () = ()()... e

The equivalent VEC(q) model has the form:

B B L B L z t B L z t Cy t tq
q

0 1
1- - -() () = () () = -() + ()... e

Thus, if VAR is specified as a LagOp object A, coefficients of lagged values of y(t) must
be represented by the opposite of their values in standard difference-equation form,
and the output VEC will follow a similar sign convention

• If VAR is specified as a vgxset object, the conversion involves only the AR0, AR, and
nAR components of the model. Other model components are unaffected.

References

[1] Hamilton, J. D. "Time Series Analysis." Princeton, NJ: Princeton University Press,
1994.

[2] Lutkepohl, H. "New Introduction to Multiple Time Series Analysis." Springer-Verlag,
2007.

See Also
vec2var | var2vec | LagOp | vgxset

Introduced in R2011a

9 Functions — Alphabetical List

9-1020

vec2var
Convert VEC model to VAR model

Econometrics Toolbox multivariate time series model functions such as vgxsim,
vgxpred, and armairf are appropriate for vector autoregression (VAR) models. To
simulate, forecast, or generate impulse responses from a vector error-correction (VEC)
model using vgxsim, vgxpred, or armairf, respectively, convert the VEC model to its
equivalent VAR model representation.

Syntax

VAR = vec2var(VEC,C)

Description

VAR = vec2var(VEC,C) returns the coefficient matrices (VAR) of the vector
autoregressive model equivalent to the vector error-correction model with coefficient
matrices (VEC). If the number of lags in the input vector error-correction model is q, then
the number of lags in the output vector error-correction model is p = q + 1.

Examples

Convert VEC Model to VAR Model Using Cell Arrays

Consider converting the following VEC(2) model to a VAR(3) model.

Specify the coefficient matrices (and) of and , and the error-correction
coefficient .

 vec2var

9-1021

B1 = [-0.14 0.12 -0.05;

 -0.14 -0.07 -0.10;

 -0.07 -0.16 -0.07];

B2 = [-0.14 0.12 -0.05;

 -0.14 -0.07 -0.10;

 -0.07 -0.16 -0.07];

C = [-0.32 0.74 -0.38;

 1.97 -0.61 0.44;

 - 2.19 -1.15 2.65];

Pack the matrices into separate cells of a 2-dimensional cell vector. Put B1 into the first
cell and B2 into the second cell.

VEC = {B1 B2};

Compute the coefficient matrices of the equivalent VAR(3) model.

VAR = vec2var(VEC,C);

size(VAR)

ans =

 1 3

The specification of a cell array of matrices for the input argument indicates that the
VEC(2) model is in reduced form, and VEC{1} is the coefficient of . Subsequent
elements correspond to subsequent lags.

VAR is a 1-by-3 cell vector of 3-by-3 coefficient matrices for the VAR(3) equivalent of the
VEC(2) model. Because the VEC(2) model is in reduced form, the equivalent VAR(3)
model is as well. That is, VAR{1} is the coefficient of , and subsequent elements
correspond to subsequent lags. The orientation of VAR corresponds to the orientation of
VEC.

Display the VAR(3) model coefficients.

A1 = VAR{1}

A2 = VAR{2}

A3 = VAR{3}

A1 =

9 Functions — Alphabetical List

9-1022

 0.5400 0.8600 -0.4300

 1.8300 0.3200 0.3400

 -2.2600 -1.3100 3.5800

A2 =

 0 0 0

 0 0 0

 0 0 0

A3 =

 0.1400 -0.1200 0.0500

 0.1400 0.0700 0.1000

 0.0700 0.1600 0.0700

Since the constant offsets between the models are equivalent, the resulting VAR(3) model
is

Convert Structural VEC Model to VAR Model Using Lag Operator Polynomials

Consider converting the following structural VEC(1) model to a structural VAR(2) model.

Specify the coefficient matrices and , and the error-correction coefficient .

B0 = [0.54 -2.26;

 1.83 0.86];

B1 = [-0.07 -0.07

 0.01 0.02];

C = [-0.15 1.9;

 -3.15 -0.54];

 vec2var

9-1023

Pack the matrices into separate cells of a 3-dimensional cell vector. Put B0 into the first
cell and B1 into the second cell. Negate the coefficients corresponding to all nonzero
differenced lag terms.

VECCoeff = {B0; -B1};

Create a lag operator polynomial that encompasses the autoregressive terms in the
VEC(2) model.

VEC = LagOp(VECCoeff)

VEC =

 2-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 2 Non-Zero Coefficients]

 Lags: [0 1]

 Degree: 1

 Dimension: 2

VEC is a LagOp lag operator polynomial, and specifies the autoregressive lag operator
polynomial in this equation

 is the lag operator. If you expand the quantity and solve for , then the result is the
VAR(2) model in difference-equation notation.

Compute the coefficient matrices of the equivalent VAR(2) model.

VAR = vec2var(VEC,C)

VAR =

 2-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 3 Non-Zero Coefficients]

 Lags: [0 1 2]

 Degree: 2

 Dimension: 2

VEC.Coefficients{0} is , the coefficient matrix of . Subsequent elements in
VAR.Coefficients correspond to subsequent lags in VEC.Lags.

9 Functions — Alphabetical List

9-1024

VAR is the VAR(2) equivalent of the VEC(1) model. Becayse the VEC(1) model is
structural, the equivalent VAR(2) is as well. That is, VAR.Coefficients{0} is the
coefficient of , and subsequent elements correspond to subsequent lags in VAR.Lags.

Display the VAR(2) model coefficients in difference-equation notation.

A0 = VAR.Coefficients{0}

A1 = -VAR.Coefficients{1}

A2 = -VAR.Coefficients{2}

A0 =

 0.5400 -2.2600

 1.8300 0.8600

A1 =

 0.3200 -0.4300

 -1.3100 0.3400

A2 =

 0.0700 0.0700

 -0.0100 -0.0200

The resulting VAR(3) model is

Alternatively, reflect the lag operator polynomial VAR around lag 0 to obtain the
difference-equation notation coefficients.

DiffEqnCoeffs = reflect(VAR);

A = toCellArray(DiffEqnCoeffs);

A{1} == A0

A{2} == A1

A{3} == A2

 vec2var

9-1025

ans =

 1 1

 1 1

ans =

 1 1

 1 1

ans =

 1 1

 1 1

Both methods produce the same coefficients.

Convert Structural VEC model to VMA Model

Approximate the coefficients of the structural VMA model that represents the structural
VEC(8) model

where , , and, for j = 1,2, and 3,
.

Create a cell vector containing the VEC(8) model coefficient matrices. Start with the
coefficient of , and then enter the rest in order by lag. Construct a vector that
indicates the degree of the lag term for the corresponding coefficients.

VEC0 = {[1 0.2 -0.1; 0.03 1 -0.15; 0.9 -0.25 1],...

 [0.5 -0.2 -0.1; -0.3 -0.1 0.1; 0.4 -0.2 -0.05],...

 [0.05 -0.02 -0.01; -0.1 -0.01 -0.001; 0.04 -0.02 -0.005]};

9 Functions — Alphabetical List

9-1026

vec0Lags = [0 4 8];

C = [-0.02 0.03 0.3; 0.05 0.1 0.01; 0.3 0.01 0.01];

vec2var requires a LagOp lag operator polynomial for an input argument that comprises
a structural VEC(8) model. Construct a LagOp lag operator polynomial that describes the
VEC(8) model autoregressive coefficient matrix component (i.e., the coefficients of
and its lags).

VECLag = LagOp(VEC0,'Lags',vec0Lags);

VECLag is a LagOp lag operator polynomial that describes the autoregressive component
of the VEC(8) model.

Compute the coefficients of the VAR(9) model equivalent to the VEC(8) model.

VAR = vec2var(VECLag,C)

VAR =

 3-D Lag Operator Polynomial:

 Coefficients: [Lag-Indexed Cell Array with 6 Non-Zero Coefficients]

 Lags: [0 1 4 5 8 9]

 Degree: 9

 Dimension: 3

VAR is a LagOp lag operator polynomial. All coefficients except those corresponding to
lags 0, 1, 4, 5, 8, and 9 are 3-by-3 matrices of zeros. The coefficients in VAR comprise a
stable, structural VAR(9) model equivalent to the original VEC(8) model. The model is
stable because the error-correction coefficient has full rank.

Compute the coefficients of the VMA model approximation to the resulting VAR(9)
model. Set numLags to return at most 12 lags.

numLags = 12;

VMA = arma2ma(VAR,[],numLags);

VMA is a LagOp lag operator polynomial containing the coefficient matrices of the
resulting VMA(12) model in VMA.Coefficients. VMA{0} is the coefficient of , VMA{1}
is the coefficient of , and so on.

• “Simulate and Forecast a VEC Model” on page 7-129

 vec2var

9-1027

• “Generate VEC Model Impulse Responses” on page 7-138

Input Arguments

VEC — VEC(q) model coefficients of differenced responses
numeric vector | cell vector of square, numeric matrices | LagOp lag operator polynomial
object

VEC(q) model coefficients of differenced responses, specified as a numeric vector, a cell
vector of n-by-n numeric matrices, or a LagOp lag operator polynomial object.

• For a numeric vector specification:

• The VEC(q) is a univariate time series.
• VEC must be a length q numeric vector.
• VEC(j) contains the scalar Bj, the coefficient of the lagged difference Δyt–j.
• The coefficient of Δyt (B0) is 1.

• For a cell vector specification:

• VEC must have length q, and each cell contains an n-by-n numeric matrix (n > 1).
• VEC{j} must contain Bj, the coefficient matrix of the lag term Δyt–j.
• vec2var assumes that the coefficient of Δyt (B0) is the n-by-n identity.

• For a LagOp lag operator polynomial specification:

• VEC.Degree must be q.
• VEC.Coefficients{0} is B0, the coefficient of Δyt. All other elements correspond

to the coefficients of the subsequent lagged, differenced terms. For example,
VEC.Coefficients{j} is the coefficient matrix of Δyt–j. VEC.Lags stores all
nonzero lags.

• To construct a model in reduced form, set VEC.Coefficients{0} to
eye(VEC.Dimension).

For example, consider converting

1 0

0 1

0 1 0 2

1 0 1

0 1 0 01

0 2 0 3
1

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

-

-

È

Î
Í

˘

˚
˙= -D D Dy yt t

. .

.

. .

. .
yy yt t t- -+

-

È

Î
Í

˘

˚
˙ +2 1

0 5 0

0 1 1

.

.
e

9 Functions — Alphabetical List

9-1028

to a VAR(3) model. The model is in difference-equation notation. You can convert the
model by entering

VAR = vec2var({[0.1 0.2; 1 0.1], -[-0.1 0.01; 0.2 -0.3]},[0.5 0; -0.1 1]);

The VEC(2) model in lag operator notation is

1 0

0 1

0 1 0 2

1 0 1

0 1 0 01

0 2 0 3

2È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ -

-
-

È

Î
Í

˘

˚
˙

Ê

Ë
Á

ˆ

¯
˜

. .

.

. .

. .
L L DDy yt t t=

-
È

Î
Í

˘

˚
˙ +-

0 5 0

0 1 1
1

.

.
e

The AR coefficient matrices of the lagged responses appear negated compared to the
corresponding coefficients in difference-equation notation. To obtain the same result
using LagOP lag operator polynomials, enter

VEC = LagOp({eye(2), -[0.1 0.2; 1 0.1], -[-0.1 0.01; 0.2 -0.3]});

C = [0.5 0; -0.1 1];

VAR = vec2var(VEC,C);

C — Error-correction coefficient
numeric matrix

Error-correction coefficient, specified as an n-by-n numeric matrix. n is the number of
time series in the VEC model. The dimensions of C and the matrices composing VEC must
be equivalent.
Data Types: double

Output Arguments

VAR — VAR(p) model coefficients
cell vector of square, numeric matrices | LagOp lag operator polynomial object | numeric
vector

VAR(p) model coefficients, returned as a a numeric vector, cell vector of n-by-n numeric
matrices, or a LagOp lag operator polynomial object. n is the number of time series in the
VEC model.

VEC and VAR share the same data type and orientation.

vec2var converts VEC(q) models to VAR(q + 1) models. That is:

• If VEC is a cell or numeric vector, then numel(VAR) is numel(VEC) + 1.

 vec2var

9-1029

• If VEC is a LagOp lag operator polynomial, then VAR.Degree is VEC.Degree + 1.

More About

Difference-Equation Notation

A VAR(p) or VEC(q) model written in difference-equation notation isolates the present
value of the response vector and its structural coefficient matrix on the left side of the
equation. The right side of the equation contains the sum of the lagged responses, their
coefficient matrices, the present innovation vector, and, for VEC models, the error-
correction term.

That is, a VAR(p) model written in difference-equation notation is

A y a A y A y A yt t t p t p t0 1 1 2 2= + + + + +- - -... .e

A VEC(q) model written in difference equation notation is

B y b B y B y B y Cyt t t q t q t t0 1 1 2 2 1D D D D= + + + + + +- - - -... .e

For the variable and parameter definitions, see “VAR(p) Model” on page 9-1013 and
“VEC(q) Model” on page 9-1014.

Lag Operator Notation

A VAR(p) or VEC(q) model written in lag-operator notation positions all response terms
to the left side of the equation. The right side of the equation contains the model constant
offset vector, the present innovation, and, for VEC models, the error-correction term.

That is, a VAR(p) model written in lag-operator notation is

A L y at t() = + e

where A L A A L A L A Lp
p

() ...= - - - -0 1 2
2 and L y yj

t t j=
-

.

A VEC(q) model written in difference equation notation is

B L y b Cyt t t()D = + +
-1 e

9 Functions — Alphabetical List

9-1030

where B L B B L B L B Lq
q

() ...= - - - -0 1 2
2 .

For the variable and parameter definitions, see “VAR(p) Model” on page 9-1013 and
“VEC(q) Model” on page 9-1014.

When comparing lag operator notation to difference-equation notation, the signs of the
lag terms are opposites. For more details, see “Lag Operator Notation” on page 1-22.

VAR(p) Model

A VAR(p) model is a multivariate, autoregressive time series model that has this general
form:

A y a A y A y A yt t t p t p t0 1 1 2 2= + + + + +- - -... .e

• yt is an n-dimensional time series.
• A0 is the n-by-n invertible structural coefficient matrix. For models in reduced form,

A0 = In, which is the n-dimensional identity matrix.
• a is an n-dimensional vector of constant offsets.
• Aj is the n-by-n coefficient matrix of yt–j, j = 1,...,p.
• εt is an n-dimensional innovations series. The innovations are serially uncorrelated,

and have a multivariate normal distribution with mean 0 and n-by-n covariance
matrix Σ.

VEC(q) Model

A VEC(q) model is a multivariate, autoregressive time series model that has this general
form:

B y b B y B y B y Cyt t t q t q t t0 1 1 2 2 1D D D D= + + + + + +- - - -... .e

• yt is an n-dimensional time series.
• Δ is the first difference operator, that is, Δyt = yt – yt–1.
• B0 is the n-by-n invertible structural coefficient matrix. For models in reduced form,

B0 = In, which is the n-dimensional identity matrix.
• b is an n-dimensional vector of constant offsets.

 vec2var

9-1031

• Bj is the n-by-n coefficient matrix of Δyt–j, j = 1,...,q.
• εt is an n-dimensional innovations series. The innovations are serially uncorrelated,

and have a multivariate normal distribution with mean 0 and n-by-n covariance
matrix Σ.

• C is the n-by-n error-correction or impact coefficient matrix.

Tips

• To accommodate structural VEC models, specify the input argument VEC as a LagOp
lag operator polynomial.

• To access the cell vector of the lag operator polynomial coefficients of the output
argument VAR, enter toCellArray(VAR).

• To convert the model coefficients of the output argument from lag operator notation to
the model coefficients in difference-equation notation, enter

VARDEN = toCellArray(reflect(VAR));

VARDEN is a cell vector containing q + 1 coefficients corresponding to the response
terms in VAR.Lags in difference-equation notation. The first element is the coefficient
of yt, the second element is the coefficient of yt–1, and so on.

• The constant offset of the converted VAR model is the same as the constant offset of
the VEC model.

Algorithms

• vec2var does not impose stability requirements on the coefficients. To check for
stability, use isStable.

isStable requires a LagOp lag operator polynomial as input. For example, to check
whether VAR, the cell array of n-byn numeric matrices, composes a stable time series,
enter

varLagOp = LagOp([eye(n) var]);

isStable(varLagOp)

A 0 indicates that the polynomial is not stable. If VAR is a LagOp lag operator
polynomial, then pass it to isStable.

• “Lag Operator Notation” on page 1-22
• “Vector Autoregressive (VAR) Models” on page 7-3
• “Cointegration and Error Correction Analysis” on page 7-108

9 Functions — Alphabetical List

9-1032

References

[1] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

[2] Lutkepohl, H. "New Introduction to Multiple Time Series Analysis." Springer-Verlag,
2007.

See Also
arma2ar | arma2ma | armairf | isStable | LagOp | toCellArray | var2vec |
vgxvarx

Introduced in R2015b

 vectovar

9-1033

vectovar
Vector error-correction (VEC) to vector autoregression (VAR)

Syntax

VAR = vectovar(VEC,C)

Description

Note: vectovar will be removed in a future release. Use vec2var instead.

Given a vector error-correction (VEC) model, VAR = vectovar(VEC,C) converts VEC
to an equivalent vector autoregression (VAR) model. A VEC(q) model of a time series y(t)
has the form:

B z t B z t B z t q Cy t tq0 1 1 1() = -() + + -() + -() + ()... e

where z(t) = y(t) − y(t − 1) and C is the error-correction coefficient. The equivalent VAR(p)
model with p = q + 1 has the form:

A y yy t A t A t p tp0 1 1() = -() + + -() + ()... e

Input Arguments

VEC

The VEC(q) model to be converted to an equivalent VAR(p) model, with p = q + 1. VEC
is specified by a (q + 1)-element cell vector of square matrices {B0 B1 ... Bq} associated
with coefficients at lags 0, 1, ..., q. To represent a univariate model, VEC may be specified
as a double-precision vector. Alternatively, VEC may be specified as a LagOp object or a
vgxset object.

9 Functions — Alphabetical List

9-1034

C

The error-correction coefficient. C is a square matrix the same size as the coefficients of
the associated VEC.

Output Arguments

VAR

The VAR representation of the input VEC model. The data type and orientation of VAR
is consistent with that of VEC.

Examples

Convert a VEC Model to a VAR Model

Specify a VEC(1) model of time series yt:

D Dy B y Cyt t t t= + +
- -1 1 1

e

The first-order lag coefficient is:

B1

0 2 0 8

0 7 0 4
=

-È

Î
Í

˘

˚
˙

. .

. .

The error-correction coefficient is:

C =
-

- -

È

Î
Í

˘

˚
˙

1 3 1 1

0 5 1 5

. .

. .

Enter the coefficients from the difference equation (including the identity for B0) directly
into a cell array:

VEC = {eye(2) [0.2 -0.8 ; 0.7 0.4]};

 vectovar

9-1035

C = [-1.3 1.1 ; -0.5 -1.5];

Use vectovar to convert the VEC(1) model to an equivalent VAR(2) model:

VAR = vectovar(VEC, C);

Warning: VECTOVAR will be removed in a future release. Use VEC2VAR instead.

Since the original VEC model was specified as a cell array, the VAR model is also a cell
array. The output cell array contains A0, A1, and A2:

A0 = VAR{1}

A1 = VAR{2}

A2 = VAR{3}

A0 =

 1 0

 0 1

A1 =

 -0.1000 0.3000

 0.2000 -0.1000

A2 =

 -0.2000 0.8000

 -0.7000 -0.4000

You can express the same VEC(1) model as a lag operator polynomial:

I B L y Cyt t t- = +() -1 1
D e

To specify the VEC(1) model as a lag operator, use the LagOp constructor to create a lag
operator polynomial object:

vec = LagOp({eye(2) [-0.2 0.8 ; -0.7 -0.4]});

Use vectovar to convert the VEC(1) model to an equivalent VAR(2) model:

9 Functions — Alphabetical List

9-1036

Since the input model is a lag operator polynomial, so is the output model. The output
model uses the same sign convention as the input model. Obtain the coefficient
associated with the first and second lags of the VAR model by lag-based indexing:

VARFirstCoeff = var.Coefficients{1}

VARSecondCoeff = var.Coefficients{2}

VARFirstCoeff =

 0.1000 -0.3000

 -0.2000 0.1000

VARSecondCoeff =

 0.2000 -0.8000

 0.7000 0.4000

See “Specify Lag Operator Polynomials” on page 2-11 for more information on lag
operator polynomials.

More About

Algorithms

• Written as a polynomial in the lag operator Ly(t) = y(t − 1), a VEC(q) model has the
form:

B B L B L z t B L z t Cy t tq
q

0 1
1- - -() () = () () = -() + ()... e

The equivalent VAR(p) model has the form:

A A L A L y t A L y t tp
p

0 1
- - - () = () () = ()()... e

Thus, if VEC is specified as a LagOp object B, coefficients of lagged values of z(t) must
be represented by the opposite of their values in standard difference-equation form.
The output, VAR, will follow a similar sign convention.

 vectovar

9-1037

• If VEC is specified as a vgxset object, the conversion involves only the AR0, AR, and
nAR components of the model. Other model components are unaffected.

References

[1] Hamilton, J. D. "Time Series Analysis." Princeton, NJ: Princeton University Press,
1994.

[2] Lutkepohl, H. "New Introduction to Multiple Time Series Analysis." Springer-Verlag,
2007.

See Also
var2vec | vec2var | LagOp | vgxset

Introduced in R2011a

9 Functions — Alphabetical List

9-1038

vgxar
Convert VARMA model to VAR model

Syntax
SpecAR = vgxar(Spec)

SpecAR = vgxar(Spec,nAR,ARlag,Cutoff)

Description

vgxar converts a VARMA model into a pure vector autoregressive (VAR) model. This
function works only for VARMA models and does not handle exogenous variables
(VARMAX models).

Required Input Argument

Spec A multivariate time series specification structure for an n-dimensional
VARMA time series process, as created by vgxset.

Optional Input Arguments

nAR Number of AR lags for the output specification structure. vgxar truncates
an infinite-order VAR model to nAR lags. If specific AR lags are not given by
ARlag, the lags are 1:nAR. To use ARlag, set nAR to [] or to the number of
specific lags.

ARlag A positive integer vector of specific AR lags for the output specification
structure. ARlag must be of length nAR, unless nAR is [].

Cutoff The cutoff for the infinity norm below which trailing lags are removed. The
default is 0, which does not remove any lags and uses the values for nAR
and ARlag.

 vgxar

9-1039

If neither nAR nor ARlag is specified, vgxar uses the maximum lags of the AR or MA lags
of the input Spec.

Note: If a large number of lags is needed to form a pure VAR representation (with unit
roots close to 1), a large number of initial values is also needed for propagation.

Output Arguments

SpecAR A transformed multivariate time series specification structure that
consists of a pure vector autoregressive (VAR) model with nAR lags. Logical
indicators for model parameter estimation (“solve” information) in Spec are
not passed on to SpecAR.

Examples

Convert a VARMA Model to a VAR Model

Start with a 2-dimensional VARMA(2, 2) specification structure in Spec:

load Data_VARMA22

Convert Spec into a pure VAR(2) model in SpecAR:

SpecAR = vgxar(Spec);

Display the original specification structure in Spec and compare with the new
specification structure in SpecAR:

vgxdisp(Spec, SpecAR)

 Model 1: 2-D VARMA(2,2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Model 2: 2-D VAR(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Parameter Model 1 Model 2

 -------------- -------------- --------------

 AR(1)(1,1) 0.373935 0.579177

 (1,2) 0.124043 -0.115882

9 Functions — Alphabetical List

9-1040

 (2,1) 0.375488 0.287303

 (2,2) 0.259077 0.197368

 AR(2)(1,1) 0.0754758 -0.0426874

 (1,2) -0.0972418 -0.015377

 (2,1) 0.0687406 -0.0176683

 (2,2) 0.0155532 0.0134923

 MA(1)(1,1) 0.205242

 (1,2) -0.239925

 (2,1) -0.0881847

 (2,2) -0.0617094

 MA(2)(1,1) -0.0682232

 (1,2) 0.0107276

 (2,1) -0.155213

 (2,2) -0.0040213

 Q(1,1) 0.08 0.08

 Q(2,1) 0.01 0.01

 Q(2,2) 0.03 0.03

Instead of just the default number of AR lags (which is two), obtain the first four AR lags
in SpecAR:

SpecAR = vgxar(Spec, 4);

vgxdisp(Spec, SpecAR)

 Model 1: 2-D VARMA(2,2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Model 2: 2-D VAR(4) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Parameter Model 1 Model 2

 -------------- -------------- --------------

 AR(1)(1,1) 0.373935 0.579177

 (1,2) 0.124043 -0.115882

 (2,1) 0.375488 0.287303

 (2,2) 0.259077 0.197368

 AR(2)(1,1) 0.0754758 -0.0426874

 (1,2) -0.0972418 -0.015377

 (2,1) 0.0687406 -0.0176683

 (2,2) 0.0155532 0.0134923

 AR(3)(1,1) [] 0.0409534

 (1,2) [] -0.00362997

 (2,1) [] 0.0861962

 (2,2) [] -0.0177161

 AR(4)(1,1) [] 0.00955252

 (1,2) [] -0.00469931

 (2,1) [] 0.0022339

 vgxar

9-1041

 (2,2) [] -0.00374581

 MA(1)(1,1) 0.205242

 (1,2) -0.239925

 (2,1) -0.0881847

 (2,2) -0.0617094

 MA(2)(1,1) -0.0682232

 (1,2) 0.0107276

 (2,1) -0.155213

 (2,2) -0.0040213

 Q(1,1) 0.08 0.08

 Q(2,1) 0.01 0.01

 Q(2,2) 0.03 0.03

Obtain just the 99th lag and display the result:

SpecAR = vgxar(Spec, 1, 99);

vgxdisp(SpecAR);

 Model : 2-D VAR(1) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Autoregression lags: 99

 AR(99) Autoregression Matrix:

 8.06035e-45 -2.39247e-45

 1.44771e-44 -4.29698e-45

 Q Innovations Covariance:

 0.08 0.01

 0.01 0.03

See Also
vgxset | vgxma

Introduced in R2008b

9 Functions — Alphabetical List

9-1042

vgxcount
Count VARMAX model parameters

Syntax
NumParam = vgxcount(Spec)

[NumParam,NumActive] = vgxcount(Spec)

Description
vgxcount counts the total and active parameters in a multivariate time series model.

The total number of parameters in a multivariate time series model includes all
parameters in the conditional mean and conditional covariance models. If the innovations
process has a full covariance, the total number of parameters is

n nAR n nMA n nX n n+ ◊ + ◊ + + +
2 2

1 2() /

where n is the number of time series, nAR is the number of autoregressive lag matrices,
nMA is the number of moving average lag matrices, and nX is the number of exogenous
parameters. If the innovations process has a diagonal covariance, the total number of
parameters is

n nAR n nMA n nX n+ ◊ + ◊ + +
2 2

If the model does not have a constant (if Spec.Constant is false), then the total is
reduced by n.

Note: The innovations covariance matrix is a symmetric matrix with at most n(n + 1)/2
unique elements.

Input Arguments
Spec A multivariate time series specification structure for an n-dimensional time

series process, as created by vgxset.

 vgxcount

9-1043

Output Arguments

NumParam Total number of parameters in current model.
NumActive Number of active (unrestricted) parameters in current model.

Examples

Count VAR Model Parameters

Start with a 2-dimensional VARMA(2, 2) specification structure in Spec:

load Data_VARMA22

Change the model to estimate only the diagonals of the AR matrices and count the total
number of parameters in NumParam and the number of unrestricted parameters in
NumActive:

Spec = vgxset(Spec,'ARsolve',{logical(eye(2)),logical(eye(2))});

[NumParam, NumActive] = vgxcount(Spec)

NumParam =

 19

NumActive =

 15

Introduced in R2008b

9 Functions — Alphabetical List

9-1044

vgxdisp
Display VARMAX model parameters and statistics

Syntax

vgxdisp(Spec)

vgxdisp(SpecStd)

vgxdisp(Spec,SpecStd)

vgxdisp(Spec1,Spec2)

vgxdisp(Spec1Std,Spec2Std)

vgxdisp(Spec1,Spec1Std,Spec2,Spec2Std)

vgxdisp(Spec1,Spec2,Spec1Std,Spec2Std)

vgxdisp(Spec1,Spec1Std,Spec2,Spec2Std,...,Specn,SpecnStd)

vgxdisp(Spec1,Spec2,...,Specn,Spec1Std,Spec2Std,...,SpecnStdn)

vgxdisp(___ ,'Name1',Value1,'Name2',Value2,...)

Description

vgxdisp displays multivariate time series model parameters and standard errors in
different formats.

• vgxdisp(Spec) displays a single specification structure Spec.
• vgxdisp(SpecStd) displays a single standard-error structure SpecStd with no t-

statistics.
• vgxdisp(Spec,SpecStd) displays a single specification structure SpecStd with

standard errors.
• vgxdisp(Spec1,Spec2) displays two specification structures Spec1 and Spec2

side-by-side. This option displays the specification structures in table format only.
• vgxdisp(Spec1Std,Spec2Std) displays two standard-error structures Spec1Std

and Spec2Std side-by-side. This option displays the standard-error structures in
table format only.

• vgxdisp(Spec1,Spec1Std,Spec2,Spec2Std) displays two specification
structures side-by-side with standard errors. This option displays the specification
structures in table format only.

 vgxdisp

9-1045

• vgxdisp(Spec1,Spec2,Spec1Std,Spec2Std) also displays two specification
structures side-by-side with standard errors. This option displays the specification
structures in table format only.

• vgxdisp(Spec1,Spec1Std,Spec2,Spec2Std,...,Specn,SpecnStd) displays
n specification structures with standard errors. This option displays the specification
structures in table format only.

• vgxdisp(Spec1,Spec2,...,Specn,Spec1Std,Spec2Std,...,SpecnStdn)

displays n specification structures with standard errors. This option displays the
specification structures in table format only.

• vgxdisp(___ ,'Name1',Value1,'Name2',Value2,...) displays specification
structures with additional with additional options specified by one or more
Name,Value pair arguments.

Required Input Arguments

Spec A multivariate time series specification structure for an n-dimensional time
series process, as created by vgxset.

SpecStd A multivariate time series specification structure that contains standard
errors (or estimation errors) of estimated parameters for a companion n-
dimensional time series process, as created by vgxset. Since the standard
errors are maximum likelihood estimates, set the parameter DoFAdj to
true to apply a degree-of-freedom adjustment and report ordinary least
squares estimates.

If you input multiple specification structures, all must have the same dimension n. Pairs
of specification structures and standard errors must be conformable. You can, however,
specify different AR or MA lag structures for multiple specification structures, and if the
inputs are exogenous, you can also specify different numbers of parameters.

If the specification structures do not set any logical indicators for model parameter
estimation (“solve” information), vgxdisp assumes that every parameter is available for
estimation. In this case, the degree-of-freedom adjustment that vgxdisp makes is the
most conservative estimate for standard errors.

9 Functions — Alphabetical List

9-1046

Optional Input Arguments

Specify the following optional input arguments as variable-length lists of matching
parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The
following rules apply when specifying parameter-name pairs:

• Specify the parameter name as a character string, followed by its corresponding
parameter value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial string matches.

The following table lists valid parameter names.

DoFAdj Specifies whether vgxdisp adjusts for degrees of freedom in standard
errors. Options are:

• true — vgxdisp applies degree-of-freedom adjustment (least-squares
estimation).

• false — vgxdisp does not apply degree-of-freedom adjustment
(maximum likelihood estimation).

Format Specifies format in which model parameters and standard errors are
displayed. Options are:

• 'equation' — vgxdisp displays model parameters and standard
errors in canonical equation form. This is the default format for single
models.

• 'table' — vgxdisp displays model parameters and standard errors in
tabular form. This is the only option for multiple models.

Examples

Display VAR Models

Start with a 2-dimensional VARMA(2,2) data and display the specification Spec:

load Data_VARMA22

 vgxdisp

9-1047

vgxdisp(Spec);

 Model : 2-D VARMA(2,2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 AR(1) Autoregression Matrix:

 0.373935 0.124043

 0.375488 0.259077

 AR(2) Autoregression Matrix:

 0.0754758 -0.0972418

 0.0687406 0.0155532

 MA(1) Moving Average Matrix:

 0.205242 -0.239925

 -0.0881847 -0.0617094

 MA(2) Moving Average Matrix:

 -0.0682232 0.0107276

 -0.155213 -0.0040213

 Q Innovations Covariance:

 0.08 0.01

 0.01 0.03

Assume that you have a 2-dimensional VAR(2) approximation of the original VARMA(2,
2) model estimated from time series data that is in the specification structure EstSpec:

vgxdisp(Spec, EstSpec);

 Model 1: 2-D VARMA(2,2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Model 2: 2-D VAR(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Parameter Model 1 Model 2

 -------------- -------------- --------------

 AR(1)(1,1) 0.373935 0.850166

 (1,2) 0.124043 -0.0498191

 (2,1) 0.375488 0.219381

 (2,2) 0.259077 -0.0227752

 AR(2)(1,1) 0.0754758 -0.294609

 (1,2) -0.0972418 0.221336

 (2,1) 0.0687406 0.264504

 (2,2) 0.0155532 0.0819125

 MA(1)(1,1) 0.205242

 (1,2) -0.239925

 (2,1) -0.0881847

 (2,2) -0.0617094

 MA(2)(1,1) -0.0682232

 (1,2) 0.0107276

9 Functions — Alphabetical List

9-1048

 (2,1) -0.155213

 (2,2) -0.0040213

 Q(1,1) 0.08 0.051844

 Q(2,1) 0.01 0.00711775

 Q(2,2) 0.03 0.0286081

Introduced in R2008b

 vgxget

9-1049

vgxget
Get VARMAX model specification parameters

Syntax

ParameterValue = vgxget(Spec,'ParameterName')

Description

ParameterValue = vgxget(Spec,'ParameterName') returns the value
ParameterValue of the model specification parameter ParameterName given in the
multivariate time series specification structure Spec.

Input Arguments

Spec A multivariate time series specification structure for an n-
dimensional time series process, as created by vgxset.

ParameterName The parameter of Spec whose value is returned by vgxget.
Specify ParameterName as a case-insensitive character string
or as a single-element cell array whose contents are a character
array. You need only type the leading characters that uniquely
identify the parameter.

Output Arguments

ParameterValue The value of ParameterName.

Examples

Set VARMA Model Parameters to a Variable

Start with a 2-dimensional VARMA(2, 2) specification structure in Spec:

9 Functions — Alphabetical List

9-1050

load Data_VARMA22

Obtain and display the string that contains the description of the model:

Model = vgxget(Spec, 'Model')

Model =

2-D VARMA(2,2) with No Additive Constant

Obtain and display the MA coefficients of the model:

MA = vgxget(Spec, 'MA');

MA{:}

ans =

 0.2052 -0.2399

 -0.0882 -0.0617

ans =

 -0.0682 0.0107

 -0.1552 -0.0040

See Also
vgxset

Introduced in R2008b

 vgxinfer

9-1051

vgxinfer
Infer VARMAX model innovations

Syntax
[W,logL] = vgxinfer(Spec,Y)

[W,logL] = vgxinfer(Spec,Y,X,Y0,W0)

Description

vgxinfer infers the innovations from observations of a multivariate time series process
specified by a VARMAX model.

Input Arguments

Spec A model specification structure for a multidimensional VARMAX time
series process, as produced by vgxset or vgxvarx.

Y Response data. Y is a matrix or a 3-D array. If Y is a numObs-
by-numDims matrix, it represents numObs observations of a single path
of a numDims-dimensional time series. If Y is a numObs-by-numDims-
by-numPaths array, it represents numObs observations of numPaths
paths of a numDims-dimensional time series. Observations across paths
are assumed to occur at the same time. The last observation is assumed
to be the most recent.

Optional Input Arguments

X Exogenous data. X is a cell vector or a cell matrix. Each cell contains a
numDims-by-numX design matrix X(t) so that, for some b, X(t)*b is
the regression component of a single numDims-dimensional observation
Y(t) at time t. If X is a numObs-by-1 cell vector, it represents one path
of the explanatory variables. If X is a numObs- by-numXPaths cell
matrix, it represents numXPaths paths of the explanatory variables. If

9 Functions — Alphabetical List

9-1052

Y has multiple paths, X must contain either a single path (applied to all
paths in Y) or at least as many paths as in Y (extra paths are ignored).

Y0 Presample response data. Y0 is a matrix or a 3-D array. If Y0
is a numPresampleYObs-by-numDims matrix, it represents
numPresampleYObs observations of a single path of a numDims-
dimensional time series. If Y0 is a numPresampleYObs-by-numDims-
by-numPreSampleYPaths array, it represents numPresampleYObs
observations of numPreSampleYPaths paths of a numDims-dimensional
time series. If Y0 is empty or if numPresampleYObs is less than the
maximum AR lag in Spec, presample values are padded with zeros.
If numPresampleYObs is greater than the maximum AR lag, the most
recent samples from the last rows of each path of Y0 are used. If Y has
multiple paths, Y0 must contain either a single path (applied to all
paths in Y) or at least as many paths as in Y (extra paths are ignored).

W0 Presample innovations data. W0 is a matrix or a 3-D array. If
W0 is a numPresampleWObs-by-numDims matrix, it represents
numPresampleWObs observations of a single path of a numDims-
dimensional time series. If W0 is a numPresampleWObs-by-numDims-
by-numPreSampleWPaths array, it represents numPresampleWObs
observations of numPreSampleWPaths paths of a numDims-dimensional
time series. If W0 is empty or if numPresampleWObs is less than the
maximum MA lag in Spec, presample values are padded with zeros.
If numPresampleWObs is greater than the maximum MA lag, the most
recent samples from the last rows of each path of W0 are used. If Y has
multiple paths, W0 must contain either a single path (applied to all
paths in Y) or at least as many paths as in Y (extra paths are ignored).

Output Arguments

W Inferred innovations process, the same size as Y.
LogL 1-by-numPaths vector containing the total loglikelihood of the response

data in each path of Y.

Note: The functions vgxinfer and vgxproc are complementary. For example, given
a specification structure Spec for a stable and invertible process and an innovations
process W1, the code

 vgxinfer

9-1053

Y = vgxproc(Spec,W1,X,Y0,W0);

W2 = vgxinfer(Spec,Y,X,Y0,W0);

produces an innovations process W2 that is identical to W1. Differences can appear if the
process in Spec fails to be either stable or invertible.

See Also
vgxpred | vgxproc | vgxsim

Introduced in R2008b

9 Functions — Alphabetical List

9-1054

vgxloglik
VARMAX model loglikelihoods

Syntax
LLF = vgxloglik(Spec,W)

[LLF,CLLF] = vgxloglik(Spec,W)

Description

vgxloglik computes total and conditional loglikelihoods of a multivariate time series
process.

Input Arguments

Spec A multivariate time series specification structure for an n-dimensional time
series process, as created by vgxset.

W Innovations process. nP paths of an n-dimensional innovations process with
T observations for each path, collected in a T-by-n-by-nP array. Times are
ordered by row from oldest to most recent. The innovations covariance is
assumed to be positive-definite. To obtain innovations given a specification
structure and a path of a multiple time series process, use vgxinfer.

Output Arguments

LLF Total loglikelihood function for T observations of an n-dimensional time
series process. If W has nP paths, LLF is a 1-by-nP vector containing the
total loglikelihood function for each path.

CLLF Conditional loglikelihoods for T observations of an n-dimensional time
series process. If W has nP paths, CLLF is a T-by-nP matrix containing the
conditional loglikelihoods for each path. The total loglikelihood LLF is the
sum of the T conditional loglikelihoods in CLLF.

 vgxloglik

9-1055

Examples

Compute VARMA Model Loglikelihood

Start with a 2-dimensional VARMA(2, 2) specification structure in Spec with time series
data and presample data:

load Data_VARMA22

Compute the total loglikelihood function given a specification structure in Spec and an
innovations process derived from the time series data Y using the function vgxinfer:

W = vgxinfer(Spec, Y, [], Y0, W0);

LLF = vgxloglik(Spec, W)

LLF =

 17.8440

See Also
vgxinfer

Introduced in R2008b

9 Functions — Alphabetical List

9-1056

vgxma
Convert VARMA model to VMA model

Syntax
SpecMA = vgxma(Spec)

SpecMA = vgxma(Spec,nMA,MAlag,Cutoff)

Description

vgxma converts a VARMA model into a pure vector moving average (VMA) model.
This function works only for VARMA models and does not handle exogenous variables
(VARMAX models).

Required Input Argument

Spec A multivariate time series specification structure for an n-dimensional
VARMA time series process, as created by vgxset.

Optional Input Arguments

nMA Number of MA lags for the output specification structure. vgxma truncates
an infinite-order VMA model to nMA lags. If specific MA lags are not
given by MAlag, the lags are 1:nMA. To use MAlag, set nMA to [] or to the
number of specific lags.

MAlag A positive integer vector of specific MA lags for the output specification
structure. MAlag must be of length nMA, unless nMA is [].

Cutoff The cutoff for the infinity norm below which trailing lags are removed. The
default is 0, which does not remove any lags and uses the values for nMA
and MAlag.

 vgxma

9-1057

If neither nMA nor MAlag is specified, vgxma uses the maximum lags of the AR or MA lags
of the input Spec.

Note: If a large number of lags is needed to form a pure VMA representation (with unit
roots close to 1), a large number of initial values is also needed for propagation.

Output Arguments

SpecMA A transformed multivariate time series specification structure that
consists of a pure vector moving average (VMA) model with nMA
lags. Logical indicators for model parameter estimation (“solve”
information) in Spec are not passed on to SpecMA.

Examples

Convert a VARMA Model to a VMA Model

Start with a 2-dimensional VARMA(2, 2) specification structure in Spec:

load Data_VARMA22

Convert Spec into a pure VMA(2) model in SpecMA:

SpecMA = vgxma(Spec);

Display the original specification structure in Spec and compare with the new
specification structure in SpecMA:

vgxdisp(Spec, SpecMA)

 Model 1: 2-D VARMA(2,2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Model 2: 2-D VMA(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Parameter Model 1 Model 2

 -------------- -------------- --------------

 AR(1)(1,1) 0.373935

 (1,2) 0.124043

 (2,1) 0.375488

9 Functions — Alphabetical List

9-1058

 (2,2) 0.259077

 AR(2)(1,1) 0.0754758

 (1,2) -0.0972418

 (2,1) 0.0687406

 (2,2) 0.0155532

 MA(1)(1,1) 0.205242 0.579177

 (1,2) -0.239925 -0.115882

 (2,1) -0.0881847 0.287303

 (2,2) -0.0617094 0.197368

 MA(2)(1,1) -0.0682232 0.259465

 (1,2) 0.0107276 -0.105364

 (2,1) -0.155213 0.205435

 (2,2) -0.0040213 0.0191531

 Q(1,1) 0.08 0.08

 Q(2,1) 0.01 0.01

 Q(2,2) 0.03 0.03

Obtain the first 4 MA lags in SpecMA:

SpecMA = vgxma(Spec, 4);

vgxdisp(Spec, SpecMA);

 Model 1: 2-D VARMA(2,2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Model 2: 2-D VMA(4) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Parameter Model 1 Model 2

 -------------- -------------- --------------

 AR(1)(1,1) 0.373935

 (1,2) 0.124043

 (2,1) 0.375488

 (2,2) 0.259077

 AR(2)(1,1) 0.0754758

 (1,2) -0.0972418

 (2,1) 0.0687406

 (2,2) 0.0155532

 MA(1)(1,1) 0.205242 0.579177

 (1,2) -0.239925 -0.115882

 (2,1) -0.0881847 0.287303

 (2,2) -0.0617094 0.197368

 MA(2)(1,1) -0.0682232 0.259465

 (1,2) 0.0107276 -0.105364

 (2,1) -0.155213 0.205435

 (2,2) -0.0040213 0.0191531

 MA(3)(1,1) [] 0.138282

 vgxma

9-1059

 (1,2) [] -0.0649623

 (2,1) [] 0.194931

 (2,2) [] -0.039497

 MA(4)(1,1) [] 0.0754946

 (1,2) [] -0.039006

 (2,1) [] 0.123456

 (2,2) [] -0.0415703

 Q(1,1) 0.08 0.08

 Q(2,1) 0.01 0.01

 Q(2,2) 0.03 0.03

Obtain just the 99th lag and display the result:

SpecMA = vgxma(Spec, 1, 99);

vgxdisp(SpecMA);

 Model : 2-D VMA(1) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Moving average lags: 99

 MA(99) Moving Average Matrix:

 2.09723e-30 -1.03631e-30

 3.16333e-30 -8.85453e-31

 Q Innovations Covariance:

 0.08 0.01

 0.01 0.03

See Also
vgxar

Introduced in R2008b

9 Functions — Alphabetical List

9-1060

vgxplot

Plot VARMAX model responses

Syntax

vgxplot(Spec,Y)

vgxplot(Spec,Y,FY)

vgxplot(Spec,Y,FY,FYCov)

Description

vgxplot plots a multivariate time series process with optional error bands.

Required Input Arguments

Spec A multivariate time series specification structure for an n-dimensional
VARMA time series process, as created by vgxset.

Y nPY observed paths of an n-dimensional time series process with T
observations for each path, collected in a T-by-n-by-nPY array. Times
are ordered by row from oldest to most recent. Plotted error bands are
plus or minus one standard deviation of the one-period prediction error
derived from Spec.

Optional Input Arguments

FY nPFY forecast paths of an n-dimensional time series process with FT
observations for each path, collected in a FT-by-n-by-nPFY array. Times
are ordered by row from oldest to most recent. Plotted error bands are

 vgxplot

9-1061

plus or minus one standard deviation of the cumulative forecast error
derived from FYCov.

FYCov A single path of forecast error covariances for an n-dimensional time
series process with FT observations. FYCov is stored as an FT-cell vector
with n-by-n forecast error covariance matrices in each cell for FT times.
FYCov is the same if the underlying time series process has multiple
paths, so only one path is necessary. Although multiple time series paths
can be plotted, FYCov is based on calibration of a single path of the time
series process. Plots with multiple forecast paths are displayed with
error bands derived from FYCov that may not be valid for all paths.
Nonetheless, the error bands enclose the envelope of multiple paths.

Examples

Forecast and Plot a Vector Autoregressive Process

Start with a 2-dimensional VARMA(2, 2) specification structure in Spec and time series
data in Y:

load Data_VARMA22

Propagate the time series forward 5 periods in FY and the forecast error covariance in
FYCov:

[FY, FYCov] = vgxpred(Spec, 5, [], Y);

Plot just the times series process with 1-step prediction error bands:

vgxplot(Spec, Y);

9 Functions — Alphabetical List

9-1062

Plot just the forecast time series process with t-step prediction error bands:

vgxplot(Spec, [], FY, FYCov);

 vgxplot

9-1063

Plot both the time series process and its forecast with prediction errors (here the plot just
displays the last 10 samples of the times series data):

vgxplot(Spec, Y(end-9:end,:), FY, FYCov);

9 Functions — Alphabetical List

9-1064

Introduced in R2008b

 vgxpred

9-1065

vgxpred
Forecast VARMAX model responses

Syntax
FY = vgxpred(Spec,FT)

[FY,FYCov] = vgxpred(Spec,FT,FX,Y,W,NumPaths)

Description

vgxpred returns the transient response of a process during a forecast period with
zero-valued innovations. To generate a process during a forecast period with simulated
innovations, use vgxsim. To generate a process during a forecast period with known
innovations, use vgxproc.

Input Arguments

Spec A multivariate time series specification structure for an n-dimensional
VARMA time series process, as created by vgxset.

FT Number of forecast observations to be generated.
FX nP paths of forecast regression design matrices associated with FT

observations of an n-dimensional time series process, where each design
matrix linearly relates nX exogenous inputs to each time series at each
observation time. FX is an FT-by-nP matrix of cell arrays with n-by-nX
design matrices in each cell. If FY has multiple paths, FX must contain
either a single path or no fewer than the same number of paths as in FY.
Extra paths are ignored.

Y Presample time series process from the estimation period used for the
forecast period. Y is a collection of nPY paths of an n-dimensional time
series process with T observations for each path, collected in a T-by-n-
by-nPY array. If Y has insufficient observations, the usual initialization
methods for vgxproc and vgxsim apply.

9 Functions — Alphabetical List

9-1066

W Presample innovations process from the estimation period used for
the forecast period. W is a collection of nPW paths of an n-dimensional
innovations process with T observations for each path, collected in
a T-by-n-by-nPW array. If W has insufficient observations, the usual
initialization methods for vgxproc and vgxsim apply.

NumPaths Number of paths to forecast. To generate multiple paths, you must use
NumPaths to specify the number of paths. If FX, Y, and W have single
paths and NumPaths > 1, every forecast is the same.

Output Arguments

FY Forecast times-series process. FY is a collection of NumPaths paths of an
n-dimensional time series process with FT observations for each path,
collected in an FT-by-n-by-NumPaths array.

FYCov Forecast error covariance matrices. FYCov is a single path of forecast
error covariances for an n-dimensional time series process with FT
observations. FYCov is collected in an FT-cell vector with n-by-n forecast
error covariance matrices in each cell for t = 1, ..., FT. FYCov{1} is the
one-period forecast covariance, FYCov{2} is the two-period forecast
covariance, and so forth. FYCov is the same if multiple paths exist for the
underlying time series process.

Examples

Plot VARMA Model Forecasts

Start with a 2-dimensional VARMA(2, 2) specification structure in Spec and times series
and innovations process in Y and W:

load Data_VARMA22

Forecast 10 samples into the future and use the time series and innovations process as
presample data:

[FY, FYCov] = vgxpred(Spec, 10, [], Y, W);

Plot the transient response along with the predict-ahead forecast errors which are
extracted from FYCov by the function vgxplot:

 vgxpred

9-1067

vgxplot(Spec, [], FY, FYCov);

See Also
vgxinfer | vgxproc | vgxsim

Introduced in R2008b

9 Functions — Alphabetical List

9-1068

vgxproc
Generate VARMAX model responses from innovations

Syntax
[Y,logL] = vgxproc(Spec,W)

[Y,logL] = vgxproc(Spec,W,X,Y0,W0)

Description
vgxproc generates model responses using known innovations and a VARMAX model
specification. To generate responses with simulated innovations, use vgxsim. To
generate responses with zero-valued innovations, use vgxpred.

Input Arguments
Spec A model specification structure for a multidimensional VARMAX time

series process, as produced by vgxset or vgxvarx.
W Innovations data, as produced by vgxinfer. W is a matrix or a 3-D

array. If W is a numObs-by-numDims matrix, it represents numObs
observations of a single path of a numDims-dimensional time series. If
W is a numObs-by-numDims-by-numPaths array, it represents numObs
observations of numPaths paths of a numDims-dimensional time series.
Observations across paths are assumed to occur at the same time. The
last observation is assumed to be the most recent.

Optional Input Arguments
X Exogenous data. X is a cell vector or a cell matrix. Each cell contains a

numDims-by-numX design matrix X(t) so that, for some b, X(t)*b is
the regression component of a single numDims-dimensional observation
Y(t) at time t. If X is a numObs-by-1 cell vector, it represents one
path of the explanatory variables. If X is a numObs-by-numXPaths cell
matrix, it represents numXPaths paths of the explanatory variables. If

 vgxproc

9-1069

W has multiple paths, X must contain either a single path (applied to all
paths in W) or at least as many paths as in W (extra paths are ignored).

Y0 Presample response data. Y0 is a matrix or a 3-D array. If Y0
is a numPresampleYObs-by-numDims matrix, it represents
numPresampleYObs observations of a single path of a numDims-
dimensional time series. If Y0 is a numPresampleYObs-by-numDims-
by-numPreSampleYPaths array, it represents numPresampleYObs
observations of numPreSampleYPaths paths of a numDims-dimensional
time series. If Y0 is empty or if numPresampleYObs is less than the
maximum AR lag in Spec, presample values are padded with zeros. If
numPresampleYObs is greater than the maximum AR lag, the most
recent samples from the last rows of each path of Y0 are used. If W has
multiple paths, Y0 must contain either a single path (applied to all
paths in W) or at least as many paths as in W (extra paths are ignored).

W0 Presample innovations data. W0 is a matrix or a 3-D array. If
W0 is a numPresampleWObs-by-numDims matrix, it represents
numPresampleWObs observations of a single path of a numDims-
dimensional time series. If W0 is a numPresampleWObs-by-numDims-
by-numPreSampleWPaths array, it represents numPresampleWObs
observations of numPreSampleWPaths paths of a numDims-dimensional
time series. If W0 is empty or if numPresampleWObs is less than the
maximum MA lag in Spec, presample values are padded with zeros.
If numPresampleWObs is greater than the maximum MA lag, the most
recent samples from the last rows of each path of W0 are used. If W has
multiple paths, W0 must contain either a single path (applied to all
paths in W) or at least as many paths as in W (extra paths are ignored).

Output Arguments

Y Response data, the same size as W.
LogL 1-by-numPaths vector containing the total loglikelihood of the response

data in each path of Y.

Note: The functions vgxinfer and vgxproc are complementary. For example, given
a specification structure Spec for a stable and invertible process and an innovations
process W1, the code

9 Functions — Alphabetical List

9-1070

Y = vgxproc(Spec,W1,X,Y0,W0);

W2 = vgxinfer(Spec,Y,X,Y0,W0);

produces an innovations process W2 that is identical to W1. Differences can appear if the
process in Spec fails to be either stable or invertible.

See Also
vgxinfer | vgxpred | vgxsim

Introduced in R2008b

 vgxqual

9-1071

vgxqual

Test VARMAX model for stability/invertibility

Syntax

[isStable,isInvertible] = vgxqual(Spec)

[isStable,isInvertible,AReig,MAeig] = vgxqual(Spec)

Description

vgxqual determines if a multivariate time series process is stable and invertible.

A process with non-constant exogenous inputs may not be stable or invertible. This
cannot be determined from the specification structure unless the number of exogenous
inputs is zero. vgxqual determines if the AR and the MA portions of a VARMAX
model are stable and invertible without considering exogenous inputs. Thus it is more
appropriate to call a multivariate time series process AR-stable if the AR portion is
stable, and MA-invertible if the MA portion is invertible.

A stable VARMAX process is stationary, but the converse is not true. Although the terms
stable, stationary, and covariance-stationary are often used interchangeably, a process is
truly stationary if and only if its first and second moments are independent of time.

If a VARMAX model has no autoregressive terms, it is always AR-stable.

If a VARMAX model has no moving average terms, it is always MA-invertible.

Input Arguments

Spec A multivariate time series specification structure for an n-dimensional
time series process, as created by vgxset.

9 Functions — Alphabetical List

9-1072

Output Arguments

isStable Logical flag indicating if the multivariate time series process is
stable. The flag is true if the process is stable, false otherwise.

isInvertible Logical flag indicating if the multivariate time series process is
invertible. The flag is true if the process is invertible, false
otherwise.

AReig Largest-magnitude eigenvalue for the AR portion of the multivariate
time series process.

MAeig Largest-magnitude eigenvalue for the MA portion of the
multivariate time series process.

Examples

Verify the Stability and Invertibility of a VARMA Model

Start with a 2-dimensional VARMA(2,2) specification structure in Spec.

load Data_VARMA22

Although the display method for a vgxset object performs this test, the explicit test is:

[isStable, isInvertible] = vgxqual(Spec)

isStable =

 1

isInvertible =

 1

This shows that Spec is a model for an AR-stable and MA-invertible time series process.

Introduced in R2008b

 vgxset

9-1073

vgxset

Set VARMAX model specification parameters

Syntax

Spec = vgxset('Name1',Value1,'Name2',Value2,...)

Spec = vgxset(OldSpec,'Name1',Value1,'Name2',Value2,...)

Spec = vgxset

Description

vgxset sets or modifies parameter values in a multivariate time series specification
structure.

Spec = vgxset('Name1',Value1,'Name2',Value2,...) creates a multivariate
time series specification structure Spec with parameters of specified name set to
specified values. See “Name-Value Pair Arguments” on page 9-1074.

Spec = vgxset(OldSpec,'Name1',Value1,'Name2',Value2,...) modifies the
multivariate time series specification structure OldSpec, changing the parameters
of specified name to the specified values. See “Name-Value Pair Arguments” on page
9-1074.

Spec = vgxset creates a specification structure template for the default model (a
univariate Gaussian noise process with no offset).

Input Arguments

'Name' A character string naming a valid parameter of the output specification
structure Spec.

Value The value assigned to the corresponding parameter.
OldSpec A specification structure to be modified, as created by vgxset.

9 Functions — Alphabetical List

9-1074

Output Arguments
Spec A specification encapsulating the style, orders, and parameters of the

conditional mean of a multivariate time series model.

Name-Value Pair Arguments
Specify the following optional input arguments as variable-length lists of matching
parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The
following rules apply when specifying parameter-value pairs:

• Specify the parameter name as a character string, followed by its corresponding
parameter value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial string matches.

Model Information

Name Value

'Model' A string describing the model. The default is auto-generated, and
depends on model parameters.

'Info' A string with additional model information. The default is empty.
'Series' A cell array of strings providing names for each time series. The

default is empty.

Model Orders

Name Value

n A positive integer specifying the number of time series. The default is
1.

nAR A nonnegative integer specifying the number of AR lags. The default
is 0.

nMA A nonnegative integer specifying the number of MA lags. The default
is 0.

nX A nonnegative integer specifying the number regression parameters.
The default is 0.

 vgxset

9-1075

Model Parameters

Name Value

a An n-vector of offset constants. The default is empty.
AR0 An n-by-n invertible matrix representing the zero-lag structural AR

coefficients. The default is empty.
AR An nAR-element cell array of n-by-n matrices of AR coefficients. The

default is empty.
MA0 An n-by-n invertible matrix representing the zero-lag structural MA

coefficients. The default is empty.
MA An nMA-element cell array of n-by-n matrices of MA coefficients. The

default is empty.
b An nX-vector of regression coefficients. The default is empty.
Q An n-by-n symmetric innovations covariance matrix. The default is

empty.

Model Lags

Name Value

ARlag A monotonically increasing nAR-vector of AR lags. The default is
empty.

MAlag A monotonically increasing nMA-vector of MA lags. The default is
empty.

Model Parameter Estimation

Name Value

asolve An n-vector of additive offset logical indicators. The default is empty.
ARsolve An nAR-element cell array of n-by-n matrices of AR logical indicators.

The default is empty.
AR0solve An n-by-n matrix of AR0 logical indicators. The default is empty.
MAsolve An nMA-element cell array of n-by-n matrices of MA logical indicators.

The default is empty.
MA0solve An n-by-n matrix of MA0 logical indicators. The default is empty.
bsolve An nX-vector of regression logical indicators. The default is empty.

9 Functions — Alphabetical List

9-1076

Name Value

Qsolve An n-by-n symmetric covariance matrix logical indicator. The default
is empty.

Currently, vgxvarx cannot fit the following matrices:

• AR0

• MA0

• MA

Therefore, vgxvarx ignores AR0solve, MA0solve, and MAsolve. However, you are
invited to examine the Example_StructuralParams.m file for one approach to fitting
the AR0 and MA0 matrices. Enter help Example_StructuralParams at the MATLAB
command line for information.

Furthermore, vgxvarx also ignores Qsolve. vgxvarx can fit either a diagonal or a full Q
matrix; see “Optional Input Arguments” on page 9-1082.

Model Offset

Name Value

Constant Additive offset logical indicator. The default is false.

Examples

Specify VARMA Models and Adjust Parameter Values

You can set up a multiple time series specification structure in three ways. The first and
most direct approach is to set all model parameters directly. The following command
creates a specification structure for a 2-dimensional VARMAX(2,1,2) model with constant
offset:

Spec = vgxset('a', [0.1; -0.1], ...

 'b', [1.1, 0.9], ...

 'AR', {[0.6, 0.3; -0.4, 0.7], [0.3, 0.1; 0.05, 0.2]}, ...

 'MA', [0.5, -0.1; 0.07, 0.2], ...

 'Q', [0.03, 0.004; 0.004, 0.006])

 vgxset

9-1077

Spec =

 Model: 2-D VARMAX(2,1,2) with Additive Constant

 n: 2

 nAR: 2

 nMA: 1

 nX: 2

 a: [0.1 -0.1] additive constants

 AR: {2x1 cell} stable autoregressive process

 MA: {1x1 cell} invertible moving average process

 b: [1.1 0.9] regression coefficients

 Q: [2x2] covariance matrix

Notice that multiple lag coefficients are specified as matrices in each cell of a vector cell
array and that a single lag can be entered as a matrix.

A second approach creates the same specification structure for a 2-dimensional
VARMAX(2,1,2) model with constant offset. In this case, however, no parameter values
have been set:

Spec = vgxset('n',2,'nAR',2,'nMA',1,'nX',2, ...

 'Constant',true)

Spec =

 Model: 2-D VARMAX(2,1,2) with Additive Constant

 n: 2

 nAR: 2

 nMA: 1

 nX: 2

 a: []

 AR: {}

 MA: {}

 b: []

 Q: []

Note that this approach requires you to specify explicitly the inclusion of an additive
constant.

Given this specification structure, you can fill in the parameters or use calibration
methods to fill in the rest of the structure.

9 Functions — Alphabetical List

9-1078

The third way to set up a specification structure is to specify which parameters in a
model that you would like to estimate. The following command creates a specification
structure for our 2-dimensional model:

Spec = vgxset('ARsolve', repmat({true(2)}, 2, 1), ...

 'MAsolve',true(2),'bsolve',true(2, 1), ...

 'asolve',true(2,1))

Spec =

 Model: 2-D VARMAX(2,1,2) with Additive Constant

 n: 2

 nAR: 2

 nMA: 1

 nX: 2

 a: []

 asolve: [1 1 logical] additive constant indicators

 AR: {}

 ARsolve: {2x1 cell of logicals} autoregressive lag indicators

 MA: {}

 MAsolve: {1x1 cell of logicals} moving average lag indicators

 b: []

 bsolve: [1 1 logical] regression coefficient indicators

 Q: []

Notice that the dimensions of the model have been specified implicitly from the "solve"
flags which are displayed since they were set directly. The solve flags were not displayed
in prior examples since, by default, the "solve" flags are implicitly true.

Finally, you can change a specification structure by passing it into the function vgxset.
For example, if you start with a fully-qualified VARMAX(2, 1, 2) model,

Spec = vgxset('a', [0.1; -0.1], ...

 'b', [1.1, 0.9], ...

 'AR', {[0.6, 0.3; -0.4, 0.7], [0.3, 0.1; 0.05, 0.2]}, ...

 'MA', [0.5, -0.1; 0.07, 0.2], ...

 'Q', [0.03, 0.004; 0.004, 0.006])

Spec =

 Model: 2-D VARMAX(2,1,2) with Additive Constant

 n: 2

 vgxset

9-1079

 nAR: 2

 nMA: 1

 nX: 2

 a: [0.1 -0.1] additive constants

 AR: {2x1 cell} stable autoregressive process

 MA: {1x1 cell} invertible moving average process

 b: [1.1 0.9] regression coefficients

 Q: [2x2] covariance matrix

you can remove exogenous inputs from the model to convert it into a VARMA(2, 1) model
with:

Spec = vgxset(Spec, 'nX', 0, 'b', [])

Spec =

 Model: 2-D VARMA(2,1) with Additive Constant

 n: 2

 nAR: 2

 nMA: 1

 nX: 0

 a: [0.1 -0.1] additive constants

 AR: {2x1 cell} stable autoregressive process

 MA: {1x1 cell} invertible moving average process

 Q: [2x2] covariance matrix

Notice that you must remove all information about the exogenous inputs which means
both the dimensions 'nX' and, if nonempty, the parameters 'b'.

See Also
vgxget | vgxsim | vgxvarx

Introduced in R2008b

9 Functions — Alphabetical List

9-1080

vgxsim

Simulate VARMAX model responses

Syntax

Y = vgxsim(Spec,numObs)

[Y,W] = vgxsim(Spec,numObs,X,Y0,W0,numPaths)

Description

vgxsim simulates sample paths and innovations of a multidimensional VARMAX time
series process.

Input Arguments

Spec A model specification structure for a multidimensional VARMAX time
series process, as produced by vgxset or vgxvarx.

numObs Positive integer indicating the number of observations generated for
each path of output arguments Y and W.

Optional Input Arguments

X Exogenous data. X is a cell vector or a cell matrix. Each cell contains a
numDims-by-numX design matrix X(t) so that, for some b, X(t)*b is
the regression component of a single numDims-dimensional response
Y(t) at time t. If X is a numObs-by-1 cell vector, it represents one path
of the explanatory variables. If X is a numObs- by-numXPaths cell
matrix, it represents numXPaths paths of the explanatory variables. If
Y has multiple paths, X must contain either a single path (applied to all
paths in Y) or at least as many paths as in Y (extra paths are ignored).

 vgxsim

9-1081

Y0 Presample response data. Y0 is a matrix or a 3-D array. If Y0
is a numPresampleYObs-by-numDims matrix, it represents
numPresampleYObs observations of a single path of a numDims-
dimensional time series. If Y0 is a numPresampleYObs-by-numDims-
by-numPreSampleYPaths array, it represents numPresampleYObs
observations of numPreSampleYPaths paths of a numDims-dimensional
time series. If Y0 is empty or if numPresampleYObs is less than the
maximum AR lag in Spec, presample values are padded with zeros.
If numPresampleYObs is greater than the maximum AR lag, the most
recent samples from the last rows of each path of Y0 are used. If Y has
multiple paths, Y0 must contain either a single path (applied to all
paths in Y) or at least as many paths as in Y (extra paths are ignored).

W0 Presample innovations data. W0 is a matrix or a 3-D array. If
W0 is a numPresampleWObs-by-numDims matrix, it represents
numPresampleWObs observations of a single path of a numDims-
dimensional time series. If W0 is a numPresampleWObs-by-numDims-
by-numPreSampleWPaths array, it represents numPresampleWObs
observations of numPreSampleWPaths paths of a numDims-dimensional
time series. If W0 is empty or if numPresampleWObs is less than the
maximum MA lag in Spec, presample values are padded with zeros. If
numPresampleWObs is greater than the maximum MA lag, the most
recent samples from the last rows of each path of W0 are used. If Y has
multiple paths, W0 must contain either a single path (applied to all
paths in Y) or at least as many paths as in Y (extra paths are ignored).

numPaths Number of simulated paths. The default is 1. It is necessary to specify
numPaths to generate multiple paths. If numPaths > 1 and X, Y, and W
are single paths, all forecasts are identical.

Output Arguments
Y numObs-by-numDims-by-numPaths array of simulated paths.
W numObs-by-numDims-by-numPaths array of innovations.

See Also
vgxinfer | vgxpred | vgxproc

Introduced in R2008b

9 Functions — Alphabetical List

9-1082

vgxvarx

Estimate VARX model parameters

Syntax

EstSpec = vgxvarx(Spec,Y)

[EstSpec,EstStdErrors,LLF,W] = vgxvarx(Spec,Y,X,Y0,'Name1',Value1,'Name2',Value2,...);

Description

vgxvarx estimates parameters of VAR and VARX models using maximum likelihood
estimation.

Required Input Arguments

Spec A multivariate time series specification structure for an n-dimensional time
series process, as created by vgxset. Spec must contain model dimensions,
a lag structure (if any), and parameter estimation mappings (if any). It is not
necessary to have initial values for any parameters to be estimated.

Y A single path of an n-dimensional time series process with T observations for
each path, collected in a T-by-n matrix. If Y contains multiple paths, vgxvarx
uses only the first path to estimate parameters in Spec.

Optional Input Arguments

X Exogenous inputs. nPX paths of regression design matrices associated with
T observations of an n-dimensional time series process, where each design
matrix linearly relates nX exogenous inputs to each time series at each
observation time. X is a T-by-nPX matrix of cell arrays with n-by-nX design
matrices in each cell. If Y has multiple paths, X must contain either a single

 vgxvarx

9-1083

path or no fewer than the same number of paths as in Y. Extra paths are
ignored.

Y0 Presample time series process. nPY0 presample paths of an n-dimensional
time series process with TY0 samples for each path, collected in a TY0-by-n-
by-nPY0 array. If Y0 is empty or if TY0 is less than the maximum AR lag in
Spec, presample values are padded with zeros. If TY0 is greater than the
maximum AR lag, the most recent samples from the last rows of each path of
Y0 are used. If Y0 has multiple paths, Y0 must contain either a single path or
no fewer than the same number of paths as in Y. Extra paths are ignored.

Specify the following optional input arguments as variable-length lists of matching
parameter name/value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The
following rules apply when specifying parameter-name pairs:

• Specify the parameter name as a character string, followed by its corresponding
parameter value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial string matches.

The following table lists valid parameter name/value pairs.

Name Value

'CovarType' Form of the estimated covariance matrix.

• 'full' — estimate the full covariance matrix. This is the
default.

• 'diagonal' — estimate a diagonal covariance matrix.

This value overrides the value of Qsolve in Spec.
'StdErrType' Form of the estimated standard errors.

• 'mean' — estimate only the standard errors associated with the
parameters of the conditional mean. This is the default.

• 'all' — estimate the standard errors for all parameters,
including the parameters for the innovations covariance.

• 'none' — do not estimate the standard errors.

9 Functions — Alphabetical List

9-1084

Name Value

'IgnoreMA' Use of moving average terms in the specification structure.

• 'no' — interpret moving average terms in the specification
structure as errors. This is the default.

• 'yes' — ignore moving average terms in the specification
structure.

For example, if a VARMA (1,1) model is specified with IgnoreMA
set to 'yes', vgxvarx treats the model as a VAR(1) model with no
moving average terms. If IgnoreMA is set to 'no', vgxvarx will not
calibrate the model and will produce an error.

'MaxIter' Maximum number of iterations for parameter estimation. The
default is 1000. For ordinary least-squares (OLS) estimates of the
parameters, set 'MaxIter' to 1. For feasible generalized least-
squares (FGLS) estimates, set 'MaxIter' to 2. This parameter is
used only for regression with exogenous inputs.

'TolParam' Convergence tolerance for parameter estimation. The default is
sqrt(eps).

'TolObj' Convergence tolerance for parameter estimates. The default is
eps^(3/4).

Output Arguments

EstSpec A multivariate time series specification structure for an n-
dimensional time series process that contains parameter estimates
for a VAR or VARX model, as created by vgxset.

EstStdErrors A multivariate time series specification structure containing
standard errors of estimated parameters for the n-dimensional time
series process EstSpec. EstStdErrors is not a specification of a
VAR or VARX model; it contains standard errors that are mapped
to the equivalent model parameters in EstSpec. If StdErrType is
set to 'none', EstStdErrors is vgxset.empty.

The standard errors are maximum likelihood estimates, so a
degree-of-freedom adjustment is necessary to form ordinary least

 vgxvarx

9-1085

squares estimates. To adjust standard errors for degrees-of-
freedom, multiply them by

T

T NumActive- -()1
,

where T is the number of observations of the time series process
and NumActive is the number of unrestricted parameters that
vgxvarx estimates.

LLF The loglikelihood function with the maximum likelihood estimates
of the model parameters from EstSpec.

W Estimated innovations process. Since the estimation is based on a
single path of Y, W contains the inferred path of an n-dimensional
innovations process with T observations given the estimated model
is EstSpec.

Examples

Estimate a Vector Autoregressive Process

Start with a 2-dimensional VARMA(2, 2) specification structure in Spec with presample
data for the time series and innovations process:

load Data_VARMA22

The process in Y was generated with the known specification structure in Spec and is
a VARMA(2, 2) process. Since vgxvarx calibrates VARX models, ignore the moving
average component of the model and fit a pure VAR(2) model as an approximation. The
function vgxvarx generates parameter estimates in EstSpec and standard errors in
EstStdErrors:

[EstSpec, EstStdErrors] = vgxvarx(vgxar(Spec), Y, [], Y0);

Use vgxdisp to display the estimated parameters along with standard errors and t-
statistics:

vgxdisp(EstSpec, EstStdErrors)

9 Functions — Alphabetical List

9-1086

 Model : 2-D VAR(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Standard errors without DoF adjustment (maximum likelihood)

 Parameter Value Std. Error t-Statistic

 -------------- -------------- -------------- --------------

 AR(1)(1,1) 0.850166 0.12583 6.75649

 (1,2) -0.0498191 0.163542 -0.304625

 (2,1) 0.219381 0.0934711 2.34705

 (2,2) -0.0227752 0.121486 -0.187472

 AR(2)(1,1) -0.294609 0.145514 -2.02461

 (1,2) 0.221336 0.148174 1.49376

 (2,1) 0.264504 0.108094 2.44699

 (2,2) 0.0819125 0.110069 0.74419

 Q(1,1) 0.051844

 Q(2,1) 0.00711775

 Q(2,2) 0.0286081

To see qualitatively how well the VARX approximation worked, infer the innovations
process from the calibrated model and compare with the known innovations process from
the VARMA(2, 2) process in W:

EstW = vgxinfer(EstSpec, Y, [], Y0, W0);

subplot(2,1,1);

plot([W(:,1), EstW(:,1)]);

subplot(2,1,2);

plot([W(:,2), EstW(:,2)]);

legend('VARMA(2, 2)', 'VAR(2)');

 vgxvarx

9-1087

Try to calibrate a VAR(2) model with a restricted model such that the cross-terms in the
AR lag matrices are fixed at 0 (this model treats each time series in Y as a separate VAR
model but with a joint distribution for the innovations process):

SpecX = vgxset(vgxar(Spec),'AR',repmat({eye(2)},2,1), ...

 'ARsolve', repmat({ logical(eye(2)) }, 2, 1));

[EstSpecX, EstStdErrorsX] = vgxvarx(SpecX, Y, [], Y0);

Compare the calibrated restricted VAR(2) model with the previous unrestricted VAR(2)
model to see that the cross-terms in the AR lag matrices have been fixed at 0 in the
restricted model:

vgxdisp(EstSpecX, EstSpec);

9 Functions — Alphabetical List

9-1088

 Model 1: 2-D VAR(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Model 2: 2-D VAR(2) with No Additive Constant

 Conditional mean is AR-stable and is MA-invertible

 Parameter Model 1 Model 2

 -------------- -------------- --------------

 AR(1)(1,1) 0.789031 0.850166

 (1,2) 0 -0.0498191

 (2,1) 0 0.219381

 (2,2) 0.284343 -0.0227752

 AR(2)(1,1) -0.251377 -0.294609

 (1,2) 0 0.221336

 (2,1) 0 0.264504

 (2,2) 0.178158 0.0819125

 Q(1,1) 0.0541056 0.051844

 Q(2,1) 0.00806393 0.00711775

 Q(2,2) 0.0410274 0.0286081

Introduced in R2008b

 vratiotest

9-1089

vratiotest

Variance ratio test for random walk

Syntax

h = vratiotest(y)

h = vratiotest(y,'ParameterName',ParameterValue,...)

[h,pValue] = vratiotest(...)

[h,pValue,stat] = vratiotest(...)

[h,pValue,stat,cValue] = vratiotest(...)

[h,pValue,stat,cValue,ratio] = vratiotest(...)

Description

h = vratiotest(y) assesses the null hypothesis of a random walk in a univariate time
series y.

h = vratiotest(y,'ParameterName',ParameterValue,...) accepts optional
inputs as one or more comma-separated parameter-value pairs. 'ParameterName' is
the name of the parameter inside single quotation marks. ParameterValue is the value
corresponding to 'ParameterName'. Specify parameter-value pairs in any order; names
are case-insensitive. Perform multiple tests by passing a vector value for any parameter.
Multiple tests yield vector results.

[h,pValue] = vratiotest(...) returns p-values of the test statistics.

[h,pValue,stat] = vratiotest(...) returns the test statistics.

[h,pValue,stat,cValue] = vratiotest(...) returns critical values for the tests.

[h,pValue,stat,cValue,ratio] = vratiotest(...) returns a vector of ratios.

9 Functions — Alphabetical List

9-1090

Input Arguments

y

Vector of time-series data. The last element is the most recent observation. The test
ignores NaN values, which indicate missing entries.

The input series y is in levels. To convert a return series r to levels, define y(1) and let
y = cumsum([y(1);r]).

Name-Value Pair Arguments

'alpha'

Scalar or vector of nominal significance levels for the tests. Set values between 0 and 1.

The test is two-tailed, so vratiotest rejects the random-walk null when the test
statistic is outside of the critical interval [-cValue,cValue]. Each tail outside of the
critical interval has probability alpha/2.

Default: 0.05

'IID'

Scalar or vector of Boolean values indicating whether to assume independent identically
distributed (IID) innovations.

To strengthen the null model and assume that the e(t) are independent and identically
distributed (IID), set IID to true.

The IID assumption is often unreasonable for long-term macroeconomic or financial price
series. Rejection of the random-walk null due to heteroscedasticity is not interesting for
these cases.

Default: false

'period'

Scalar or vector of integers greater than one and less than half the number of
observations in y, indicating the period q used to create overlapping return horizons for
the variance ratio.

 vratiotest

9-1091

When the period q has the default value of 2, the first-order autocorrelation of the
returns is asymptotically equal to ratio–1.

The test finds the largest integer n such that n*q ≤ T–1, where T is the sample size.
It then discards the final (T–1)–n*q observations. To include these final observations,
discard the initial (T–1)–n*q observations in y before running the test.

Default: 2

Output Arguments

h

Vector of Boolean decisions for the tests, with length equal to the number of tests. Values
of h equal to 1 indicate rejection of the random-walk null in favor of the alternative.
Values of h equal to 0 indicate a failure to reject the random-walk null.

pValue

Vector of p-values of the test statistics, with length equal to the number of tests. Values
are standard normal probabilities.

stat

Vector of test statistics, with length equal to the number of tests. Statistics are
asymptotically standard normal.

cValue

Vector of critical values for the tests, with length equal to the number of tests. Values are
for standard normal probabilities.

ratio

Vector of variance ratios, with length equal to the number of tests. Each ratio is the ratio
of:

• The variance of the q-fold overlapping return horizon
• q times the variance of the return series

9 Functions — Alphabetical List

9-1092

For a random walk, these ratios are asymptotically equal to one. For a mean-reverting
series, the ratios are less than one. For a mean-averting series, the ratios are greater
than one.

Definitions

The variance ratio test assesses the null hypothesis that a univariate time series y is a
random walk. The null model is
y(t) = c + y(t–1) + e(t),

where c is a drift constant and e(t) are uncorrelated innovations with zero mean.

• When IID is false, the alternative is that the e(t) are correlated.
• When IID is true, the alternative is that the e(t) are either dependent or not

identically distributed (for example, heteroscedastic).

Examples

Assess Whether a Series Is a Random Walk

Test whether a US equity index is a random walk using various step sizes. Perform
the test with and without the assumption that the innovations are independent and
identically distributed.

Load the global large-cap equity indices data set. Focus on the daily S & P 500 index
(SP).

load Data_GlobalIdx1

logSP = log(DataTable.SP);

figure

plot(diff(logSP))

axis tight

 vratiotest

9-1093

The plot indicates possible conditional heteroscedasticity.

Test whether the series is a random walk using various periods and whether the
innovations are independent and identically distributed.

q = [2 4 8 2 4 8];

flag = logical([1 1 1 0 0 0]);

[h,pValue,stat,cValue,ratio] = ...

 vratiotest(logSP,'period',q,'IID',flag)

rho1 = ratio(1)-1 % First-order autocorrelation of returns

h =

9 Functions — Alphabetical List

9-1094

 0 0 1 0 0 0

pValue =

 0.5670 0.3307 0.0309 0.7004 0.5079 0.1303

stat =

 0.5724 -0.9727 -2.1579 0.3847 -0.6621 -1.5128

cValue =

 1.9600 1.9600 1.9600 1.9600 1.9600 1.9600

ratio =

 1.0111 0.9647 0.8763 1.0111 0.9647 0.8763

rho1 =

 0.0111

h indicates that the test fails to reject that the series is a random walk at 5% level, except
in the case where period = 8 and IID = true. This rejection is likely due to the test not
accounting for the heteroscedasticity.

More About

Algorithms

The vratiotest test statistics are based on a ratio of variance estimates of returns
r(t) = y(t)–y(t–1) and period q return horizons r(t) + ... + r(t–q+1). Overlapping horizons
increase the efficiency of the estimator and add power to the test. Under either null,
uncorrelated innovations e(t) imply that the period q variance is asymptotically equal to q
times the period 1 variance. The variance of the ratio, however, depends on the degree of
heteroscedasticity, and, therefore, on the null.

 vratiotest

9-1095

Rejection of the null due to dependence of the innovations does not imply that the e(t) are
correlated. Dependence allows that nonlinear functions of the e(t) are correlated, even
when the e(t) are not. For example, it can hold that Cov[e(t),e(t–k)] = 0 for all k ≠ 0, while
Cov[e(t)2,e(t–k)2] ≠ 0 for some k ≠ 0.

Cecchetti and Lam [2] show that sequential testing using multiple values of q
results in small-sample size distortions beyond those that result from the asymptotic
approximation of critical values.
• “Unit Root Nonstationarity” on page 3-34

References

[1] Campbell, J. Y., A. W. Lo, and A. C. MacKinlay. Chapter 12. “The Econometrics of
Financial Markets.” Nonlinearities in Financial Data. Princeton, NJ: Princeton
University Press, 1997.

[2] Cecchetti, S. G., and P. S. Lam. “Variance-Ratio Tests: Small-Sample Properties with
an Application to International Output Data.” Journal of Business and Economic
Statistics. Vol. 12, 1994, pp. 177–186.

[3] Cochrane, J. “How Big is the Random Walk in GNP?” Journal of Political Economy.
Vol. 96, 1988, pp. 893–920.

[4] Faust, J. “When Are Variance Ratio Tests for Serial Dependence Optimal?”
Econometrica. Vol. 60, 1992, pp. 1215–1226.

[5] Lo, A. W., and A. C. MacKinlay. “Stock Market Prices Do Not Follow Random Walks:
Evidence from a Simple Specification Test.” Review of Financial Studies. Vol. 1,
1988, pp. 41–66.

[6] Lo, A. W., and A. C. MacKinlay. “The Size and Power of the Variance Ratio Test.”
Journal of Econometrics. Vol. 40, 1989, pp. 203–238.

[7] Lo, A. W., and A. C. MacKinlay. A Non-Random Walk Down Wall St. Princeton, NJ:
Princeton University Press, 2001.

See Also
adftest | pptest | kpsstest | lmctest

9 Functions — Alphabetical List

9-1096

Introduced in R2009b

 waldtest

9-1097

waldtest

Wald test of model specification

Syntax

h = waldtest(r,R,EstCov)

h = waldtest(r,R,EstCov,alpha)

[h,pValue] = waldtest(___)

[h,pValue,stat,cValue] = waldtest(___)

Description

h = waldtest(r,R,EstCov) returns a logical value (h) with the rejection decision
from conducting a Wald test of model specification.

waldtest constructs the test statistic using the restriction function and its Jacobian,
and the value of the unrestricted model covariance estimator, all evaluated at the
unrestricted parameter estimates (r, R, and EstCov, respectively).

• If any input argument is a cell vector of length k > 1, then the other input arguments
must be cell arrays of length k. waldtest(r,R,EstCov) treats each cell as a separate,
independent test, and returns a vector of rejection decisions.

• If any input argument is a row vector, then the software returns output arguments as
row vectors.

h = waldtest(r,R,EstCov,alpha) returns the rejection decision of the Wald test
conducted at significance level alpha.

[h,pValue] = waldtest(___) returns the rejection decision and p-value (pValue)
for the hypothesis test, using any of the input arguments in the previous syntaxes.

[h,pValue,stat,cValue] = waldtest(___) additionally returns the test statistic
(stat) and critical value (cValue) for the hypothesis test.

9 Functions — Alphabetical List

9-1098

Examples

Assess Model Specifications Using the Wald Test

Check for significant lag effects in a time series regression model.

Load the U.S. GDP data set.

load Data_GDP

Plot the GDP against time.

plot(dates,Data)

datetick

 waldtest

9-1099

The series seems to increase exponentially.

Transform the data using the natural logarithm.

logGDP = log(Data);

logGDP is increasing in time, so assume that there is a significant lag 1 effect. To use the
Wald test to check if there is a significant lag 2 effect, you need the:

• Estimated coefficients of the unrestricted model
• Restriction function evaluated at the unrestricted model coefficient values
• Jacobian of the restriction function evaluated at the unrestricted model coefficient

values
• Estimated, unrestricted parameter covariance matrix.

The unrestricted model is

Estimate the coefficients of the unrestricted model.

LagLGDP = lagmatrix(logGDP,1:2);

UMdl = fitlm(table(LagLGDP(:,1),LagLGDP(:,2),logGDP));

UMdl is a fitted LinearModel model. It contains, among other things, the fitted
coefficients of the unrestricted model.

The restriction is . Therefore, the restiction function (r) and Jacobian (R) are:

•

•

Specify r, R, and the estimated, unrestricted parameter covariance matrix.

r = UMdl.Coefficients.Estimate(3);

R = [0 0 1];

EstParamCov = UMdl.CoefficientCovariance;

Test for a significant lag 2 effect using the Wald test.

[h,pValue] = waldtest(r,R,EstParamCov)

9 Functions — Alphabetical List

9-1100

h =

 1

pValue =

 1.2521e-07

h = 1 indicates that the null, restricted hypothesis () should be rejected in favor
of the alternative, unrestricted hypothesis. pValue is quite small, which suggests that
there is strong evidence for this result.

Assess Conditional Heteroscedasticity Using the Wald Test

Test whether there are significant ARCH effects in a simulated response series using
waldtest.

Suppose that the model for the simulated data is AR(1) with an ARCH(1) variance.
Symbolically, the model is

where

•

•

• is Gaussian with mean 0 and variance 1.

Specify the model for the simulated data.

VarMdl = garch('ARCH',0.5,'Constant',1);

Mdl = arima('Constant',0,'Variance',VarMdl,'AR',0.9);

Mdl is a fully specified AR(1) model with an ARCH(1) variance.

Simulate presample and effective sample responses from Mdl.

T = 100;

rng(1); % For reproducibility

n = 2; % Number of presample observations required for the Jacobian

[y,epsilon,condVariance] = simulate(Mdl,T + n);

 waldtest

9-1101

psI = 1:n; % Presample indices

esI = (n + 1):(T + n); % Estimation sample indices

epsilon is the random path of innovations from VarMdl. The software filters epsilon
through Mdl to yield the random response path y.

Specify the unrestricted model assuming that the conditional mean model is

where . Fit the simulated data (y) to the unrestricted model using the
presample observations.

UVarMdl = garch(0,1);

UMdl = arima('ARLags',1,'Variance',UVarMdl);

[UEstMdl,UEstParamCov] = estimate(UMdl,y(esI),'Y0',y(psI),...

 'E0',epsilon(psI),'V0',condVariance(psI),'Display','off');

UEstMdl is the the fitted, unrestricted model, and UEstParamCov is the estimated
parameter covariance of the unrestricted model parameters.

The null hypothesis is that , i.e., the restricted model is AR(1) with Gaussian
innovations that have mean 0 and constant variance. Therefore, the restriction function
is , where . The components of the Wald test are:

• The restriction function evaluated at the unrestricted parameter estimates is .
• The Jacobian of r evaluated at the unrestricted model parameters is

.
• The unrestricted model estimated parameter covariance matrix is UEstParamCov.

Specify r and R.

r = UEstMdl.Variance.ARCH{1};

R = [0, 0, 0, 1];

Test the null hypothesis that at the 1% significance level using waldtest.

[h,pValue,stat,cValue] = waldtest(r,R,UEstParamCov,0.01)

h =

9 Functions — Alphabetical List

9-1102

 0

pValue =

 0.0549

stat =

 3.6846

cValue =

 6.6349

h = 0 indicates that the null, restricted model should not be rejected in favor of
the alternative, unrestricted model. This result is consistent with the model for the
simulated data.

Test Among Multiple Nested Model Specifications

Assess model specifications by testing down among multiple restricted models using
simulated data. The true model is the ARMA(2,1)

where is Gaussian with mean 0 and variance 1.

Specify the true ARMA(2,1) model, and simulate 100 response values.

TrueMdl = arima('AR',{0.9,-0.5},'MA',0.7,...

 'Constant',3,'Variance',1);

T = 100;

rng(1); % For reproducibility

y = simulate(TrueMdl,T);

Specify the unrestricted model and the names of the candidate models for testing down.

UMdl = arima(2,0,2);

RMdlNames = {'ARMA(2,1)','AR(2)','ARMA(1,2)','ARMA(1,1)',...

 'AR(1)','MA(2)','MA(1)'};

 waldtest

9-1103

UMdl is the unrestricted, ARMA(2,2) model. RMdlNames is a cell array of strings
containing the names of the restricted models.

Fit the unrestricted model to the simulated data.

[UEstMdl,UEstParamCov] = estimate(UMdl,y,'Display','off');

UEstMdl is the fitted, unrestricted model, and UEstParamCov is the estimated
parameter covariance matrix.

The unrestricted model has six parameters. To construct the restriction function and its
Jacobian, you must know the order of the parameters in UEstParamCov. For this arima
model, the order is .

Each candidate model corresponds to a restriction function. Put the restriction function
vectors into separate cells of a cell vector.

rf1 = UEstMdl.MA{2}; % ARMA(2,1)

rf2 = cell2mat(UEstMdl.MA)'; % AR(2)

rf3 = UEstMdl.AR{2}; % ARMA(1,2)

rf4 = [UEstMdl.AR{2};UEstMdl.MA{2}]'; % ARMA(1,1)

rf5 = [UEstMdl.AR{2};cell2mat(UEstMdl.MA)']; % AR(1)

rf6 = cell2mat(UEstMdl.AR)'; % MA(2)

rf7 = [cell2mat(UEstMdl.AR)';UEstMdl.MA{2}]; % MA(1)

r = {rf1;rf2;rf3;rf4;rf5;rf6;rf7};

r is a 7-by-1 cell vector of vectors corresponding to the restriction function for the
candidate models.

Put the Jacobian of each restriction function into separate, corresponding cells of a cell
vector. The order of the elements in the Jacobian must correspond to the order of the
elements in UEstParamCov.

J1 = [0 0 0 0 1 0]; % ARMA(2,1)

J2 = [0 0 0 1 0 0; 0 0 0 0 1 0]; % AR(2)

J3 = [0 1 0 0 0 0]; % ARMA(1,2)

J4 = [0 1 0 0 0 0; 0 0 0 0 1 0]; % ARMA(1,1)

J5 = [0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 1 0]; % AR(1)

J6 = [1 0 0 0 0 0; 0 1 0 0 0 0]; % MA(2)

J7 = [1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 0 0 1 0]; % MA(1)

R = {J1;J2;J3;J4;J5;J6;J7};

R is a 7-by-1 cell vector of vectors corresponding to the restriction function for the
candidate models.

9 Functions — Alphabetical List

9-1104

Put the estimated parameter covariance matrix in each cell of a 7-by-1 cell vector.

EstCov = cell(7,1); % Preallocate

for j = 1:length(EstCov)

 EstCov{j} = UEstParamCov;

end

Apply the Wald test at a 1% significance level to find the appropriate, restricted model
specifications.

alpha = .01;

h = waldtest(r,R,EstCov,alpha);

RestrictedModels = RMdlNames(~h)

RestrictedModels =

 'ARMA(2,1)' 'ARMA(1,2)' 'ARMA(1,1)' 'MA(2)' 'MA(1)'

RestrictedModels lists the most appropriate restricted models.

You can test down again, but use ARMA(2,1) as the unrestricted model. In this case, you
must remove MA(2) from the possible restricted models.

Conduct a Wald Test Using Nonlinear Restriction Functions

Test whether the parameters of a nested model have a nonlinear relationship.

Load the Deutschmark/British Pound bilateral spot exchange rate data set.

load Data_MarkPound

The data set (Data) contains a time series of prices.

Convert the prices to returns, and plot the return series.

returns = price2ret(Data);

figure

plot(returns)

axis tight

ylabel('Returns')

xlabel('Days, 02Jan1984 - 31Dec1991')

title('{\bf Deutschmark/British Pound Bilateral Spot Exchange Rate}')

 waldtest

9-1105

The returns series shows signs of heteroscedasticity.

Suppose that a GARCH(1,1) model is an appropriate model for the data. Fit a
GARCH(1,1) model to the data including a constant.

Mdl = garch(1,1);

[EstMdl,EstParamCov] = estimate(Mdl,returns);

g1 = EstMdl.GARCH{1};

a1 = EstMdl.ARCH{1};

 GARCH(1,1) Conditional Variance Model:

 --

 Conditional Probability Distribution: Gaussian

9 Functions — Alphabetical List

9-1106

 Standard t

 Parameter Value Error Statistic

 ----------- ----------- ------------ -----------

 Constant 1.05346e-06 3.50483e-07 3.00575

 GARCH{1} 0.806576 0.0129095 62.4794

 ARCH{1} 0.154357 0.0115746 13.3358

g1 is the estimated GARCH effect, and a1 is the estimated ARCH effect.

The following might represent relationships between the GARCH and ARCH coefficients:

•

•

where is the GARCH effect and is the ARCH effect. Specify these relationships
as the restriction function , evaluated at the unrestricted model parameter
estimates. This specification defines a nested, restricted model.

r = [g1*a1; g1+a1] - 1;

Specify the Jacobian of the restriction function vector.

R = [0, a1, g1;0, 1, 1];

Conduct a Wald test to assess whether there is sufficient evidence to reject the restricted
model.

[h,pValue,stat,cValue] = waldtest(r,R,EstParamCov)

h =

 1

pValue =

 0

stat =

 1.4594e+04

 waldtest

9-1107

cValue =

 5.9915

h = 1 indicates that there is sufficient evidence to reject the restricted model in favor
of the unrestricted model. pValue = 0 indicates that the evidence for rejecting the
restricted model is strong.

• “Conduct a Wald Test” on page 3-74
• “Classical Model Misspecification Tests”
• “Time Series Regression IX: Lag Order Selection”

Input Arguments

r — Restriction functions
scalar | vector | cell vector of scalars or vectors

Restriction functions corresponding to restricted models, specified as a scalar, vector, or
cell vector of scalars or vectors.

• If r is a q-vector or a singleton cell array containing a q-vector, then the software
conducts one Wald test. q must be less than the number of unrestricted model
parameters.

• If r is a cell vector of length k > 1, and cell j contains a qj-vector, j = 1,...,k, then the
software conducts k independent Wald tests. Each qj must be less than the number of
unrestricted model parameters.

Data Types: double | cell

R — Restriction function Jacobians
row vector | matrix | cell vector of row vectors or matrices

Restriction function Jacobians, specified as a row vector, matrix, or cell vector of row
vectors or matrices.

• Suppose r1,...,rq are the q restriction functions, and the unrestricted model parameters
are θ1,...,θp. Then, the restriction function Jacobian is

9 Functions — Alphabetical List

9-1108

R

r r

r r

p

q q

p

=

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜̃

∂
∂

∂
∂

∂

∂

∂

∂

1

1

1

1

q q

q q

…

M O M

L

.

• If R is a q-by-p matrix or a singleton cell array containing a q-by-p matrix, then
the software conducts one Wald test. q must be less than p, which is the number of
unrestricted model parameters.

• If R is a cell vector of length k > 1, and cell j contains a qj-by-pj matrix, j = 1,...,k, then
the software conducts k independent Wald tests. Each qj must be less than pj, which is
the number of unrestricted parameters in model j.

Data Types: double | cell

EstCov — Unrestricted model parameter covariance estimate
matrix | cell vector of matrices

Unrestricted model parameter covariance estimates, specified as a matrix or cell vector of
matrices.

• If EstCov is a p-by-p matrix or a singleton cell array containing a p-by-p matrix,
then the software conducts one Wald test. p is the number of unrestricted model
parameters.

• If EstCov is a cell vector of length k > 1, and cell j contains a pj-by-pj matrix, j =
1,...,k, then the software conducts k independent Wald tests. Each pj is the number of
unrestricted parameters in model j.

Data Types: double | cell

alpha — Nominal significance levels
0.05 (default) | scalar | vector

Nominal significance levels for the hypothesis tests, specified as a scalar or vector.

Each element of alpha must be greater than 0 and less than 1.

When conducting k > 1 tests,

• If alpha is a scalar, then the software expands it to a k-by-1 vector.

 waldtest

9-1109

• If alpha is a vector, then it must have length k.

Data Types: double

Output Arguments

h — Test rejection decisions
logical | vector of logicals

Test rejection decisions, returned as a logical value or vector of logical values with a
length equal to the number of tests that the software conducts.

• h = 1 indicates rejection of the null, restricted model in favor of the alternative,
unrestricted model.

• h = 0 indicates failure to reject the null, restricted model.

pValue — Test statistic p-values
scalar | vector

Test statistic p-values, returned as a scalar or vector with a length equal to the number
of tests that the software conducts.

stat — Test statistics
scalar | vector

Test statistics, returned as a scalar or vector with a length equal to the number of tests
that the software conducts.

cValue — Critical values
scalar | vector

Critical values determined by alpha, returned as a scalar or vector with a length equal
to the number of tests that the software conducts.

More About

Wald Test

The Wald test compares specifications of nested models by assessing the significance of q
parameter restrictions to an extended model with p unrestricted parameters.

9 Functions — Alphabetical List

9-1110

The test statistic is

W r R R r= ()¢ ¢
-

S ˆ ,
q

1

where

• r is the restriction function that specifies restrictions of the form r(θ) = 0 on
parameters θ in the unrestricted model, evaluated at the unrestricted model
parameter estimates. In other words, r maps the p-dimensional parameter space to
the q-dimensional restriction space.

In practice, r is a q-by-1 vector, where q < p.

Usually, r = -q̂ q
0 , where q̂ is the unrestricted model parameter estimates for the

restricted parameters and θ0 holds the values of the restricted model parameters
under the null hypothesis.

• R is the restriction function Jacobian evaluated at the unrestricted model parameter
estimates.

• ˆ
ˆS

q is the unrestricted model parameter covariance estimator evaluated at the
unrestricted model parameter estimates.

• W has an asymptotic chi-square distribution with q degrees of freedom.

When W exceeds a critical value in its asymptotic distribution, the test rejects the null,
restricted hypothesis in favor of the alternative, unrestricted hypothesis. The nominal
significance level (α) determines the critical value.

Note: Wald tests depend on the algebraic form of the restrictions. For example, you can
express the restriction ab = 1 as a – 1/b = 0, or b – 1/a = 0, or ab – 1 = 0. Each formulation
leads to different test statistics.

Tips

• Estimate unrestricted univariate linear time series models, such as arima or garch,
or time series regression models (regARIMA) using estimate. Estimate unrestricted
multivariate linear time series models using vgxvarx.

 waldtest

9-1111

estimate and vgxvarx return parameter estimates and their covariance estimates,
which you can process and use as inputs to waldtest.

• If you cannot easily compute restricted parameter estimates, then use waldtest. By
comparison:

• lratiotest requires both restricted and unrestricted parameter estimates.
• lmtest requires restricted parameter estimates.

Algorithms

• waldtest performs multiple, independent tests when the restriction function vector,
its Jacobian, and the unrestricted model parameter covariance matrix (r, R, and
EstCov, respectively) are equal-length cell vectors.

• If EstCov is the same for all tests, but r varies, then waldtest “tests down”
against multiple restricted models.

• If EstCov varies among tests, but r does not, then waldtest “tests up” against
multiple unrestricted models.

• Otherwise, waldtest compares model specifications pair-wise.
• alpha is nominal in that it specifies a rejection probability in the asymptotic

distribution. The actual rejection probability is generally greater than the nominal
significance.

• The Wald test rejection error is generally greater than the likelihood ratio and
Lagrange multiplier test rejection errors.

• Using garch Objects
• “Model Comparison Tests” on page 3-65

References

[1] Davidson, R. and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK:
Oxford University Press, 2004.

[2] Godfrey, L. G. Misspecification Tests in Econometrics. Cambridge, UK: Cambridge
University Press, 1997.

[3] Greene, W. H. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Pearson
Prentice Hall, 2008.

9 Functions — Alphabetical List

9-1112

[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,
1994.

See Also
arima | estimate | estimate | estimate | garch | lmtest | regARIMA | vgxvarx

Introduced in R2009a

A

Data Sets and Examples

Econometrics Toolbox includes the sample data sets and examples in the following tables.

Generally, the data sets contain individual data variables, description variables with
references, and tablular arrays encapsulating the data set and its description, as
appropriate. To load a data set into the workspace, type

load Data_Filename,

where Data_Filename is one of the files listed in the table.

Data Set Name Description

Data_Canada Canadian inflation and interest rates, 1954–1994
Data_Consumption U.S. food consumption, 1927-1962
Data_CreditDefaults Investment-grade corporate bond defaults and four

predictors, 1984–2004
Data_Danish Danish stock returns, bond yields, 1922–1999
Data_EquityIdx U.S. equity indices, 1990–2001
Data_FXRates Currency exchange rates, 1979–1998
Data_GDP U.S. Gross Domestic Product, 1947–2005
Data_GlobalIdx1 Global large-cap equity indices, 1993–2003
Data_GNP U.S. Gross National Product, 1947–2005
Data_Income1 Simulated data on income and education
Data_Income2 Average annual earnings by educational attainment in

eight workforce age categories
Data_JAustralian Johansen's Australian data, 1972–1991
Data_JDanish Johansen's Danish data, 1974–1987
Data_MarkPound Deutschmark/British Pound foreign-exchange rate,

1984–1991
Data_NelsonPlosser Macroeconomic series of Nelson and Plosser, 1860–1970

A Data Sets and Examples

A-2

Data Set Name Description

Data_SchwertMacro Macroeconomic series of Schwert, 1947–1985
Data_SchwertStock Indices of U.S. stock prices, 1871–2008
Data_TBill Three-month U.S. treasury bill secondary market rates,

1947–2005
Data_USEconModel US Macroeconomic series, 1947–2009
Data_VARMA22 Two-dimensional VARMA(2,2) specification
Data_Recessions U.S. recession start and end dates, 1857–2011

After loading the data set, you can display information about the data set, e.g., the
meanings of the variables, by entering Description in the command line.

Example Name Description

Demo_ClassicalTests Performing classical model misspecification
tests

Demo_DieboldLiModel Using the State-Space Model (SSM) and
Kalman filter to fit the Diebold-Li yields-
only model to yield curves derived from
government bond data

Demo_HPFilter Using the Hodrick-Prescott filter to
reproduce their original result

Demo_RiskFHS Using bootstrapping and filtered historical
simulation to evaluate market risk

Demo_RiskEVT Using extreme value theory and copulas to
evaluate market risk

Demo_TSReg1 Introducing basic assumptions behind
multiple linear regression models

Demo_TSReg2 Detecting correlation among predictors and
accommodate problems of large estimator
variance

Demo_TSReg3 Detecting influential observations in time
series data and accommodate their effect
on multiple linear regression models

 Data Sets and Examples

A-3

Example Name Description

Demo_TSReg4 Investigating trending variables, spurious
regression, and methods of accommodation
in multiple linear regression models

Demo_TSReg5 Selecting a parsimonious set of predictors
with high statistical significance for
multiple linear regression models

Demo_TSReg6 Evaluating model assumptions and
investigate respecification opportunities by
examining the series of residuals

Demo_TSReg7 Presenting the basic setup for producing
conditional and unconditional forecasts
from multiple linear regression models

Demo_TSReg8 Examining how lagged predictors affect
least-squares estimation of multiple linear
regression models

Demo_TSReg9 Illustrating predictor history selection for
multiple linear regression models

Demo_TSReg10 Estimating multiple linear regression
models of time series data in the presence
of heteroscedastic or autocorrelated
innovations

Demo_USEconModel Modeling the United States economy

Glossary-1

Glossary

Akaike information criteria
(AIC)

A model-order selection criterion based on parsimony.
More complicated models are penalized for the
inclusion of additional parameters. See also Bayesian
information criteria (BIC).

antithetic sampling A variance reduction technique that pairs a sequence
of independent normal random numbers with a second
sequence obtained by negating the random numbers
of the first. The first sequence simulates increments of
one path of Brownian motion, and the second sequence
simulates increments of its reflected, or antithetic, path.
These two paths form an antithetic pair independent of
any other pair.

AR Autoregressive. AR models include past observations
of the dependent variable in the forecast of future
observations.

ARCH Autoregressive Conditional Heteroscedasticity. A time
series technique that uses past observations of the
variance to forecast future variances. See also GARCH.

ARMA Autoregressive Moving Average. A time series model that
includes both AR and MA components. See also AR and
MA.

autocorrelation function
(ACF)

Correlation sequence of a random time series with itself.
See also cross-correlation function (XCF).

autoregressive See AR.

Bayesian information criteria
(BIC)

A model-order selection criterion based on parsimony.
More complicated models are penalized for the inclusion
of additional parameters. Since BIC imposes a greater
penalty for additional parameters than AIC, BIC always
provides a model with a number of parameters no greater
than that chosen by AIC. See also Akaike information
criteria (AIC).

Brownian motion A zero-mean continuous-time stochastic process with
independent increments (also known as a Wiener process).

Glossary

Glossary-2

conditional Time series technique with explicit dependence on the
past sequence of observations.

conditional mean time series model for forecasting the expected value of the
return series itself.

conditional variance Time series model for forecasting the expected value of
the variance of the return series.

cross-correlation function
(XCF)

Correlation sequence between two random time series.
See also autocorrelation function (ACF).

diffusion The function that characterizes the random (stochastic)
portion of a stochastic differential equation. See also
stochastic differential equation.

discretization error Errors that may arise due to discrete-time sampling of
continuous stochastic processes.

drift The function that characterizes the deterministic portion
of a stochastic differential equation. See also stochastic
differential equation.

equality constraint A constraint, imposed during parameter estimation, by
which a parameter is held fixed at a user-specified value.

Euler approximation A simulation technique that provides a discrete-time
approximation of a continuous-time stochastic process.

excess kurtosis A characteristic, relative to a standard normal probability
distribution, in which an area under the probability
density function is reallocated from the center of the
distribution to the tails (fat tails). Samples obtained
from distributions with excess kurtosis have a higher
probability of containing outliers than samples drawn
from a normal (Gaussian) density. Time series that
exhibit a fat tail distribution are often referred to as
leptokurtic.

explanatory variables Time series used to explain the behavior of another
observed series of interest. Explanatory variables are
typically incorporated into a regression framework.

 Glossary

Glossary-3

fat tails See excess kurtosis.

GARCH Generalized autoregressive conditional heteroscedasticity.
A time series technique that uses past observations of
the variance and variance forecast to forecast future
variances. See also ARCH.

heteroscedasticity Time-varying, or time-dependent, variance.

homoscedasticity Time-independent variance. The Econometrics Toolbox
software also refers to homoscedasticity as constant
conditional variance.

i.i.d. Independent, identically distributed.

innovations A sequence of unanticipated shocks, or disturbances.
The Econometrics Toolbox software uses innovations and
residuals interchangeably.

leptokurtic See excess kurtosis.

MA Moving average. MA models include past observations
of the innovations noise process in the forecast of future
observations of the dependent variable of interest.

MMSE Minimum mean square error. A technique designed to
minimize the variance of the estimation or forecast error.
See also RMSE.

moving average See MA.

objective function The function to numerically optimize. In the Econometrics
Toolbox software, the objective function is the
loglikelihood function of a random process.

partial autocorrelation
function (PACF)

Correlation sequence estimated by fitting successive order
autoregressive models to a random time series by least
squares. The PACF is useful for identifying the order of
an autoregressive model.

path A random trial of a time series process.

Glossary

Glossary-4

proportional sampling A stratified sampling technique that ensures that the
proportion of random draws matches its theoretical
probability. One of the most common examples of
proportional sampling involves stratifying the terminal
value of a price process in which each sample path is
associated with a single stratified terminal value such
that the number of paths equals the number of strata.

See also stratified sampling.

p-value The lowest level of significance at which a test statistic is
significant.

realization See path.

residuals See innovations.

RMSE Root mean square error. The square root of the mean
square error. See also MMSE.

standardized innovations The innovations divided by the corresponding conditional
standard deviation.

stochastic differential
equation

A generalization of an ordinary differential equation,
with the addition of a noise process, that yields random
variables as solutions.

strata See stratified sampling.

stratified sampling A variance reduction technique that constrains a
proportion of sample paths to specific subsets (or strata) of
the sample space.

time series Discrete-time sequence of observations of a random
process. The type of time series of interest in the
Econometrics Toolbox software is typically a series of
returns, or relative changes of some underlying price
series.

transient A response, or behavior, of a time series that is heavily
dependent on the initial conditions chosen to begin a
recursive calculation. The transient response is typically

 Glossary

Glossary-5

undesirable, and initially masks the true steady-state
behavior of the process of interest.

trial The result of an independent random experiment that
computes the average or expected value of a variable of
interest and its associated confidence interval.

unconditional Time series technique in which explicit dependence on the
past sequence of observations is ignored. Equivalently,
the time stamp associated with any observation is
ignored.

variance reduction A sampling technique in which a given sequence of
random variables is replaced with another of the same
expected value but smaller variance. Variance reduction
techniques increase the efficiency of Monte Carlo
simulation.

volatility The risk, or uncertainty, measure associated with a
financial time series. The Econometrics Toolbox software
associates volatility with standard deviation.

Wiener process See Brownian motion.

